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Abstract Regional Climate Models (RCMs) constitute

the most often used method to perform affordable high-

resolution regional climate simulations. The key issue in

the evaluation of nested regional models is to determine

whether RCM simulations improve the representation of

climatic statistics compared to the driving data, that is,

whether RCMs add value. In this study we examine a

necessary condition that some climate statistics derived

from the precipitation field must satisfy in order that the

RCM technique can generate some added value: we focus

on whether the climate statistics of interest contain some

fine spatial-scale variability that would be absent on a

coarser grid. The presence and magnitude of fine-scale

precipitation variance required to adequately describe a

given climate statistics will then be used to quantify the

potential added value (PAV) of RCMs. Our results show

that the PAV of RCMs is much higher for short temporal

scales (e.g., 3-hourly data) than for long temporal scales

(16-day average data) due to the filtering resulting from the

time-averaging process. PAV is higher in warm season

compared to cold season due to the higher proportion of

precipitation falling from small-scale weather systems in

the warm season. In regions of complex topography, the

orographic forcing induces an extra component of PAV, no

matter the season or the temporal scale considered. The

PAV is also estimated using high-resolution datasets based

on observations allowing the evaluation of the sensitivity

of changing resolution in the real climate system. The

results show that RCMs tend to reproduce relatively well

the PAV compared to observations although showing an

overestimation of the PAV in warm season and moun-

tainous regions.

Keywords Regional climate model � Temporal-spatial

scale analysis � Precipitation � Added value

1 Introduction

Atmospheric-Ocean General Circulation Models

(AOGCMs) constitute the primary and most comprehen-

sive tools to study future climate. However, due to the large

number and complexity of processes to be represented, the

long simulations needed for climate studies, and the need

of ensemble simulations to provide robust statistical esti-

mates, computational constraints severely restrict the

horizontal grid mesh used in the discretized equations.

Present horizontal grid intervals of the atmospheric com-

ponent of AOGCMs are usually between 125 and 400 km

(Randall et al. 2007); these are insufficient to resolve the

fine-scale structure of several climatic processes.

The method most often used to perform affordable high-

resolution regional climate simulations is the nesting

regional climate modelling technique; it consists of using

time-dependent large-scale atmospheric fields and ocean

surface boundary conditions to drive a high-resolution

atmospheric model integrated over a limited-area domain

(Giorgi et al. 2001). The atmospheric driving data are
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Centre ESCER (Étude et Simulation du Climat à l’Échelle
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either derived from lower resolution General Circulation

Models (GCMs) simulations or analyses of observations

(reanalyses). Typical Regional Climate Models (RCMs)

horizontal grids for climate simulations are about 50 km,

although long-term simulations are increasingly being

performed using grids of 10 km (Kanamitsu and Kanamaru

2007; Suklitsch et al. 2010). For a detailed description of

potential merits and limitations of nested RCMs, refer to

Laprise et al. (2008) and Rummukainen (2010). Alternative

methods to obtain regional climate information also exist,

such as variable-resolution global models, time-slices of

high-resolution global models and empirical-statistical

techniques (e.g. Christensen et al. 2007), but these will not

be addressed in this paper.

RCMs have been used in a broad spectrum of applica-

tions such as the reconstruction of recent-past climate on

the regional scale (e.g., Mesinger et al. 2006; Kanamitsu

and Kanamaru 2007), the downscaling of low-resolution

global simulations in seasonal prediction investigations

(e.g., Rauscher et al. 2007; Seth et al. 2007; De Sales and

Xue 2010) and the study of processes and mechanisms in

the regional scale (Pielke et al. 1999; Roebber and Gyakum

2003). During the last decade, RCMs have become

increasingly used for dynamical downscaling of climate-

change projections (Christensen et al. 2007; and references

therein), by driving RCMs with GCM-simulated climate-

change projections.

In any of these applications, the RCMs objective is to

simulate small-scale climate processes that are absent in

the coarser resolution simulation providing the driving

data. This implies that, from a practical viewpoint, the key

issue in the nesting regional modelling technique evalua-

tion is to determine whether RCM simulations improve the

representation of climatic statistics compared to the driving

data (Prömmel et al. 2010). Generally, studies evaluating

the relative skill of RCMs and the driving fields are des-

ignated as added value (AV) studies (Bärring and Laprise

2005; Rockel et al. 2010).

Despite of the great importance of identifying AV in

RCM simulations, the AV issue has not received much

attention till recently (Laprise 2005; Feser and von Storch

2005). In recent years, however, the AV problem received

increased attention and become the main subject of several

studies (Castro et al. 2005; Sotillo et al. 2005; Duffy et al.

2006; Feser 2006; Kanamitsu and Kanamaru 2007; Rau-

scher et al. 2007; Sanchez-Gomez et al. 2009; Winterfeldt

and Weisse 2009; De Sales and Xue 2010; Prömmel et al.

2010) and a central topic in a number of workshops

(Bärring and Laprise 2005; Rockel et al. 2010). Although

some authors (e.g. Liang et al. 2008) believe that the

existence of AV generated by the RCM downscaling

technique was already demonstrated for some particular

measures (e.g. reduction of precipitation biases), evidence

found in a large number of articles do not tend to univo-

cally support this view, rather suggesting that AV remains

an important open question for the community.

For example, when downscaling reanalyses data, studies

generally show that RCMs add value to their driving data

for surface variables (e.g., surface temperature and 10-m

wind speed) in regions characterized by small-scale oro-

graphic features such as mountainous regions (Feser 2006;

Prömmel et al. 2010) and coastal areas (Sotillo et al. 2005;

Winterfeldt and Weisse 2009); but little AV and even

degradation is sometimes found in regions with no

important small-scale physiographic forcings (Winterfeldt

and Weisse 2009). Long-term large-scale features (i.e.,

general circulation) are generally reasonably well repro-

duced by RCMs (Feser 2006; Sanchez-Gomez et al. 2009),

but degradation of large-scale fields arises when consid-

ering shorter time scales (e.g., daily mean) (Castro et al.

2005; Sanchez-Gomez et al. 2009).

Somewhat similar results are found when using GCM-

simulated lateral boundary conditions (LBCs). According

to Seth et al. (2007) and De Sales and Xue (2010), RCMs

generally improve the simulation of precipitation compared

to GCMs in regions where small-scale surface forcings are

important and/or GCMs do not performed very well, but

RCMs can degrade the simulated climate in those regions

where GCMs perform well and/or large-scale forcings are

dominant. De Sales and Xue (2010) also showed that the

AV of RCMs is strongly dependent on the region consid-

ered; in their study, the improvement on the representation

of the Andes Mountain Range by the RCM compared to the

GCM was a key factor to adding value to the simulation of

low-level moisture fluxes and precipitation in South

America.

The value added by RCMs seems to depend on a variety

of factors. A key factor is related with the climatic variable

considered in the assessment, understanding the term

‘‘climatic variable’’ in a broad sense as some statistical

measure of a variable computed for a given season and

region. So some remaining questions are: For which cli-

mate statistics should one hope to find AV from dynamical

downscaling? How the AV depends on the temporal scale

of the climatic variable? Where and when can some AV be

found for monthly-mean values? The objective of this

article is to examine these issues by making a systematic

characterization of a necessary condition to be satisfied by

climate statistics in order that AV be generated through the

use of the RCM technique. Given that the ansatz behind the

dynamical downscaling technique is that an RCM, driven

by large-scale atmospheric fields at its LBC, generates fine

scales that are dynamically consistent with these, this paper

will focus specifically on the fine-scale information

generated by the use of nested high-resolution RCM. The

presence and magnitude of fine-scale variance required to
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adequately describe a given climate statistics will then be

used to quantify the potential of RCMs to add value.

