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Abstract Through a box model of the subpolar North

Atlantic, we examine the genesis and predictability of the

Atlantic Multidecadal Variability (AMV), posited as a linear

perturbation sustained by the stochastic atmosphere. Postu-

lating a density-dependent thermohaline circulation (THC),

the latter would strongly differentiate the thermal and saline

damping, and facilitate a negative feedback between the two

fields. This negative feedback preferentially suppresses the

low-frequency thermal variance to render a broad multi-

decadal peak bounded by the thermal and saline damping

time. We offer this ‘‘differential variance suppression’’ as an

alternative paradigm of the AMV in place of the ‘‘damped

oscillation’’—the latter generally not allowed by the deter-

ministic dynamics and in any event bears no relation to the

thermal peak. With the validated dynamics, we then assess

the AMV predictability based on the relative entropy—a

difference of the forecast and climatological probability

distributions, which decays through both error growth and

dynamical damping. Since the stochastic forcing is mainly in

the surface heat flux, the thermal noise grows rapidly and

together with its climatological variance limited by the THC-

aided thermal damping, they strongly curtail the thermal

predictability. The latter may be prolonged if the initial

thermal and saline anomalies are of the same sign, but even

rare events of less than 1% chance of occurrence yield a

predictable time that is well short of a decade; we contend

therefore that the AMV is in effect unpredictable.

Keywords Atlantic multidecadal variability � Climate

predictability �Relative entropy � Thermohaline circulation �
Damped oscillation

1 Introduction

Mid-twentieth century warmth in the North Atlantic is a

major climatic event of the instrumental period, with the

sea surface temperature (SST) in the subpolar region

reaching 0.5 K above normal (Deser and Blackmon 1993;

Kushnir 1994). Its effects are arguably felt world-wide,

including anomalous hydroclimate over the North America

and Sahel (Folland et al. 1986; Enfield et al. 2001) and

more than 5% loss of the perennial sea ice in the Arctic

(Polyakov et al. 2003). Extending the instrumental records

by the proxy data, it is seen that the above warmth is part of

the natural cycle that waxes and wanes on multidecadal

timescale, as also discernable from their frequency spec-

trum (Delworth and Mann 2000; Gray 2004). This natural

variability was coined the Atlantic Multidecadal Oscilla-

tion (AMO) by Kerr (2000) although we shall use the

generic ‘‘Atlantic Multidecadal Variability’’ (AMV) with-

out implicating its being an oscillatory mode. Because of

its considerable strength and a timescale commensurate

with that projected for the anthropogenic signal, the AMV

may partially mask the latter (Latif et al. 2004; Knight et al.

2005; Smith et al. 2007; Ting et al. 2009); understanding

the genesis and predictability of the AMV thus is important

in differentiating and assessing the human-induced climate

change.

In contrast to the decadal Arctic Oscillation (AO), the

AMV does not exhibit similar causal relation with the

atmospheric variables, leading to the suggesting that its

genesis is oceanic in origin (Bjerknes 1964; Deser and

Lamont-Doherty Earth Observatory Contribution Number 7442.

H.-W. Ou (&)

Department of Earth and Environmental Sciences,

Lamont-Doherty Earth Observatory of Columbia University,

61Route 9W, Palisades, NY 10964, USA

e-mail: dou@ldeo.columbia.edu

123

Clim Dyn (2012) 38:775–794

DOI 10.1007/s00382-011-1007-3



Blackmon 1993; Kushnir 1994). Two probable but distinct

processes have been postulated: one pertains to the self-

propelling thermal anomaly when coupled to the regional

overturning circulation (Te Raa and Dijkstra 2002), which

is inherently three-dimensional with its timescale related to

the basin-crossing time. While the feature has been dem-

onstrated in isohaline ocean models (Greatbatch and Zhang

1995; Saravanan and McWilliams 1997; Huck et al. 1999;

Te Raa and Dijkstra 2002), its relevance to the observed

AMV is less clear since the latter is indexed by the basin-

scale SST anomaly (Enfield et al. 2001; Delworth et al.

2007), which might not register the signal from a travelling

thermal wave. The other process, which has manifested

prominently in coupled general circulation models

(GCMs), involves the thermohaline circulation (THC)

interacting with the density anomaly particularly in the

subpolar region (Delworth and Greatbatch 2000; Latif et al.

2004; Knight et al. 2005; Dong and Sutton 2005). Differing

from the above thermal waves, the process may operate on

the two-dimensional meridional plane and in which both

temperature and salinity variations play key roles. Its

timescale varies widely among models (Delworth et al.

2007; Danabasoglu 2008) but has been loosely attributed to

the THC overturning time (Winton and Sarachik 1993;

Te Raa and Dijkstra 2003; Dong and Sutton 2005; Sevellec

et al. 2006).

Since the AMV is associated with the basin-scale SST

anomaly and the THC is the oceanic transport mechanism

operating on this scale, it is to be expected that the THC

should play a central role in the AMV—a prevailing view

that is also taken by the present study. But besides the

ocean heat, the THC also redistributes the salt, and together

they determine the large-scale density contrast, which in

turn may regulate the strength of the THC. Incorporating

these essential couplings, even simple box models have

exhibited highly varied behavior due in essence to a

salinity contrast that is counter to the density stratification

(Stommel 1961); this configuration is itself a direct con-

sequence of the poleward moisture transport driven by the

differential heating (Marotzke and Stone 1995; Ou 2007),

which has planted the root of the instability. In the finite-

amplitude regime, the system behavior includes the multi-

equilibria (thermal, saline and saddle modes), Hopf

bifurcation, limit cycle and hysteresis—all have been

invoked to explain large swings in the paleoclimate

(Broecker et al. 1990; Rahmstorf 2002; Clark et al. 2002;

Dijkstra 2005).

Comparing to these paleoclimate events, the AMV

represents merely a small perturbation of the thermal state

that characterizes the Holocene hence likely governed by

the linear dynamics, and a widely held view is that it is a

damped oscillation sustained by the stochastic atmosphere

(Griffies and Tziperman 1995; Delworth and Greatbatch

2000; Dong and Sutton 2005). Although the stochastic

forcing is well justified on account of the atmospheric

chaos (Lorenz 1969), whether the deterministic dynamics

allows oscillatory modes and whether such modes corre-

spond to the observed AMV have not been firmly estab-

lished. Nor have the key parameters been explicitly

identified that control the timescale or the strength of the

AMV.