Our study will be performed using precipitation data

simulated by several RCMs; this will allow to determine

which of the findings are inherent to the downscaling

technique and which are specific to a particular model.

Datasets based on observations will also be analysed in

order to highlight limitations of RCMs performance when

possible as well as to indicate disagreements among

observed datasets. The use of precipitation is justified

because it is a variable that displays a wide range of tem-

poral and spatial scales, and thus a variable that tends to

maximize the potential AV. It is also a key variable

because some of the most important societal impacts of

climate change will probably result from changes in pre-

cipitation (Trenberth et al. 2003; Gutowski et al. 2007).

The paper is organized as follows. The next section

discusses in more detail the issue of added value and the

objectives of this article. Section 3 presents a brief

description of the data used. Section 4 describes the

method used to analyze the dependence of the precipitation

field on various temporal and spatial scales, together with

the manner in which statistics are computed. Results are

presented in Sect. 5 with some general results of the

method and specific results of the characterization of AV as

function of several parameters. Some discussion of the

results and conclusions is given in Sect. 6.

2 Added value issue

2.1 General characterization

Figure 1 shows a diagram adapted from Orlanski (1975)

and von Storch (2005) illustrating the characteristic tem-

poral and horizontal spatial scales of atmospheric pro-

cesses, together with the range of scales represented by

climate models. Grey shaded areas are regions of dominant

spectral power resulting from the composite of a broad

range of atmospheric variables. Due to the space and time

truncation, numerical models can only resolve explicitly a

part of the atmospheric processes; smaller scale phenom-

ena are at best accounted for in an average sense through

the subgrid-scale parameterisations. Differences between

RCM- and GCM-resolved scales can be conceptually seen

in Fig. 1 by comparing the areas boxed in by the blue and

red solid lines. These boxes were constructed using as

lower limit the temporal and spatial intervals of discreti-

zation, and as the upper limit the entire computational

domain and length of simulations. For a typical RCM the

lower limits are located roughly at 50 km and 5 min., and

the upper limit at spatial scales of 10,000 km. For a stan-

dard GCM the lower limit is here taken as 300 km and

30 min., and the upper limit as 40,000 km. It should be

noted that timestep and grid spacing of models only con-

stitute a lower limit to temporal and spatial resolution

(Pielke 1991).

Figure 1 highlights that the main potential advantage of

a RCM over a GCM is related with the representation of

spatial scales smaller than 300 km and/or temporal scales

smaller than 30 min that are absent in the GCMs. The

enhanced horizontal resolution of an RCM implies some

potential advantages compared to a lower resolution GCM:

(i) a more accurate discretization of equations; (ii) a

broader range of fine-spatial scales explicitly resolved; and

(iii) an improvement in the representation of surface forc-

ings such as topography, lakes, coastal regions and others.

Figure 1 also shows that scales larger than the RCM

domain are not within the resolved scale interval of RCM;

hence planetary scales are only felt insofar as they are

provided by the driving data through the LBC.

The original paradigm of the nesting technique is that

RCMs can be used as sophisticated magnifying glasses

(MG) where ‘‘the generated small scales accurately repre-

sent those that would be present in the driving data if they

were not limited by resolution’’ (Laprise et al. 2008;

hereafter referred as MG hypothesis). The idea behind this

hypothesis is that an RCM can be used to represent small

scales that would be present in a desirable but in practice

unaffordable high-resolution GCM (HRGCM). The evalu-

ation of the MG hypothesis has been addressed without

having to use observed data, through a systematic approach

developed by Denis et al. (2002): the ‘‘Big Brother

Experiment’’ (BBE). In its idealized version, the BBE

consists in comparing two high-resolution simulations

Fig. 1 Characteristic temporal and horizontal spatial scales of

atmospheric processes (in black) and the range of scales represented

in RCMs (blue line) and GCMs (red line). Light- red and blue shaded

regions represent added value of type 1 and 2, respectively. Blue
squares represent temporal and spatial scales of the data produced

with the multi-resolution method
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generated by using different configurations of the same

model: a simulation conducted with a high-resolution

global model (referred to as ‘‘big brother’’) and a RCM

simulation (referred to as ‘‘little brother’’) run at the same

resolution and with the same discretisation and parame-

terisation as the big brother, but forced by low-resolution

LBCs derived from filtering out the big-brother simulated

fine scales. The low-resolution data resulting from filtering

mimics the situation when driving an RCM from GCM

data. The use of the same model, run in different config-

urations while using the same physics, dynamics and

numerics, permits to circumvent errors due to the model

itself, through the BBE perfect model approach. As a

consequence, the differences between the little and the big

brothers can be attributed solely to the nesting technique

and to differences in LBCs due to the use of low-resolution

data to drive the little brother.

A low-cost version of the BBE was obtained by

replacing the HRGCM by a very large domain high-reso-

lution RCM; it was successfully used to show that the little

brother tends to replicate the magnitude and spatial dis-

tribution of small-scale climate statistics present in the big

brother, at least in mid-latitude climates (see Laprise et al.

2008 and references therein). The BBE was also very

useful to study the influence of a variety of parameters in

RCMs setup such as the impact of the size of the domain

used to run the model (e.g., Leduc and Laprise 2009) and

the impact of LBC errors (Diaconescu et al. 2007).

2.2 Added value concept

The evaluation of the MG hypothesis with the BBE does

not depend on the model performance, i.e. model’s skill at

reproducing the observed climate, which has definite

advantages as discussed above; it has also its downside.

Satisfying the MG hypothesis does not imply that the high-

resolution RCM-derived statistics are closer to observed

statistics than those that would be produced by a low-

resolution GCM; hence the conclusions are mute about

whether RCM provide any real added value compared to

coarser resolution GCM. Indeed, as discussed by several

authors for both GCMs (Boer and Lazare 1988; Boville

1991; Boyle 1993) and RCMs (Giorgi and Marinucci

1996), higher resolution simulations do not necessarily

produce results closer to the observed values, in part

because the approximations in models do not converge

monotonically with resolution and the performance is

strongly dependent on the behaviour of parameterizations.

These days, the most popular paradigm used to evaluate

RCMs is through a pragmatic consideration about their

usefulness, evaluating if RCMs are able to add value (AV)

to, i.e. improve, the simulation of climate statistics com-

pared to those produced by GCMs. The AV hypothesis has

important differences compared to the MG hypothesis.

First, it introduces the necessity of using observed data in

its validation, thus inducing important constraints due to

the scarceness of fine-scale observations and the limited

number of variables (e.g., precipitation, temperature, sur-

face pressure) available for validation. Second, the evalu-

ation of the AV hypothesis implies the assessment of the

performance of the RCM downscaling technique but also

of the relative performance of the RCM and its driving data

(i.e., the AV is model dependent). It is generally very

difficult to determine if an improvement (degradation) of a

given climate statistics comes from advantages (disadvan-

tages) of the RCM downscaling technique or because the

RCM performed better (worse) than the GCM; there may

also be compensating errors between the driving data and

the RCM that may result in apparent improvements, but for

wrong reasons. From this viewpoint, it seems that the only

way of using the AV paradigm to obtain some intrinsic

characteristics of the downscaling technique is through the

use of a large ensemble of RCM-GCM pairs of simulations

in order to extract common behaviours.

In general, RCMs could simulate more realistic climate

than the lower resolution driving data by adding value in

two different ways. First by adding climate variability in

scales that are not explicitly resolved by GCMs (hereafter

referred to as added value of type 1 (AV1), as indicated by

the light-blue shaded region in Fig. 1. A second way is by

improving the simulation of climate in those scales that are

common to both RCMs and GCMs, hereafter referred to as

added value of type 2 (AV2), as indicated by the light-red

shaded region in Fig. 1. The separation of AV in two

components can be helpful because of the different

methodological approach needed to assess both types of AV.

The estimation of AV coming from the additional climate

variability in scales only resolved in RCM simulations

(AV1) is ultimately an evaluation of the performance of

RCMs to simulate small-scale variability. On the other hand,

the evaluation of the improvements produced by the RCM in

the range of scales resolved by both models (AV2) can be

done by comparing results from the RCM and the GCM

with large-scale analyses of observations to determine which

one produces better performance. This classification can be

complemented with the one proposed by Castro et al. (2005)

in which RCM dynamical downscaling technique is sepa-

rated into four distinct types according to the LBCs used to

drive the RCM.

Due to the limited domain size of RCMs, the lack of

two-way interaction between the regional domain and the

rest of the globe, and the lateral boundary condition issues,

it is not clear whether RCMs actually improve or degrade

the larger scales; hence AV2 has not been clearly identified

and it is still a debated topic in the modelling community

(e.g., Laprise et al. 2008), although recent results indicate
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that there may be improvements under specific circum-

stances (Veljovic et al. 2010). In the following we will

concentrate on AV1 although it will be generally refer to as

AV.

2.3 Potential added value concept

It is important to note that in some cases the absence of

added value might be related to the failure of the

assumptions from which AV is expected. For example,

from Fig. 1 it seems clear that very little AV can be found

when analyzing monthly-mean precipitation data in regions

without important surface forcings because monthly scales

are predominantly associated with large-spatial scales that

are probably well resolved by GCMs. A necessary condi-

tion for RCMs to produce AV1 is that the contribution of

the simulated fine-scale details on the climate statistics of

interest is not negligible. That is, if the RCM does not

produce any climatic information at small scales then, by

definition, there is no AV1.

The study of the relative contribution of fine scales in a

given climate statistics has lead to the concept of ‘‘potential

added value’’ (PAV) as discussed in Bresson and Laprise

(2009). The term ‘‘potential’’ in this definition accounts for

the fact that the presence of small scales is not a sufficient

condition to have AV1. A simple example is an RCM that

generates small scales but with little resemblance between

simulated and observed patterns or amplitude. Then, we

can argue that the small scales are not skilful and do not

add any real value to the coarser GCM climate, even if they

suggest a large PAV. Clearly however, the presence of

PAV in RCM simulations is a prerequisite for, although not

a definite proof of AV1.

In this article, a perfect-model approach was developed

to study the PAV. The idea behind the PAV concept is that

the high-resolution (e.g., 50-km grid spacing) precipitation

field simulated by a RCM will be aggregated into a coarse-

resolution (e.g., 300-km grid spacing) in order to generate

what we can call a ‘‘virtual GCM’’ field. The important

hypothesis behind this framework is that the virtual GCM

can be interpreted to represent more or less the same sta-

tistics as those resulting from a climate model operating at

similar grid spacing. Evidently, a virtual GCM differs from

a real GCM due to a number of reasons, among them that

the virtual GCM fields are influenced through the upscaling

of fine-scale processes that are resolved in the high-reso-

lution RCM simulation but would be absent in a low-res-

olution GCM simulation.

Di Luca (2009) compared the statistics of extremes (e.g.,

95th percentile) of a virtual GCM with those of a real

GCM, for the precipitation as simulated by the Canadian

Global Climate Model (CGCM3) and the Canadian RCM

(CRCM) driven by the CGCM3. The evaluation focused on

time scales larger than a day and on spatial scales that are

common to both models, i.e., the CRCM was aggregated at

the CGCM3 resolution to generate virtual GCM datasets.

Using as reference daily observational time series, the

comparison showed that seasonal biases are of the same

magnitude in the CGCM3 and the CRCM. Both models

display also comparable skills to simulate the frequency

and intensity of observed daily values, but the CGCM3

generally shows larger 95th percentile values. It is impor-

tant to note that the performance of GCMs, under the

assumption that model precipitation output represents an

areal mean (see Chen and Knutson (2008) for a detailed

discussion), is evaluated using observations which are

always made at finer spatial resolutions than the GCMs

resolutions. This implies that GCMs are evaluated and

sometimes ‘‘calibrated’’ using observed statistics that are

similar in nature as virtual GCM statistics, containing for

example the upscale of fine-scale processes that occur in

the real climate system.

The aim of this study is to develop some simple mea-

sures to characterize the PAV of the precipitation field as

simulated by a number of RCMs and as represented in

reanalyses and observations. The dependence of PAV on

several parameters will be evaluated: the choice of the

temporal scale of the data (ranging from 3-hourly to

16 days means), the region (e.g., complex topography

region versus flat region), and the season (e.g., mostly

convective in summer versus stratiform in winter

precipitation).

3 Data

The potential added value as defined in the last section is

dataset dependent. Four different but not independent

sources of high-resolution precipitation data (HRD) are

used in this study. RCM-simulations are used to evaluate

the PAV suggested by models. One reanalysis and two

gridded observed datasets are used to estimate the PAV of

changing resolution of data in the real climate system.

Observed datasets are more reliable in the conterminous

United States due to the higher density of stations com-

pared to Canada and oceanic regions and, for this reason,

the region of study is located in continental United States.

Particularly at fine temporal scales and over complex ter-

rains, observed datasets cannot be fully trusted and will not

be considered as a ground truth.

3.1 NARCCAP simulations

The RCM simulations to be used in this study are those

from the North American Regional Climate Change

Assessment Program (NARCAAP; http://www.narccap.

A. Di. Luca et al.: Potential for added value 1233
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ucar.edu/; Mearns et al. 2009). In NARCCAP, six RCMs

were run with a horizontal grid spacing of about 50 km

over similar North American domains covering Canada,

United States and most of Mexico, during the 25 years

between 1980 and 2004. The RCM simulations to be used

are those of contemporary climate using driving data

derived from the National Centers for Environmental Pre-

diction (NCEP)—Department of Energy (DOE) Atmo-

spheric Model Intercomparison Project II (AMIP-II) global

reanalysis (R-2; Kanamitsu et al. 2002). Table 1 gives the

acronyms, full names and the modelling group of each

RCM, together with the number of grid points within the

computational domain of each model available for the

analysis and the map projection and the number of vertical

levels. The computational domain of the CRCM RCM is

shown in Fig. 2 and a brief description of each NARCCAP

RCM can be found at http://narccap.ucar.edu/data/rcm-

characteristics.html.

3.2 CPC gridded precipitation

An interesting source of high spatial resolution precipita-

tion data for daily and longer time scales is given by the

gridded Climate Prediction Center’s (CPC) product derived

using stations from the Unified Raingauge Database (URD)

(Higgins et al. 2000). This dataset consists in daily analy-

ses, gridded at 0.25� by 0.25�, from over 8,000 stations

each day covering the period 1948–1998 with no missing

values. The dataset covers the domain 20–60� N, 140�–60�
W over continental United States with an heterogeneous

density of stations, higher in the eastern part of United

States but with relatively good coverage in all continental

United States.