Because of the stochastic nature of the AMV, there arises

the question of its predictability. A common approach is

through ensemble forecasts using GCMs (Griffies and

Bryan 1997a; Collins et al. 2006), which is computationally

demanding because of the need of large ensemble of long

integrations to garner adequate statistics. Alternatively, the

inverse modeling has been applied to the observed or

modeled timeseries to extract the deterministic dynamics

(Tziperman et al. 2008), which, however, cannot be easily

linked to the physical parameters that govern the observed

system, and being diagnosed from a single (presumably

stationary) realization, it is difficult to generalize the finding

to a changed environment. For a more general assessment of

the predictability, a preferred approach thus is to derive the

dynamical operator based on physical balances, and box

models of varying complexity have been used for this

purpose (Griffies and Tziperman 1995; Lohmann and

Schneider 1999; Tziperman and Ioannou 2002). Since the

model physics is highly truncated, it needs to be first vali-

dated by the observed variability before inferences on the

predictability can be drawn, a step, however, not suffi-

ciently bridged; and then the more pertinent predictability

measures from the information theory, such as the relative

entropy, have not been widely employed in the analyses.

Motivated by above shortfalls in addressing the genesis

and predictability of the AMV, we consider a simple box

model to elucidate the minimal physics and to clarify some

fundamental issues. When applied to the parameter regime

of the actual system, this minimal model nonetheless pro-

vides a reasonable account of the observed phenomenon

and in the process raises significant questions on its pre-

vailing interpretation as a damped oscillation. And with the

validated dynamics, we then revisit the predictability

problem using the relative entropy, which shed additional

light on the AMV predictability and underscores its severe

limitations.

For the organization of the paper, we first formulate in

Sect. 2 a box model of the North Atlantic, culminating in a

pair of coupled equations governing the thermohaline

perturbations of the subpolar convective region. In Sect. 3,

we examine their spectral properties, including a multi-

decadal thermal peak, which compares favorably with the

observed AMV, and we propose a robust mechanism for its

genesis. In Sect. 4, we consider the predictability of the

AMV based on the relative entropy, and discuss its
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optimization and parameter dependence. In Sect. 5, we

summarize the main findings and provide additional

discussion.

2 Box model

2.1 Formulation

We consider a box model of the North Atlantic, as sketched

in Fig. 1. The two boxes (designated 1 and 2) correspond to

the warm and cold watermasses, which are separated by the

main thermocline and its surface outcrop (the subtropical

front), arguably a minimal description of the observed

ocean. To assess the finite-amplitude climate behavior,

such as multi-equilibria, one obviously needs to treat the

thermohaline properties of both boxes as prognostic, but to

examine small perturbation of a given base state, such as

the AMV, additional simplifications are possible. In par-

ticular, the observed AMV is characteristically monopolar

with its maximum signal concentrated in the upper depths

of the subpolar convective region (Deser and Blackmon

1993; Kushnir 1994), which define our cold box. This

anomaly pattern also emerges in model simulations

(e.g. Delworth et al. 1993), which can be attributed to the

small volume of the cold box compared with the warm

watermass that spans two hemispheres and its proximity to

the Arctic Ocean where the primary freshwater perturba-

tion is originated (see later discussion). As a minimal

model, we shall thus treat the warm box as a vast unvarying

reservoir that anchors the thermohaline perturbations of the

cold box. One of course may include the warm-box prop-

erties as unknowns—as in most box models, which would

complicate the mathematics but does not alter the basic

physics; and moreover we shall demonstrate that our

single-box model, even with fewer tunable parameters, is

capable of capturing the essential AMV variability.

After removing global-mean surface fluxes, the heat

balance of the cold box is governed by

h
dT2

dt
¼ Fr � Cð1� l�ÞT2 þ KðT1 � T2Þ þ F

0
; ð1Þ

where h is the depth of the cold box (see Fig. 1), Fr, the

radiative flux, C, the air-sea transfer coefficient defined by

C � Cdju0jqaCp;a

qoCp;o
ð2Þ

with Cd being the drag coefficient, ju0j; the turbulent wind

speed, qa and Cp,a the density and specific heat capacity of

the surface air, and qo and Cp,o, their counterparts for the

water; l* measures the coupling strength of the surface-air

to the ocean temperature, K, the THC transport divided by

the surface area of the cold box (referred as THC for short),

and F0, the stochastic surface heat flux (both radiative and

stochastic fluxes have been divided by qoCp;o). This

equation states that the heat content may be altered,

sequentially on the right-hand side, by the radiative and

convective fluxes at the surface, the THC, and the sto-

chastic surface heating. Although the stochastic forcing

stems from atmospheric eddies, it is organized by tele-

connection into large-scale pattern (Wallace and Gutzler

1981) to impart a net forcing on the cold box, and based on

atmospheric GCM runs, this stochastic forcing is assumed

to be white noise (Saravanan and McWilliams 1997;

Delworth and Greatbatch 2000).

Since there is no coupling of the hydrological cycle to

the salinity, the latter is subjected to a simpler balance

h
dS2

dt
¼ �FwSo þ KðS1 � S2Þ; ð3Þ

where Fw is the freshwater input, which consists of P-E

over the cold box and fluxes from the Arctic Ocean (in both

solid and liquid forms), and So is the reference ocean

salinity. Invoking model results (Delworth and Greatbatch

2000; Cheng et al. 2004), we have neglected the stochastic

freshwater forcing. One reason for this difference from the

thermal forcing is that the anomalous surface air temperature

(SAT) associated with atmospheric eddies immediately

impacts the surface heat flux but the anomalous moisture

they carry does not necessarily precipitate since it involves

cloud physics of additional degrees of freedom; and this

stochastic freshwater forcing in any event is small com-

pared with that associated with the varying THC (Griffies

and Tziperman 1995).

The THC, being a proxy for the meridional transport

mechanism, can be facilitated by eddy exchange across the

subtropical front (Lozier 2010), but for models that do not

resolve eddies, it necessarily manifests as a Meridional

Fig. 1 The box model of the AMV. The cold box represents the

upper part (depth h) of the sinking region where the thermohaline

perturbations (primes) are induced by the stochastic surface heat flux

(F
0
) and coupled through a density-dependent thermohaline circula-

tion (THC) denoted by K0
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Overturning Cell (MOC) driven by the density contrast.