3.3 UWASH gridded precipitation

This daily gridded precipitation dataset was obtained from

the Surface Water Modeling group at the University of

Washington (UWash) from their web site at http://www.

hydro.washington.edu/Lettenmaier/Data/gridded/ and is

described by Maurer et al. (2002). Within the coterminous

United States, it uses daily totals of precipitation from the

National Oceanic and Atmospheric Administration Coop-

erative stations, also included in the URD database, to

produce a 1/8� gridded dataset using the synergraphic

Table 1 Acronyms, full names and modelling group of RCMs involved in the NARCCAP project

RCM Full name Modelling group Domain (LON 9 LAT) Map projection

N� of vertical level

CRCM Canadian Regional Climate Model (version 4.2.0) Ouranos/UQAM 140 9 115 Polar stereographic

29

ECPC Experimental Climate Prediction

Center—regional spectral model

UC San Diego/Scripps 123 9 104 Polar stereographic

28

HRM3 Hadley regional model (version 3) Hadley Centre 155 9 130 Rotated latitude-longitude

19

MM5I MM5—PSU/NCAR mesoscale model Iowa State University 123 9 99 Lambert conformal

23

RCM3 Regional climate model (version 3) UC Santa Cruz 134 9 104 Mercator

18

WRFP Weather research and forecasting model Pacific Northwest Nat’l Lab 134 9 109 Lambert conformal

35

Column 4 indicates the number of grid points in each RCM. Column 5 denotes the map projection and the number of vertical levels for each

RCM

Fig. 2 Computational domain and topographic field as represented in

the CRCM together with the specification of the seven regions of

interest. All regions have the same dimensions (i.e., 6.4� by 6.4�)
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mapping system algorithm of Shepard (1984). In order to

better capture local variations due to complex terrain, each

grid cell of the 1/8� gridded dataset is adjusted using

monthly-mean values computed with the parameter-ele-

vation regressions on independent slopes model

(PRISM). PRISM (for more details see Daly et al. 1994)

is an analytical model that uses statistical relations

between the observed precipitation and several topo-

graphical parameters (e.g., elevation, steepness of the

terrain, orientation of the slope, and others) derived from

a digital elevation model (DEM) in order to provide

gridded precipitation products better adapted over ele-

vated terrains where rain gauge data are sparse. The

influence of PRISM has little effect on the adjusted

precipitation in flat regions and so UWash is expected to

be similar to CPC in these regions.

3.4 NARR reanalyses

The North American Regional Reanalysis (NARR,

http://www.emc.ncep.noaa.gov/mmb/rreanl/index.html) is

a product created at NCEP that combines, in a dynamically

consistent way, the simulated fields by the NCEP regional

Eta model (Mesinger 2000) driven at its LBCs by the R-2

reanalysis, together with numerous additional observed

datasets through the use of the NCEP Data Assimilation

System (Mesinger et al. 2006). NARR has a grid spacing of

32 km and 45 layers in the vertical, and reanalysis fields

are available every 3 h between 1979 and 2003, over a

large domain covering Canada, United States and Mexico.

According to Mesinger et al. (2006), in addition to its

higher resolution, one of the main advantages of these

reanalyses is the assimilation of latent heating profiles

derived from precipitation analyses (Lin et al. 1999). The

precipitation dataset assimilated in NARR is a daily, 1/8�
analysis obtained by gridding rain gauge observations from

the URD using the orographic adjustment technique

PRISM already discussed (Mesinger et al. 2006).

4 Methodology

4.1 Multi-resolution approach

To analyze the scale dependence of the above-described

data, the multi-resolution (MR) approach is used. The MR

method (see Mallat 1989 for details) has been used in

several studies to analyze the temporal (Howell and Mahrt

1997; Vickers and Mahrt 2002) and spatial (Zepeda-Arce

et al. 2000; Harris et al. 2001) variability of atmospheric

variables. The MR method consists in the application of

numerical filters in order to aggregate the original high-

resolution time-varying precipitation fields into lower-

resolution temporal and spatial scales. In both the temporal

and spatial dimensions, the filtering is performed by

aggregation of the original precipitation field into several

lower resolution grids. A total of five spatial scales (*0.4�,

0.8�, 1.6�, 3.2� and 6.4�) and 8 temporal scales (ranging

between 3 h and 16 days) resolution datasets are consid-

ered. As it will be explained in detail later, the dependence

of several precipitation statistics on spatial scales will be

used to determine the relative importance of small scales

and define various PAV quantities.

4.1.1 Spatial scale analysis

In this study, a slightly different version of the MR method

of Mallat (1989) is developed by aggregating the original

HRD precipitation fields on some common lower resolu-

tion grid meshes. The precipitation aggregation is per-

formed on various resolution meshes occupying regions of

6.4� by 6.4� (i.e., about 550 km by 550 km at a latitude of

40�) as a compromise between two opposing needs in

relation to their size: first, that regions be large enough to

estimate climate statistics at a range of spatial scales

spanning the minimum resolved by current GCMs, and

second, that they be small enough to represent fairly

homogeneous regions across North America in order to

analyze the dependence of results on different surface

forcings. Figure 2 shows the seven regions selected for the

analysis, together with the topography field as represented

in the CRCM. In the following, regions are denoted by

adding to LON the west longitude of their centre (e.g., the

region centred on -118.0� of longitude is called LON118).

The finest scale of the MR analysis is done over grid

meshes with 0.4� of grid spacing, which was chosen such

as to be finer than the grid spacing of all NARCCAP

RCMs; on this scale the precipitation field is identical to

that simulated by the RCM, ensuring that the full infor-

mation of each RCM is retained. The number of RCM grid

points contributing to the aggregation at each scale depends

on each RCM due to their specific map projections and

horizontal grid spacing. Table 2 shows the minimum and

maximum number of grid points inside 6.4� by 6.4� regions

(see Fig. 2) together with the mean grid spacing inside each

region for each HRD.

NARR and CPC grid spacings are smaller than 0.4�. In

those grid boxes with more than one NARR or CPC grid

points, the 0.4� grid spacing value is obtained simply by

computed the arithmetic average of the points every 3 h.

Hereafter, the finest scale will be denoted as 0.4�, but it

should be clear that for models it does represent the data at

the original grid spacing of each NARCCAP RCM (i.e., in

the range 0.44�–0.51�). As an example of the spatial dis-

tribution of grid points inside a region, Fig. 3a presents the

location of CRCM grid points (blue squares) together with
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the 0.4�-grid mesh (red crosses) over the 6.4� by 6.4�
LON118 region.

The second scale next to the finest is obtained by

aggregating the original precipitation field of each HRD

over grid boxes defined by a grid mesh with a horizontal

grid spacing of 0.8�. The upscaling at the 0.8� scale is made

by simply computing, at each time interval, the average of

all HRD-points inside each 0.8� grid box (i.e. by computing

a simple arithmetic area-average value). As shown in

Fig. 3b, grid boxes at the 0.8� scale contain a variable

number of the original RCM grid points, that vary between

2 and 4 in the case of the CRCM.

In a similar way, other spatial scales are calculated by

aggregating the original precipitation field over grid

meshes characterizes by horizontal grid spacings of 1.6�,

3.2� and 6.4�, as illustrated in Fig. 3c, d and e, respectively.

Table 2 Minimum and maximum number of grid points and the

corresponding effective grid spacing in the 6.4� by 6.4� regions of

Fig. 2 for each high-resolution dataset

Number of grid points Effective grid spacing (�)

Min Max Min Max

CRCM 195 208 0.46 0.44

ECPC 195 209 0.46 0.44

HRM3 165 169 0.50 0.49

MM5I 145 154 0.53 0.52

RCM3 159 167 0.51 0.50

WRFP 145 154 0.53 0.52

CPC 256 0.40

UWash 256 0.40

NARR 256 0.40

Fig. 3 Location of the new grid

points (red crosses) defined by

aggregating the original high-

resolution fields (blue dots) over

grid meshes with grid spacings

given by 0.4� (a), 0.8� (b), 1.6�
(c), 3.2� (d) and 6.4� (e). Data

correspond to the CRCM model

for the LON118 region. Blue
dots represent the grid points of

the CRCM model in its original

grid mesh
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The 6.4� scale corresponds to the coarser spatial scale and

it is obtained by averaging, at each time step, the precipi-

tation rate values of all the RCM grid points inside the

region (see Fig. 3e).

Giorgi (2002) used a similar filtering approach to study

the spatial-scale dependence of interannual climate vari-

ability of temperature and precipitation over several

regions around the Earth. Starting with a 0.5� grid spacing

dataset, he computed a two-dimensional running spatial

average at various spatial scales.

4.1.2 Temporal scale analysis

The temporal scale analysis is performed in a similar way

as the spatial one. In this case, the finest temporal scale

corresponds to the 3-hourly time series of archived pre-

cipitation for any given grid point. The second temporal

scale, the 6-h scale, is obtained by simply computing the

arithmetic average between two consecutive 3-hourly data

and thus reducing in a factor of two the total number of

data in the time series. Similarly, six other temporal scales

are defined.

For each year between 1981 and 2000 (1998 for CPC

gridded precipitation), we selected two subsets of 128 days

in order to generate cold- and warm-season time series (a

long season of 128 days was chosen in order to be able to

represent the amount of 3-hourly data as a power of 2).

Cold season is defined by the four months between

November and February and warm season is defined by

those months between April and June. For these periods, a

total of 19 cold seasons and 20 warm seasons are obtained.

4.1.3 Spatiotemporal scale analysis

The spatial and temporal scale filtering are then applied

simultaneously to each HRD in order to obtain a spatio-

temporal multi-scale dataset composed by a total of 40

(five spatial scales and eight temporal scales) time-varying

fields. For any given HRD, the multi-scale dataset is

denoted as Prn,m with index n, varying between 0 and 4,

identifying the spatial scale and index m, varying between

0 and 7, denoting the temporal scales. As already men-

tioned, the five spatial scales are associated with grid

spacings of 0.4�, 0.8�, 1.6�, 3.2� and 6.4�, and temporal

scales vary from 3 h (m = 0) to 384 h (m = 7). Each

dataset Prn,m is illustrated in Fig. 1 according to their

minimum temporal and spatial scale. Filled blue squares

denote those datasets with spatial grid spacings smaller

than *3.2� (*275 km at 40� of latitude) that can only be

represented by standard RCMs. Datasets denoted with non-

filled blue squares correspond to those with spatial scales

larger or equal than 3.2� that can be represented by both,

RCMs and GCMs.

4.2 Multi-scale statistics

In order to compare results of the precipitation field at

different resolutions, we will calculate a number of statis-

tics over each region.

Grid point statistics (q95
n,m): for each time series Prn,m

(red crosses in Fig. 3) at spatial scale n and temporal

scale m, the corresponding temporal histograms are cal-

culated by partitioning the interval of possible wet events

outcomes into subsets of 0.1 mm/day width, and then

divided by the total number of outcomes to obtain the

frequency in each bin. 95th percentiles are then computed

for each grid point frequency distribution. Wet events are

defined here as those events with a mean precipitation

rate larger than 0.1 mm/day (as done in Lenderink et al.

2007).

Spatial–mean statistics (qmean,95
n,m ): for each spatial scale

n, the spatial-mean 95th percentiles computed by putting in

the same histogram (pooling) events from all grid points

and then computing the 95th percentile (similar to method

3 of quantiles computations in Déqué and Somot (2008).

Spatial-maximum statistics (qmax,95
n,m ): in each region, the

maximum value of the grid-point 95th percentile distribu-

tion at spatial scale n is taken.

In this way, (qmean,95
n,m ) constitutes a regional measure by

representing the mean statistics over the entire region and

(qmax,95
n,m ) a local measure at one grid point. Differences

between the regional and local measures arise from the

presence of spatial gradients in the precipitation distribu-

tions. Several mechanisms can generate these gradients in

instantaneous fields; when considering climatic statistics

computed from 20-year data however, they are quite

probably due to the existence of stationary forcings. It

should be noted that the spatial-mean quantity is roughly

equivalent to what would be obtained by applying a Fourier

transform at a similar wavenumber.

In this paper results are presented only for the 95th

percentile, but the analysis was conducted also for other

quantities and some of these results will be summarized in

the next section.

5 Results

5.1 Multiscale intensity-frequency distributions

The process of aggregating precipitation data in space

(time) acts as a spatial (temporal) filter that tends to smooth

out the extremes in any given field (time series), thus

narrowing the intensity–frequency distribution. As a result,

systematic changes are introduced in the original high-

resolution precipitation field (time series) as it is upscaled

into lower resolution fields (time series):
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• Local maximum values in the lower resolution dataset

are always smaller than or equal to those in the original

dataset. That is, higher-order percentiles (e.g., 95th

percentile) tend to be smaller in the coarser resolution

datasets than at higher resolution.

• The absolute number of dry events (those events with

precipitation rate smaller than 0.1 mm/day) tends to

decrease when the precipitation field is aggregated into

lower resolution grid meshes.

• Low and moderate precipitation rates tend to be more

frequent in lower resolution datasets, compensating the

deficit in dry and heavier events.

The general changes suggested in this three points can

be illustrated by showing the spatial-mean intensity dis-

tributions in the NARR data aggregated at several temporal

and spatial resolution (see Fig. 4). Results correspond to

the LON86 region but similar results are obtained in other

regions (not shown). For 3-hourly data in cold (Fig. 4a) and

warm (Fig. 4b) seasons, dry events represent on the order

of 30–70% of the total events, with a larger value in the

high horizontal resolution dataset (70.5% in cold and

66.9% in warm season) compared to the coarser one

(46.5% in cold and 32.3% in warm season). Low and

moderate precipitation events (those between 0.1 and

16 mm/day) are more frequent in the aggregated data at

6.4� grid spacing (42.8% in cold and 54.7% in warm sea-

son) compared to the 0.4� horizontal interval dataset

(22.5% in cold and 20.5% in warm season). Finally,

3-hourly events with precipitation rates higher than

64 mm/day show a relative frequency more than an order

of magnitude larger in the 0.4� grid spacing than in the 6.4�
data (0.38% vs. 0.005% in cold and 0.57% vs. 0.03% in

warm seasons); that is, heavier precipitation events are

more frequent in high-resolution precipitation field (see

Fig. 4a, b).

A similar behaviour is found when computing intensity-

frequency distributions for several spatial resolution data-

sets for 16-day cumulated periods (Fig. 4c, d). In this case,

the temporal aggregation tends to filter out the more

extreme simulated precipitation (both the no-precipitation

and heavier events), thus producing an increase in the

relative frequency of low- to moderate-precipitation events

for every spatial scale. As a result, differences in relative

frequencies between different horizontal resolution datasets

are strongly reduced, showing that time averaging can limit

the effect of changing the spatial resolution of the data.