Being an ageostrophic flow, the THC depends strongly on

the diapycnal diffusivity (Bryan 1987); the latter thus is in

effect tuned to yield the climatological thermal field

(Wunsch and Ferrari 1994) and—with that—the required

THC. With the diapycnal diffusivity fixed as such, the THC

then varies with the density contrast, as indeed seen in

numerical models (Delworth et al. 1993). Notwithstanding

the empirical basis of this linkage (see further discussion in

Sect. 5), we postulate nonetheless

K / Dq;

/ �aDT þ bDS ð4Þ

where D indicates the difference between the warm and

cold boxes and a and b are the thermal expansion and

saline contraction coefficients, respectively. Recalling that

the warm-box properties are assumed fixed, the perturba-

tion in the THC thus is proportional to the density anomaly

of the cold box. One notes incidentally that it is because of

the assumed homogeneity of the cold box that there is no

lag between the THC and the density anomaly; in a more

refined model, there could be a lag if one defines the

density anomaly as that averaged over the cold box, but as

we shall see later (Sect. 2.1), this lag can be absorbed into

the overturning time hence does not constitute a limitation

of the model.

Since we are concerned with small perturbations about

the climatological means, we decompose the variables

accordingly so that

T2 ¼ �T2 þ D �TT 0; ð5Þ

S2 ¼ �S2 þ D�SS0; ð6Þ

K ¼ �Kð1þ K 0Þ; ð7Þ

where the overbars and primes denote, respectively, the

climatological means and the fractional perturbations. We

shall consider the linear regime when the fractional

perturbations are small compared with unity, in which

case (4) becomes

K
0 ¼ �T 0 þ cS0

1� c
; ð8Þ

where c � ðaD �TÞ�1ðbD�SÞ is the inverse density-ratio, a

measure of the degree to which the salinity contrast reduces

the density stratification associated with the thermal con-

trast. It is seen that, as a chief advantage of using the

fractional perturbations, (8) is independent of the propor-

tional constant linking the THC to the density anomaly (4),

which thus need not be specified.

Freshwater flux Fw in (3) can be perturbed by the SST.

Warming of the cold box, for example, would increase the

precipitable water in the overlying atmospheric column on

account of the Clausius-Clapeyron equation, but it also

reduces the differential heating of the atmosphere by the

SST hence the poleward atmospheric energy transport,

which would then counter the above effect (Ou 2007). The

P-E over the cold box may also vary with the zonal con-

vergence of the moisture transport (Timmermann et al.

1998), whose quantitative linkage to the SST, however,

remains unknown. In contrast to these uncertain effects on

the P-E, it is well demonstrated in climate models that a

positive SST anomaly would increase the freshwater flux

from the Arctic Ocean (Delworth et al. 1997; Holland et al.

2001; Jungclaus et al. 2005). This can be through the

warming-induced ice melt, which would freshen the Arctic

Water and increase its discharge to the subpolar oceans

through the East Greenland Current (Hakkinen 1993) or it

can be through an enhanced atmospheric cyclonicity that

drives greater ice export through the Fram Strait (Walsh

and Chapman 1990; Dima and Lohmann 2007). To incor-

porate this coupling, we introduce a freshwater coupling

coefficient m and set

Fw ¼ �Fwð1þ mT
0 Þ ð9Þ

so that warming of the cold box would augment the

freshwater flux it receives. Again, for simplicity, we have

neglected the time lag between the two, which is not

expected to materially alter the model results.

To complete the non-dimensionalization, we scale the

time by the overturning time (hence subscripted ‘‘o’’) of the

cold box defined by

to � h= �K; ð10Þ

and the stochastic surface heat flux by

F
0 ¼ ð �KD �TÞq0 : ð11Þ

Substituting (5)–(11) into (1) and (3), the fractional

perturbations are then governed by the coupled equations

_T 0 ¼ c1S0 � a1T 0 þ q0; ð12Þ
_S0 ¼ �c2T 0 � a2S0; ð13Þ

where the coefficients have the expressions

c1 ¼
c

1� c
; ð14Þ

c2 ¼
1

1� c
þ m; ð15Þ

a1 ¼ 1þ 1

1� c
þ l; ð16Þ

and

a2 ¼ 1� c
1� c

; ð17Þ

with

l � Cð1� l�Þ= �K ð18Þ
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referred as the thermal damping coefficient. One is

reminded that a stronger SAT-coupling to the SST (that is,

greater l*) implies a smaller l hence weaker thermal

damping. For convenience, the c’s and a‘s are referred as

thermohaline coupling and damping constants, respec-

tively, and since all these dimensionless parameters,

including a2 (see Sect. 2.3), are positive, the essential role

of the THC is readily discerned, which can be illustrated

through feedback loops, as discussed next.

2.2 Feedback loops

The unity terms in the damping constants a‘s represent

‘‘inherent’’ damping by a constant THC, so for example a

positive anomaly in either temperature or salinity would

decrease the respective poleward flux from the warm box

to damp that anomaly. An interactive THC, however,

generates additional effects, which are succinctly summa-

rized in Fig. 2. The upper arrows indicate the density effect

on the THC and the lower arrows, the THC effect on the

thermohaline perturbations, with the attached signs refer-

ring to the relative signs of the changes linked by the

arrows. It is seen for example warm (salty) anomaly would

lighten (densify) the cold box to decrease (increase) the

THC—hence the negative (positive) signs in the respective

upper arrows. An increasing THC on the other hand would

yield both warmer and saltier cold box, hence both the

positive signs in the lower arrows.

Tracing the closed loops, one sees that the THC cou-

pling to the thermal anomaly forms a ‘‘thermal’’ loop (the

left one) of net negative sign, which thus would enhance

the thermal damping: that is, a warm anomaly for example

would weaken the THC to reduce the heat it carries into the

cold box, damping the initial warmth. On the other hand,

the THC coupling to the saline anomaly forms a positive

‘‘saline’’ loop (the right one) that would reduce the saline

damping, so for example a salty anomaly would strengthen

the THC to inject more salt into the cold box, thus rein-

forcing the initial salty anomaly. Since the thermal

damping constant a1 is already greater than its saline

counterpart a2 due to the air-sea flux as entailed in l
(comparing [16] and [17]), the above opposite effect of the

THC further differentiates the thermal and saline damping,

resulting in, as we shall see later, an order of magnitude

difference in their damping time. The positive saline loop

is of course the source of the well-known saline instability

and moreover it is seen from (17) that if the inverse den-

sity-ratio approaches � (still well short of the gravitational

instability), the saline damping would vanish, leading to

saline catastrophe and possible reorganization of the cli-

matic state (Walin 1985). This limit, however, has little

relevance to the AMV, which is a small perturbation of the

stable thermal state for which the inverse density-ratio is by

stipulation less than � and hence a2 is positive, as alluded

to earlier.

The thermal and saline loops also combine to form a

larger ‘‘thermohaline’’ (?-shaped) loop, which has a net

negative sign hence represents a negative feedback

between the thermal and saline fields, so for example a

warm anomaly in the cold box would weaken the THC to

freshen the cold box, which would further weaken the

THC to counter the initial warmth. This negative feed-

back is the source of the damped oscillation widely

postulated for the AMV, but there is a crucial factor that

is not sufficiently recognized: the THC that facilitates the

negative feedback is the same THC that would regulate

the damping, so it’s not obvious that oscillatory eignen-

modes actually exist in a realistic oceanic regime; nor is it

ascertained that, even if such oscillatory modes exist, they

correspond to the observed thermal peak that defines the

AMV—both in fact answered in the negative based on

later analyses. Incidentally, since all the loops in Fig. 2

are closed by the lower arrows that involve the over-

turning time, the latter may absorb the neglected lag

between the THC and the density anomaly (4) to partially

justify the approximation.

2.3 Parameters

We have reduced the problem to a pair of coupled equa-

tions (12)–(13) governing the thermal and saline pertur-

bations in the cold box. The physics of the interactive THC

illustrated in Fig. 2 enters mathematically through the

terms that contain the inverse density-ratio c. As such, it is

seen to further differentiate the damping constants a1 and

a2 while coupling the two equations through the coupling

constants c1 and c2. In addition to the inverse density-

ratio c, these constants contain two other dimensionless

parameters: l that measures the thermal damping due to the

convective surface flux and m that gauges the strength of the

freshwater coupling. We shall now assess these dimen-

sionless parameters in the observed system.

Fig. 2 The feedback loops facilitated by the THC coupling to the

thermohaline anomalies. The upper arrows indicate the density effect

on the THC and the lower arrows, the THC effect on the thermohaline

perturbations. The attached signs refer to the relative signs of the

perturbations linked by the arrows
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The model time has been non-dimensionalized by the

overturning time (10), which will first be estimated. Based

on model calculations, we take the THC transport to be

20 Sv (Delworth and Greatbatch 2000; Biastoch et al.

2008). Dividing this by the surface area of the cold box—

assumed spanning poleward of 40�N and comprising 1/6 of the

latitudinal circumference—yields �K � 1:5� 10�6m � s�1:

Observation and model output suggest that the thermohaline

anomalies associated with the AMV are confined to the upper

several hundred meters of the convective region (Delworth

et al. 1993; Hansen and Bezdek 1996), so we set h & 500 m.

Dividing the two as in (10), the overturning time is

to & 10.6 years or the time unit of the model is about a

decade. For the stochastic surface heat flux, we set its stan-

dard deviation (SD) to be 10 W m-2 based on Delworth and

Greatbatch (2000, their Fig. 8a). This corresponds inciden-

tally to 1 K perturbation in the SAT if one applies the

aerodynamics formula using a drag coefficient of

Cd & 10-3 and turbulent wind speed of ju0j � 10 m � s�1:

With these values and setting D �T ¼ 20 K; the dimensionless

forcing q’ of (11) has a SD of 0.08.

Among the three dimensionless parameters, the inverse

density-ratio c is subjected to direct measurement and

different oceanic surveys have yielded rather consistent

values to within 10% (Stommel and Csanady 1980; Tippins

and Tomczak 2003), which is thus set at 0.35. With the

above global temperature range, this inverse density-ratio

implies D�S ¼ 1:5; a reasonable range when compared with

observations or model output (Peixoto and Oort 1992;

Delworth et al. 1993). In contrast to the inverse density-

ratio, the other two dimensionless parameters (l and m)

involve the ratio of fluxes hence are less certain and to

somewhat allay the uncertainty, the solution will be

examined over plausible ranges of these parameters.

To estimate l from (18), we first used the above values

of the drag coefficient and the turbulent wind speed to

yield a transfer coefficient of C & 2.38 9 10-6m s-1

from (2). The value of l* varies between 0 and

1—depending on how strongly the SAT is linked to the

SST, and there is a theoretical basis for a value of �
based on an entropy principle (Ozawa et al. 2003; Ou

2006), which is thus set as such as a reasonable value.

Combined with the THC estimated above, we obtain

l & 0.8.To estimate m from (9), we first determine the

peak SST and freshwater anomalies associated with the

AMV. Taking the former to be 0.5 K (see Sect. 1), it

would have a fractional value of 0.025 when normalized

according to (5). For the freshwater flux from the Arctic

Ocean, it has a climatological mean of 0.15 Sv and a peak

anomaly of 0.024 Sv, both based on Serreze et al. (2006,

their Table 2). The bulk of the climatological freshwater

input into the cold box ( �Fw) however, is due to the

moisture convergence over the cold box (that is, the areal

integral of P-E), which is difficult to estimate. Alterna-

tively, based on time-mean balance of (3), it can be

related to the salt flux associated with the THC or

�Fw ¼ �KD�S=So; ð19Þ

and using the foregoing values and a reference salinity of

35, we estimate �Fw � 0:9 Sv; so the above peak anomaly

when normalized by this climatological mean is 0.026.