Nevertheless, in both seasons, heavier precipitation events

(those larger than 8 mm/day) are more frequent in the

higher resolution dataset.

The dissimilar sensitivity to changes in spatial resolution

exhibited by different precipitation intensities has impor-

tant implications in AV studies. It suggests that different

statistics will show different potential for added value

depending on which part of the distribution is sampled.

That is, higher moments of the distribution (e.g., intensity

and frequency of heavier precipitation rate events) show a

Fig. 4 LON86 spatial-mean

intensity distributions of

precipitation rate as simulated

by the NARR reanalysis for

3-hourly data in cold (a) and

warm (b) seasons and for

16-days data in cold (c) and

warm (d) seasons. Colors are

associated with 0.4� (red), 1.6�
(green) and 6.4� (blue) spatial

scales. Only frequencies greater

than 0.01% are shown
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much larger sensitivity to changes in resolution than central

moments (e.g., low-moderate precipitation rate events). As

already mentioned in Sect. 4.2, we will use the 95th per-

centile of the wet-event distribution in order to assess the

PAV for the several HRD.

5.2 Regional (spatial-mean) potential added value

results

Top panels in Fig. 5 show the spatial-mean 95th percen-

tile (qmean,95, see Sect. 4.2 for computation details) of

3-hourly precipitation over the region LON86 as a

function of spatial scales. Left and right panels show

cold- and warm-season results, and the different curves

represent percentiles as calculated from NARR and

NARCCAP-RCM simulations. In both seasons and inde-

pendently of the HRD considered, there is an increase of

the (qmean,95) value as the spatial scale increases. Quan-

titative changes, however, are significantly different when

considering different HRDs. For example, in cold season,

the WRFP model suggests an increase of 28 mm/day in

(qmean,95) between the 6.4� scale (*25 mm/day) and the

0.4� spatial scale (*53 mm/day). The CRCM model

shows a change of only 8 mm/day between the same

spatial scales (*15 and *23 mm/day, respectively). It is

also clear from Fig. 5 that the spread between models

tends to be larger as the horizontal scale of the data

decreases; that is, the model uncertainty associated with

the estimation of (qmean,95) is higher as the horizontal

resolution of the data increases.

Figure 5c, d show (qmean,95) for 16-days precipitation

datasets. In this case, differences between the (qmean,95)

value in high- and low-resolution datasets are greatly

reduced and the spatial-scale dependence of the (qmean,95)

is very low. Differences between the several dataset esti-

mations of the spatial-mean 95th percentile are somewhat

less important than in the 3-hourly case, and the change of

(qmean,95) between 0.4� and 6.4� seems to be quite similar

in all RCMs.

The difference between small and large spatial scale

climatic statistics can be highlighted by defining the PAV

measure as

PAVm ¼ q0;m
95;mean � q3;m

95;mean; ð1Þ

where q95,mean
0,m and q95,mean

3,m represent the spatial-mean 95th

percentile at temporal scale m and spatial grid spacings of

approximately 0.4� and 3.2�, respectively (i.e., a jump in

resolution of around 8 in the linear horizontal dimension).

The PAVm quantity measures the difference between the

representation of q95,mean
m at fine (i.e., RCM’s) horizontal

scale and its large-scale approximation at the temporal

scale m. Assuming that the 3.2� spatial scale can be

interpreted as a good proxy of the statistics estimated from

a GCM at 3.2� grid spacing, then PAVm can be used to

estimate the potential added value of a RCM over a GCM

as discussed in Sect. 2.3.

Fig. 5 Spatial-mean 95th

percentile as a function of

spatial scales for 3-hourly

precipitation in cold (a) and

warm (b) seasons. Also shown

is the 16-days spatial-mean 95th

percentile in cold (c) and warm

(d) seasons. Results correspond

to the LON86 region. Symbols
and colors denote the HRD used

in each case. Red line represents

CPC results (only available for

16-days results)
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A near zero value of the PAV quantity means that, for

the quantity of interest (e.g., spatial-mean 95th percentile),

the high-resolution estimation does not add extra infor-

mation over the coarse resolution one. Analogously,

PAV * 0 can be interpreted as if the application of spatial

filters in order to approximate the high-resolution precipi-

tation field at lower resolutions doesn’t filter out any fine-

scale variability. Sufficient conditions for PAV = 0 are

given by a spatially uniform intensity-frequency distribu-

tion field or a field that only contains variability at scales

larger than 3.2�.

It should be clear, as was discussed in the introduction,

that a non-zero value for PAVm does not necessarily mean

that the RCM is adding value, because the small-scale

variability may not necessarily be skilful. That is,

PAVm
= 0 is a necessary, but not sufficient, condition for

a high-resolution adding value of type 1 to lower resolution

fields.

A relative measure of spatial-mean PAVm can also be

obtained by defining

rPAVm ¼ PAVm

q0;m
95;mean

¼ 1�
q3;m

95;mean

q0;m
95;mean

; ð2Þ

so that 0 B rPAVm B 1. The rPAVm quantity evaluates the

proportion of fine spatial scale 95th percentile (q95,mean
0,m )

that is not accounted by its large-scale part (q95,mean
3,m ). Thus

rPAV * 0 suggests that no fine-scale information is nee-

ded to determine q95,mean
0,m , and rPAV * 1 means that

q95,mean
0,m is solely determined by the fine-scale information.

5.2.1 High temporal resolution data

The improvement in the representation of surface forcings

such as topography, lakes and coastal regions due to the

higher resolution of RCMs compared to GCMs is expected

to strongly influence the added value. A simple but partial

assessment of this dependence can be performed by eval-

uating the PAV in regions with significantly different

surface conditions. We expect that the most important

forcing is the topographic one (see Fig. 2) over the western

regions characterized by complex topography, with higher

absolute values and larger gradients than eastern regions. It

should be clear however, that differences between regions

are not limited to surface forcings but can also be related

with other stationary forcings such as the planetary-scale

waves (e.g., summertime subsidence in the West Coast) or

the moisture sources (e.g., Gulf of Mexico low-level jet in

the Great Plains).

Figure 6 shows the 3-hourly PAV (top panels) and

rPAV (bottom panels) as a function of regions (from west

to east) for the spatial-mean 95th percentile (qmean,95). In

cold season (see Fig. 6a), NARCCAP-RCMs show PAV

values on the order of 12 mm/day with little variations

between the regions, but showing some higher values in

eastern regions (those regions to the east of LON98).

Differences between RCM PAV estimations are on the

order of ±5 mm/day (i.e., *50%) with a slightly larger

spread in eastern regions. PAV values as estimated from

the NARR dataset (black line) are also on the order of

12 mm/day, showing a large resemblance with the

NARCCAP ensemble-mean (grey line) latitudinal profile.

In warm season (Fig. 6b), most RCMs show significant

differences between eastern and western regions, with

maximum values in LON92 and LON86 regions, and

minimum values to the west of LON105. The maximum

near central regions is probably due to a relative decrease

of the influence of convective activity toward eastern

regions. PAV values are on the order of 10 mm/days in

western regions and on the order of 25–30 mm/day in

eastern regions. Differences between RCM estimations are

approximately ±5 mm/day (i.e., *50%) in western

regions and ±15 mm/day (i.e., [50%) in eastern regions.