Dividing it by that of the SST, we obtain m & 1.1.The

above discussion clearly underscores the high uncertainty

in evaluating l and m, both nonetheless are likely to be of O

(1). In our discussion, we shall thus set [l, m] = [1, 1] as

the standard case, and [0, 2] as both their plausible ranges

over which the solution properties will be examined. For

the standard case, the dimensionless parameters have the

values of c1 & 0.55, c2 & 2.54, a1 & 3.54 and

a2 & 0.46. It is seen in particular that partly because of the

differential THC effect, the thermal damping constant (a1)

is much greater than its saline counterpart a2, and the

corresponding damping timescales (their inverse multiplied

by 2p) are 19 and 145 years, which thus differ by an order

of magnitude, as alluded to before.

2.4 Solution

To simplify the notation, we define a bivariate vector

1~T� T 0 S0½ �; so the stochastic differential equations (12)–

(13) can be written in the matrix form:

_1i ¼ �Aij1j þ q0i ð20Þ

adopting Einstein’s convention of repetitive indices. In the

above, the dynamical operator is

A ¼ a1 �c1

c2 a2

� �
; ð21Þ

and q0 is assumed a Gaussian white noise of zero mean and

covariance matrix

q � e 0

0 0

� �
ð22Þ

with e being the forcing variance. The eigenvalues of the

dynamical operator are given by

k1;2 ¼
1

s
	 ix; ð23Þ

where

s ¼ 2ða1 þ a2Þ�1; ð24Þ

and

x ¼ c1c2 þ a1a2 � a1 þ a2Þ2=4
� �h i1=2

ð25Þ
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is the eigenfrequency; the eigenmode is oscillatory only if

this eigenfrequency is real. The Green’s functions of the

dynamical operator are

GijðtÞ ¼ expð�AtÞ½ �ij
¼ S0ðtÞIij þ S1ðtÞAij;

ð26Þ

with

S0ðtÞ ¼ k1 � k2ð Þ�1 k1exp �k2tð Þ � k2exp �k1tð Þ½ �; ð27Þ

and

S1ðtÞ ¼ k1 � k2ð Þ�1
exp �k1tð Þ � exp �k2tð Þ½ �; ð28Þ

and the solution to the stochastic differential equation (20)

can be expressed in the Green’s functions via (see Gardiner

1985)

1ðtÞ ¼ GijðtÞ1j;0 þ
Z t

0

Gijðt0Þq0jðt � t0Þdt0; ð29Þ

where ‘‘0’’ in the subscript denotes the initial value. This

solution will be used later to derive the time evolution of

the forecast ensemble (Sect. 4).

3 Genesis

3.1 Spectral properties

To derive the spectral properties, we first solve for the

Fourier transforms (overhats) from (20):

1̂iðrÞ ¼ Aþ ir Ið Þ�1
ij q̂0j; ð30Þ

with r being the Fourier frequency. Substituting (30) into

the cross-spectral density defined by

Sij � 1̂i 1̂�j ð31Þ

yields the spectral density of the thermal and saline fields

(subscripted ‘‘T’’ and ‘‘S’’, respectively):

ST � S11 ¼ 2eða2
2 þ r2Þ=D; ð32Þ

and

SS � S22 ¼ 2ec2
2=D; ð33Þ

with D � ðc1c2 þ a1a2 � r2Þ2 þ r2ða1 þ a2Þ2: From (8),

the spectral density of the THC (subscripted ‘‘K’’) is then

given by

SK ¼ 2e½ða2 þ cc2Þ2 þ r2�=½ð1� cÞ2D�: ð34Þ

We have plotted in Fig. 3 the above spectral densities

(normalized by the forcing variance e) for the standard

case, which show a broad thermal peak but essentially red

saline and THC spectra. The frequency of the thermal peak

is derived in Appendix A and plotted on the l - m
parameter space in Fig. 4 (the solid lines) with the solid

square marking the standard case. It is seen that over this

considerable parameter range, there is always a thermal

peak, which is thus a robust feature of our model.

But as we shall demonstrate next, this thermal peak

bears no relation to the oscillatory eigenmode of the

deterministic dynamics. To see this, we have plotted the

Fig. 3 The spectral densities of thermal (T), saline (S) and THC

(K) perturbations, which have been normalized by the forcing

variance and the Fourier period is in the unit of the overturning time.

The saline and THC spectra are essentially red but the thermal

spectrum exhibits a broad multidecadal peak

Fig. 4 The frequency of the thermal peak (rmax, solid lines) and the

eigenfreqency of the dynamical operator (dashed lines, nonzero only

in the shaded region) plotted as functions of the thermal damping (l)

and freshwater coupling (m) coefficients. The solid square marks the

standard case, which is seen to contain no oscillatory mode, and

the eigenfrequency, even when nonzero, bears no relation to the

frequency of the thermal peak
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eigenfrequency (25) in the same figure (the dashed lines,

real only in the shaded area). It is seen that the standard

case contains no oscillatory mode, and even where an

oscillatory mode does exist (in the upper-left shaded area),

its frequency bears no relation to the frequency of the

thermal peak; the latter thus may not be interpreted as a

damped oscillation. But given the robustness of the thermal

peak seen in the figure, it demands a simple explanation,

which we shall advance next.

For instructive purpose, we first show in Fig. 5 the

spectra (in dashed lines) when the saline effect on the

thermal field is turned off (that is, c1 = 0). Being an

integration of the white-noise forcing by the ocean storage,

the thermal spectrum is red but levels off beyond the

thermal damping time (Hasselmann 1976), the latter

marked by the shaded column on the right. Since the saline

variance is induced by the thermal variance via the THC

(13), it is doubly red and again levels off beyond the saline

damping time (the shaded column on the left). Now we

include the thermohaline coupling (that is, c1 = 0, the

solid lines), then since it represents a negative feedback

whose effect is proportional to the saline anomaly, it would

more strongly suppress the low-frequency thermal variance

(indicated by the arrow) to render a broad thermal peak

bounded by the thermal and saline damping time. Con-

ceptually, therefore, the thermal peak is not due to its

preferential amplification by the forcing, but rather the

suppression of surrounding variance: the high-frequency

side by the thermal inertia and the low-frequency side by

the THC-induced negative feedback.

To further illustrate the robustness of the thermal peak,

we define a ‘‘suppression’’ ratio as that of the coupled to

the uncoupled thermal spectral-density at zero-frequency

(the latter can be seen in Fig. 5 to approximate its peak

value), which is given by (see [32])

Supp ¼ ½1þ ðc1c2Þ=ða1a2Þ��1: ð35Þ

Since all the dimensionless constants in (35) are

positive, the suppression ratio is less than unity, as

indeed seen in Fig. 6; there is thus always a thermal peak

regardless the strength of the thermohaline coupling or

damping. Qualitatively, stronger coupling (c1 and c2) and

weaker damping (a1 and a2) imply smaller suppression

ratio hence a more distinct thermal peak. Over the

parameter range considered in Fig. 6, the suppression

ratio is smaller than 0.5, hence the thermal peak should be

quite pronounced. With the above, we see that the negative

feedback facilitated by the THC causes a robust thermal

peak whose period is bounded by the thermal and saline

damping time—the reason that it bears no relation to

possible oscillatory modes.

Without the well-defined oscillation, one may no longer

speak of its ‘‘amplitude’’, so to quantify the strength of the

AMV, we calculate the standard deviation (SD) from the

covariance derived in Appendix B and plot them in Fig. 7.

Qualitatively, the thermal SD (Fig. 7a) decrease only

slightly with m as the low-frequency variance is further

Fig. 5 Same as Fig. 3, but illustrating the effect of the thermohaline

coupling. The dashed lines are when this coupling is artificially turned

off by setting c1 = 0, which show red thermal and saline spectra that

level off at the thermal and the longer saline damping time (shaded
columns), respectively. The thick lines are when the thermohaline

coupling is turned on, which suppresses the low-frequency thermal

variance (the arrow) to render a broad thermal peak bounded by the

two damping times

Fig. 6 Same as Fig. 4, but for the (suppression) ratio of the coupled

to the uncoupled thermal spectral density at the zero-frequency, which

measures the prominence of the spectral peak (more pronounced for

smaller suppression ratio)
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suppressed, but it decreases strongly with l as the thermal

damping is augmented. As the saline perturbation is

induced by the thermal variance via the thermohaline

coupling, its SD (Fig. 7b) decreases with l that weakens

the former, but increases with m that augments the latter.

With the saline SD varying more strongly over the

parameter space than the thermal SD, it dominates the SD

variation of the THC (Fig. 7c), which thus may be simi-

larly explained. It is seen additionally that over the

parameter range considered, the SD’s of the thermal, saline

and THC signals vary over a range of 30, 100 and 50%,

respectively, about their standard values.

3.2 Observational comparison

For the standard case, the timescale of the thermal peak is

43 years (Fig. 4), which fortuitously is the same as that

calculated by Gray (2004) when averaged over five cen-

turies of data (42.7 years). Although the model value varies

only by 20% over the parameter range of Fig. 4, its precise

value has little significance given the broadness of the

peak, which has as its tangible bounds only the thermal and

saline damping time estimated earlier (Sect. 2.3) to be 19

and 145 years. This deduction in fact is consistent with the

rather wide range gleaned from observational studies:

Delworth and Mann (2000) calculated a thermal peak

around 70 years from their three-century-long data; Gray

et al.’s (2004)wavelet spectrum based on five-century-long

data show a range between 40 and 128 years; and Stocker

and Mysak (1992) discerned centennial peaks

(90–140 years) from their millennium-long data—all

within the bounds deduced above.

As symptomatic of the proposed genesis, only the

thermal spectrum exhibits a prominent peak while the

saline and the THC spectra are essentially red, as seen in

Fig. 2. No comparable salinity spectrum as the thermal one

is available, but sparse data show nonetheless sustained

freshening of the subpolar oceans in the last four decades

(Dickson et al. 2002; Curry and Mauritzen 2005), which

seems to contrast the warm-cold cycle of the AMV and

could be indicative of its redder spectrum—although the

above-cited authors suggested that the freshening is due

to the anthropogenic forcing rather than the natural

variability.

There is of course no observed THC since it is merely a

proxy mechanism for transporting the watermass properties

that necessarily emerge when models do not fully resolve

the ocean eddies (Sect. 2.1). Nonetheless, its spectrum

based on the model output has been widely calculated—in

fact more so than the thermal spectrum due perhaps to its

easy indexing by a single number (the maximum transport)

and also possibly to the preconception that an oscillatory

AMV should manifest equally in the THC. Although these

calculations have yielded possible peaks, they typically

barely rise above the red background (Saravanan et al.

2000; Delworth and Greatbatch 2000; Holland et al. 2001;

Knight et al. 2005; Danabasoglu 2008), which in fact is

consistent with our model deduction. More telling, how-

ever, is when both THC and SST spectra are calculated and

juxtaposed, such as in Timmermann et al. (1998), in which

case thermal peak appears more pronounced and their

contrast is not unlike that seen in Fig. 3.

To translate the SD’s shown in Fig. 7 to dimensional

units, we recall that they have been normalized by that of

the fractional forcing q0 (0.08) in addition to the scaling

rules (5)–(7), so by combining the two, a unit SD in the

thermal, saline and THC perturbation corresponds to

dimensional values of 1.6 K, 0.12 and 1.6 Sv, respectively.

Since for the standard case, the dimensionless SD’s are

0.36, 0.52 and 0.69 for the above three fields (Fig. 7), the

corresponding dimensional SD’s are hence 0.6 K, 0.06 and

1.1 Sv, which can be compared with the observed or

modeled variability. The peak SST anomaly of the AMV is

about 0.5 K (Folland et al. 1984; Kushnir 1994; Kaplan

et al. 1998; Hansen and Bezdek 1996; Gray 2004), and

Latif et al. (2004) calculated a SD of 0.3 K from century-

long data, both thus commensurate with the deduced

thermal SD. Dickson et al. (2002) showed a freshening of

Fig. 7 Same as Fig. 4 but for

the standard deviation (SD) of

the a thermal, b saline and

c THC perturbations
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the subpolar water (the upper 1 km in correspondence to

our cold box) of O (0.1) in the last few decades, similar to

the range seen in Curry and Mauritzen (2005), hence not

inconsistent with the deduced saline SD. The modeled

THC associated with the AMV typically varies by no more

than a few Sv (Delworth et al. 1993; Holland et al. 2001;

Cheng et al. 2004; Dai et al. 2005; Jungclaus et al. 2005;

Knight et al. 2005; Biastoch et al. 2008), and Latif et al.

(2004) calculated a SD of 1.9 Sv, hence they are com-

mensurate with the deduced SD in the THC.