In this season, the ECPC RCM shows much larger values

of PAV than others RCMs, particularly in western regions

with values three times larger than every other RCM,

mainly due to much larger values of qmean,95 for fine spatial

scales (not shown). It is also evident that in this season the

NARR tends to produce the lowest PAV values for all

regions considered. In this case, NARR-low PAV values

are related with a tendency to produce very low 95th per-

centile at fine spatial scales.

Figure 6c, d show the 3-hourly rPAV measure as a

function of regions for cold and warm season, respectively.

NARCCAP ensemble-mean cold-season values are on the

order of 0.4, suggesting that around 40% of the fine scale

qmean,95 comes from fine-scale variability that is absent in

the large-scale part. In warm season, the NARCCAP

ensemble-mean value is on the order of 0.6, showing that a

larger part of the fine scale qmean,95 comes from fine spatial

scale variability. That is, in all regions, warm-season rPAV

values are higher than cold-season values, showing that

fine spatial scale variability of precipitation is relatively

more important in warm season due to the finer scale of

precipitation systems in summer (i.e., convection systems

dominates) compared to winter (i.e., synoptic systems

dominate). Again, in all regions and particularly in the

warm season, NARR tends to produce the lowest rPAV

values of all datasets with an average over regions of 0.3

and 0.4 in cold and warm seasons, respectively.

Interesting changes in the regional behaviour are noted

when analyzing the rPAV measure. In both seasons, the

ensemble-mean of rPAV shows higher values in western

regions (0.45 in cold and 0.6 in warm seasons) compared to

eastern region (0.35 in cold and 0.5 in warm seasons). As

already stated, western regions are characterized by more
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important surface forcings than eastern regions and so the

larger rPAV values in western regions are probably

induced by a fine-scale orographic component. In the warm

season, there is also a decrease of rPAV from central to

east regions maybe related with a relative decrease of the

convective activity towards the Atlantic coast.

The spread between the rPAV as estimated from dif-

ferent RCMs is somewhat smaller compared to the PAV

quantity, suggesting that absolute values can be very dif-

ferent but the ‘‘scaling’’ properties of precipitation are

similar for the several models.

5.2.2 Low temporal resolution data

Figure 7 shows PAV (top panels) and rPAV (bottom pan-

els) for the spatial-mean 95th percentile for the 16-days

Fig. 6 3-hourly regional PAV

measure as a function of regions

for the 95th percentile for a cold

season and b warm season. Also

shown is the relative PAV

measure for c cold season and

d warm season. Symbols denote

individual NARCCAP-RCMs

results and lines denote the

NARCCAP-ensemble mean

(grey) and NARR results

(black)

Fig. 7 As in Fig. 6 but for the

16-days regional PAV and

rPAV measures. Red and blue
lines represent CPC and UWash

results, respectively
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temporal scale. In both seasons, differences between

qmean,95 at fine and large scales are much smaller than in

the 3-hourly case, with PAV values generally smaller than

2 mm/day.

Cold-season results show that there is a very good

agreement, particularly in eastern regions, between results

produced by NARCCAP RCMs, NARR, CPC and UWash

observations. In warm season and assuming that UWash

observations represent the most reliable source of infor-

mation, it seems that NARCCAP RCMs tend to produce an

overestimation of the PAV quantity over western regions,

with a large overestimation by the ECPC RCM. In eastern

regions, NARCCAP RCM values are in good agreement

with those from CPC and UWash, with NARR data tending

to produce a slight underestimation compared to observed

values. The underestimation of NARR is also noted when

studying daily data (not shown), suggesting that the low

values over eastern regions at 3-h (Fig. 6b, d) are, at least

partially, related with an underestimation of the potential

AV of the NARR data.

More interesting is the behaviour of the rPAV measure

(bottom panels in Fig. 7). As for the absolute PAV mea-

sure, rPAV decreases significantly compared to the

3-hourly values. In both seasons, the rPAV ensemble-mean

value decreases by a factor of *3–4 compared to the

3-hourly values (from 40 to 15% in cold season and from

60 to 15% in warm season). This decrease is due to the fact

that the application of the temporal filter induces a different

change in high and low spatial resolution 95th percentiles.

As shown in Fig. 5, the relative change of the fine spatial

resolution qmean,95 between 3-h and 16-day period (by a

factor of 6–10) is much more important than the same

change for the coarse-resolution qmean,95 (by a factor of 3

only).

The 16-days NARCCAP ensemble mean rPAV mea-

sure still shows higher values in mountainous compared to

non-mountainous regions, with values of 17 and 9%,

respectively, for cold season, and 24 and 13%, respec-

tively, for warm season. In the cold season, NARCCAP

ensemble mean results are in very good agreement with

those obtained using the observed datasets. In the warm

season, however, CPC and NARR show almost identical

values of rPAV no matter the region considered, sug-

gesting no clear influence of surface forcings in this sea-

son. In contrast, UWash mean values over mountainous

and non-mountainous regions are of 20 and 14% respec-

tively, indicating that there is some impact of surface

forcings in agreement with NARCCAP mean results.

Whereas all datasets suggest similar values for the rPAV

in non-mountainous regions, the differences between

datasets arise in the representation of rPAV in moun-

tainous regions. Given that the PRISM algorithm has

exhibited a superior performance than others geostatistical

methods in distributing point measurements of precipita-

tion (see Daly et al. 1994), differences in mountainous

regions may be interpreted as an underestimation of CPC

rPAV compared to UWash data. The reasons of this

underestimation are not well known but could be related

with a misrepresentation of stations in these regions. The

CPC station density is highest in the eastern two-thirds of

the United States with lowest values over western regions

(Higgins et al. 2008) where the complex topography

would demand for higher densities.

5.3 Local (spatial-maximum) potential added value

results

So far, we have analyzed a regional measure by computing

the PAV quantity using spatial-mean percentiles (q95,mean
n,m ).

In this section, we present results obtained by using a more

local measure of the fine spatial scale variability by com-

puting the PAV quantity with q95,max
n,m (see Sect. 4.2). The

use of the PAV measure computed from q95,max
n,m could be

interpreted as an estimation of the maximum value that can

be obtained from RCM simulations by considering indi-

vidual grid-point (i.e., local) results over a given region.

As was already stated, differences between q95,mean
n,m and

q95,max
n,m arise mainly due to the presence of horizontal

gradients of stationary forcings and so they should be more

important in those regions with complex topography.

5.3.1 High temporal resolution data

Top panels in Fig. 8 show the 3-hourly q95,max
n,m PAV for the

different models as a function of regions for cold (Fig. 8a)

and warm (Fig. 8b) seasons. In most of the regions, the

PAV values computed from q95,max
n,m are around twice as

large as in the spatial-mean case (q95,mean
n,m ) (see top panels

in Fig. 6), with the exception of the LON118 region that

shows PAV values on the order of six times larger than in

the mean case. In both seasons, the spread between the

several HRD estimations is somewhat larger than in the

mean case, with absolute differences on the order of

±15 mm/day.

Bottom panels in Fig. 8 show the spatial-maximum

rPAV for cold (Fig. 8c) and warm (Fig. 8d) seasons. rPAV

values are also higher in the spatial-maximum case than in

the spatial-mean case (see bottom panels in Fig. 6), but

differences are very dependent on the region and the season

considered. In cold season and mountainous regions,

the NARCCAP ensemble-mean rPAV value is *40%

for the regional measure and *65% for the local measure.