With the stochastic forcing hence its random phase, the

lag of thermohaline anomalies to the forcing portends little

significance, but the phase relation among the thermohaline

perturbations themselves may nonetheless provide an

additional test of the model physics. For this purpose, we

plotted in Fig. 8 the phase of the thermohaline anomalies

referenced to that of the forcing, which show that for

interdecadal and lower-frequency bands, cold, salty and

positive THC anomalies are all clustered within a quarter-

cycle, with the positive THC slightly lagging the cold but

leading the salty anomalies. This phase relation is consis-

tent with that calculated by Delworth et al. (Delworth et al.

1993, their Fig. 81), and the slight lag of the THC behind

the density anomaly seen in their figure in fact supports the

relation (4). It should be noted that only when the THC is

an external forcing uncoupled to the thermohaline fields

may one infer the lag of the latter owing to the ocean

storage; the THC coupling (4) however, has supplanted this

lag, so the effect of the ocean storage is simply to shift their

collective phase with respect to the external (stochastic)

forcing.

To recap, we see that although our model is extremely

crude, its deductions compare nonetheless favorably—and

in a quantitative sense—with observational data and output

from climate models, suggesting that the model has cap-

tured the minimal physics of the AMV.

4 Predictability

With the above validation, we shall assume the model

dynamics to be representative of the ‘‘true’’ dynamics of

the AMV and assess its predictability if the forecasts are

initialized with the ‘‘true’’ state. As both ‘‘true’’ qualifiers

are at best approximate, the deduced predictability is an

upper-bound or ‘‘potential’’ predictability, which will be

gauged by metrics taken from the information theory.

4.1 Metrics

Since a forecast ensemble is defined by its probability

distribution, we shall quantify the predictability by the

departure of this distribution from that of the climatology

(Schneider and Griffies 1999; Delsole 2004). A measure of

such distribution difference is the relative entropy defined

by (Cover 1991)

R ¼
Z1

�1

Z1

�1

p ln ðp=p1Þd11d12; ð36Þ

where p is the forecast distribution and the subscript

‘‘?’’denotes the climatology (corresponding to an infinite

lead time). For a true initial state hence a delta-function

distribution, the relative entropy is infinite, which can be

shown to decrease monotonically for Markov processes

and vanish if and only if the two distributions are identical

(Cover 1991). For a stochastic forcing that is Gaussian, so

are the transient distributions on account of the linear

dynamics, which are thus uniquely specified by the

ensemble mean and the covariance. Expressed in these

properties, the relative entropy (36) can be divided into

‘‘dispersion’’ and ‘‘signal’’ components (Kleeman 2002):

R ¼ Rd þ Rs; ð37Þ

with

Rd ¼
1

2
ln jV1jjV j�1
� �

þ tr VV�1
1

� �
� 2

h i
; ð38Þ

and

Rs ¼
1

2
1~h iT V�1

1 1~h i; ð39Þ

in which angle brackets denote the ensemble means and

V’s are the covariance matrices. The two components are

analogous to the root-mean-squared error and the anomaly

correlation coefficient (Collins et al. 2006), but they are

now combined into a single measure via their information

content. We should point out the difference between the

relative entropy and the predictive information (Schneider

and Griffies 1999) as the latter is defined as a strict dif-

ference of the entropies hence contains no information on

Fig. 8 Same as Fig. 3 but for the phase of the variables referenced to

that of the forcing (positive for phase lead)

1 The thermohaline variables in this particular figure are averages

over the sinking region hence more pertinent for comparison with our

cold-box variables.
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the ensemble means; but like the predictive information,

the relative entropy is invariant to linear transformation of

state variables, an important attribute since the information

content should not depend on the units of the state vari-

ables—although in our formulation, the state variables,

being the fractional perturbations, are already

dimensionless.

The ensemble mean and the covariance that enter the

relative entropy can be seen from (29) to be given by

1iðtÞh i ¼ GijðtÞ1j;0; ð40Þ

and

VijðtÞ � 1i � 1ih ið Þ 1j � 1j

� 	� �� 	
¼
Z t

0

Gikðt
0 ÞGjlðt

0 Þqkldt0:

ð41Þ

Since the Green’s functions depend only on the

dynamical operator A, the covariance matrix V and hence

the dispersion component Rd are independent of the initial

condition; its decrease in time thus is due solely to the error

growth. On the other hand, the signal component is

independent of the transient variance, and its decay in time

is caused solely by the dynamical damping. With such

differentiation of the two components, the optimal initial

condition for the forecast is simply the one that maximizes

the signal component.

To translate the infinite range in the relative entropy to a

predictability measure, we define, following Schneider and

Griffies (1999), the predictive power P

P � 1� exp(� RÞ; ð42Þ

which is seen to conform to its intuitive meaning. That is,

as the relative entropy decreases from infinity to zero for

increasing lead time, the predictive power goes from unity

(absolute predictability) to zero (no predictability). In

addition, since the relative entropy decays monotonically

with time, so does the predictive power of the full (bivar-

iate) state; and to aid its rigor, Schneider and Griffies

(1999) have provided a geometric interpretation of the

predictive power on the state space.

Since the predictive power is a function of the lead time,

a succinct measure of the predictability is the lead time

when the predictive power falls below certain threshold. As

this threshold depends on the accuracy one demands of the

prediction or the odds one considers tolerable, there is

obvious no set rules, and one often-used criterion in the

univariate case is when the forecast variance reaches half

the climatological variance whose tangible justification

was provided by Griffies and Bryan (1997a), Scott (2003)

and Chang et al. (2004). Applying (37) to the univariate

case, the above criterion implies Rc = 0.097 (subscript ‘‘c’’

for ‘‘critical’’), which is thus set for the general case. The

corresponding predictive power (42) is Pc = 0.092, which

then defines the predictable time sc.