For the same season and non-mountainous regions,

NARCCAP mean rPAV value is *30 and *45% for the

regional and local measures, respectively. Similar results

are found for the NARR dataset.
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In the warm season, the NARCCAP mean rPAV values

is *70% (60%) in mountainous regions and *60 (*55%)

in non-mountainous regions for the local (regional) mea-

sure. In this season, much smaller values on the rPAV

measure are estimated when using the NARR dataset. As it

will be clear in the next section when including in the

analysis CPC results, differences between NARCCAP and

NARR arise because NARR tend to slightly underestimate

rPAV values in both eastern and western regions, and the

NARCCAP ensemble-mean tends to overestimate rPAV

values, particularly in western regions.

5.3.2 Low temporal resolution data

Figure 9 shows PAV (top panels) and rPAV (bottom pan-

els) for the spatial-maximum 95th percentile for the 16-day

Fig. 8 As in Fig. 6 but for the

3-hourly local PAV and rPAV

measures

Fig. 9 As in Fig. 6 but for the

16-days local PAV and rPAV

measures. Red and blue lines
represent CPC and UWash

results, respectively
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temporal scale. As in the spatial-mean case, PAV values

are much smaller than in the 3-hourly case, generally

smaller than 6 mm/days with the exception of western

regions in cold season (see Fig. 9a).

Interestingly, in both seasons, q95,max
n,m rPAV results

(Fig. 9c, d) show that the relative importance of small-

scale features in western regions is quite well preserved

after the temporal averaging, with a NARRCAP ensemble-

mean rPAV value of *55% (versus *65% in 3-hourly

data) in cold season and of *60% (versus *70% in

3-hourly data) in warm season. The fact that rPAV is barely

sensitive to temporal average shows that locally the surface

forcing component of rPAV (i.e., stationary forcings) in

mountainous regions plays an important role (non-station-

ary convective activity will, for example, tend to be can-

celled out in temporal average). In regions with lower

influence of surface forcings, a larger decrease of rPAV is

noted when comparing 3-hourly and 16-day spatial-maxi-

mum values, with rPAV values near *25 and *45%

(*30 and *60%) for 16-day and 3-hourly data, respec-

tively in cold (warm) season.

To what extent the results obtained for the 95th per-

centile can be extrapolated to other climate statistics? As

mentioned, an analysis similar to this one was conducted

for other climate statistics such as temporal mean, wet-

events statistics and other percentiles. For example, the

spatial mean of the temporal average is conserved for

changes in the spatial resolution of the data and so the PAV

associated with this quantity is nil. However, the spatial

maximum of the temporal mean is not conserved (i.e.,

locally, the mean value can be different) and can be used to

estimate the associated PAV. Results (not shown) suggest

almost identical results as for the 95th percentile, with

slight decrease in rPAV values. That is, for local measures,

the sensitivity of the temporal mean to changes in resolu-

tion tends to be similar to those found in high-order

percentiles.

6 Discussion

The use of RCMs to dynamically downscale large-scale

atmospheric fields in present and future climate conditions

has gained popularity during the last 20 years. There is still

a need, however, to objectively quantify the added value

obtained by the RCM downscaling technique. For example,

specific knowledge about where and with respect to which

climate statistics RCMs can produce more skilful results

than GCMs constitutes a very useful information for cli-

mate-scenarios users such as those performing impact and

adaptation studies. Studies trying to validate the RCM

downscaling technique are also essential to highlight the

importance of developing RCMs and the use of its products

instead of those coming from lower resolution GCMs in

some particular applications.

This article concentrated on the characterization of a

necessary condition that RCM-simulated climate statistics

must satisfy in order to generate some AV: that the climate

statistics of interest contain some fine spatial scale vari-

ability that is absent in coarser GCMs. This prerequisite

condition and its dependence on several factors (seasons,

regions, etc.) was assessed in the context of a perfect-

model framework, designated as potential added value

framework, that includes:

1. The multi-resolution method is used to aggregate at

several spatial and temporal scales the original high-

resolution precipitation fields simulated by six RCMs

(NARCCAP; Mearns et al. 2009) and as represented

by a reanalysis (NARR; Mesinger et al. 2006) and

two observation gridded datasets (CPC, Higgins et al.

2000; UWash, Maurer et al. 2002). The MR

technique is particularly suitable for the precipitation

variable due to its non-periodicity (both in time and

space), which allows performing a local analysis that

cannot be done with, for example, Fourier-based

procedures.

2. 95th percentiles are computed from each of the several

datasets defined by the MR technique based on two

different methods: one that estimates the spatial mean

(regional) 95th percentile over a given region and a

second that estimates the maximum (local) 95th

percentile computed from individual grid points over

a given region.

3. Potential added value (PAV) measures are then defined

as the difference between 95th percentiles estimated at

large (GCM scale) and small (RCM scale) spatial

scales for every high-resolution dataset.

The methodology appears to be robust to small changes

in spatial scales and the location and size of regions.

Several sensitivity tests were performed by slightly

changing these three parameters and PAV values changes

were on the order of 5–10%, rarely exceeding 15% in

mountainous regions for longest temporal scales due to the

lesser number of data. In any case, regional and seasonal

dependence of PAV measures remains the same after the

slight changes in parameters.

The bulk of results found by applying this methodology

are summarized in Fig. 10 for the regional (Fig. 10a, b) and

the local (Fig. 10c, d) rPAV measures. Results are shown

for the NARCCAP RCM ensemble-mean and for NARR,

CPC and UWash datasets when available. NARCCAP

ensemble error bars are estimated by using the standard

deviation computed from the ensemble of NARCCAP-

RCM estimations. In general, results tend to confirm some

statements generally outlined with respect to the
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advantages of using high-resolution RCMs. For the regio-

nal measure we obtain:

• PAV is much higher for short temporal scales due to the

influence of transient forcings (e.g., convection) that

tend to be filtered out by the time-averaging process.

rPAV is 3–4 times larger in 3-hourly (see Fig. 10a) data

than in 16-day mean data (see Fig. 10b).

• PAV is higher in warm compared to cold season due to

the larger fraction of precipitation falling from small-

scale systems (e.g., convection) in warm season (see

Fig. 10a, b).

• Regions of complex topography (i.e., western regions)

induce an extra component of rPAV, no matter the

season or the temporal scale considered. Its relative

importance is larger for long-term mean quantities and

cold season due to the relatively minor importance of

transient PAV sources (see Fig. 10a, b).

• Assuming that the UWash precipitation analysis con-

stitutes the most reliable estimation of the real climate

PAV, then the NARCCAP-RCMs ensemble-mean

constitutes a very good approximation of the PAV

measures with a slight overestimation of PAV in warm

season and western regions. NARR tends to produce a

slight underestimation of PAV values in warm season

and in eastern regions.

When assessing the local measure some differences

appear:

• No matter the region and season considered, there is an

increase in rPAV values compared to the spatial mean

rPAV estimations.

• The relative importance of the orographic component in

the rPAV measure is larger than in the spatial mean

case (see Fig. 10c, d), particularly for longer temporal

scales.

Results point out that the potential of RCMs to add some

value can be very limited when considering time–averaged

statistics for regional measures. For example, the spatial-

mean rPAV for 16-day means data is on the order of

10–15% for non-mountainous regions in both warm and

cold seasons.

The estimated PAV was derived from the precipitation

field, a variable that is particularly characterized by a flat

power spectrum with a sizable variance in a wide range of

spatial scales. PAV is expected to be less important for

variables with a steeper power spectrum (e.g., geopotential

height, temperature, sea level pressure), but this specula-

tion remains to be confirmed and quantified.
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