The predictive power depends on the initial condition,

which, being taken from observation, is itself subjected to

climatological distribution, one thus may define an ‘‘aver-

age’’ (overhatted) predictive power as its expectant value

for a forecast ensemble when its members are initialized by

randomly chosen observed state, or

P̂ �
Z1

�1

Z1

�1

p1Pd11;0d12;0

¼ 1� exp(� RdÞ
Z1

�1

Z1

�1

p1expð�RsÞd11;0d12;0

ð43Þ

taking note that the dispersion component Rd is indepen-

dent of the initial condition hence may be moved out of the

integral. From (39) and (40), it is seen that Rs is quadratic

in the initial anomaly, so is the exponent in the climato-

logical distribution; an analytical expression thus may be

derived for (43) as given in Appendix C. Applying the

same threshold criterion, one may define the ‘‘average’’

predictable time ŝc; which is then a property only of the

dynamics, independent of the initial condition.

All above metrics apply to the full bivariate state, but for

practical reasons, one might be more concerned with the

predictability of individual variables. This would be the

case for the AMV, which is defined by the SST anomaly,

and the latter moreover directly impacts the surface climate

hence is of greater practical concern. The univariate ver-

sion of the relative entropy is called the ‘‘marginal’’

entropy, whose expression is given in Appendix C, and

using the marginal entropy, the predictive power and pre-

dictable time for the individual variables can be similarly

defined. In contrast to the relative entropy, however, which

decays monotonically, marginal entropy may temporarily

increase since information can be transferred among state

variables. As such, there could be a return of skill in

forecasting individual variables (Barlas et al. 2007) and the

predictable time based on a threshold condition could be

multi-valued.

The following specific calculations of the predictability

pertain to the standard case, and we will discuss its

parameter dependence in Sect. 4.4.

4.2 Forecast ensemble

In Fig. 9, we show the evolution of the forecast ensemble

on the state space for the three cases marked by the open

squares (enclosing the case number). To aid their selection,

we have plotted the climatological ellipses of 1, 2 and

3-SD, and the outlying cases are the intersections of the

3-SD ellipse with a vertical line (dashed) that is tangent to
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the 1-SD ellipse. As such, they have the same thermal

anomaly (0.35) but saline anomalies that are of opposite

signs (-1.55 for case 2 and 1.29 for case 3) and, being on

the same ellipse, they have equal signal components (hence

relative entropy) initially, which would facilitate their

predictability comparison. By integrating the bivariate

normal distribution over the probability ellipse, it’s

straightforward to derive that the exceedance probability

(or complementary cumulative probability) for the three

ellipses has the value of 0.61, 0.14 and .01, respectively, so

the events outside the 3-SD ellipse for example have less

than 1% chance of occurrence.

The evolution of the ensemble means is indicated by

arrows with the solid circles marking 0.5 in time incre-

ments. Because of the strong damping, the outlying cases

decay to climatology rapidly though remnant oscillation is

discernible for case 2 (that is, the thermal anomaly has

changed sign). Case 3 approaches the climatology at a

faster rate than case 2 due to the thermohaline coupling: the

positive thermal anomaly tends to induce negative salinity

anomaly (13), which thus counters the decay of the saline

anomaly in case 2, but hasten it in case 3.

Since the covariance is independent of the initial con-

dition, it is displayed along track 2 only via the 1-SD

ellipses. We see pronounced anisotropy in the short-term

error growth, being much faster for the thermal than the

saline fields. This is because the stochastic forcing is in the

surface heat flux hence only directly generates the thermal

variance whereas the saline variance is induced by the

thermal variance through the latter’s effect on the THC

(13). Indeed, one can see from (41) that the growth rate of

the thermal variance equals the forcing variance initially

(and importantly it is independent of the dynamics) while

that of the saline variance is initially zero and accelerates

for short lead-time. Combined with the negative correlation

between the thermal and saline perturbations discernible

from (13), one may explain the clockwise rotation of the

ellipses. One recognizes that while the ellipse rotation

stems from the non-normal dynamics, it is the negative

thermohaline feedback that endows this specific sense of

rotation. It is seen that within unit lead-time, the error

ellipse has largely attained its climatological size, beyond

which it is primarily the ensemble mean that may sustain

the predictability, as discussed next.

We have plotted the predictive power for the above

selected cases in Fig. 10, with the dashed line marking the

threshold that defines our predictable time (Sect. 4.1). Most

relevant to the surface climate is the univariate thermal

Fig. 9 The evolution of the forecast ensemble on the state space, on

which the climatological ellipses of 1, 2 and 3-SD (concentric about

the origin) and constant THC (light straight lines) are drawn. The

three initial states (cases 1, 2 and 3) are marked by open squares with

the arrowed lines tracing the ensemble mean (solid circles in 0.5 time

units) and 1-SD forecast ellipses shown along one track

Fig. 10 The predictive power

of the three selected cases for

a thermal, b saline, c THC and

d bivariate T/S signals
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curves shown in Fig. 10a. For case 1 initialized by the

climatology, the loss of the predictive power is due solely

to the growth of the thermal noise, which has a unity initial

rate (normalized by the forcing variance), but decreases

gradually over the short lead-time. As such, it is the small

climatological variance due to the strong thermal damping

that yields the short predictable time (about 0.14). For case

2, the addition of the signal component only slightly pro-

longs the predictability due to the strong thermal decay

seen in Fig. 9, which has been hastened by the negative

saline anomaly (12). Also expected from that figure, we

notice a slight return of forecast skill indicative of the

remnant oscillation, which, however, is too small to have

practical significance. For case 3, the positive saline

anomaly has slowed the thermal decay (12) to more

strongly enhance the predictability, lengthening the pre-

dictable time to 0.5.

The predictive power for the saline field is as shown in

Fig. 10b, which differs sharply from its thermal counter-

part. The convex shape of the curves over the short lead-

time reflects the error growth that is zero initially but

accelerates over the short lead-time. In comparison with

the thermal curves, the predictive power is strongly aug-

mented in the outlying cases, first by the slower error

growth, then by the weak saline damping. The differenti-

ation between the two outlying cases is as seen in Fig. 9,

which is attributable to the thermal effect: namely, the

positive thermal anomaly tends to induce negative salinity

(13), which thus counters the saline decay in case 2, but

hastens it in case 3. The saline predictable time is several

times the corresponding thermal time.

For the THC, we see that its predictive power is similar

to the thermal curve for case 1. This is because, as one may

see from (8), its short-term error growth is dominated by

the much faster thermal than the saline rate. Since its signal

component is near zero for case 3 (see Fig. 9, the thin

straight lines), it has scarcely modified the predictive power

of case 1, but for case 2, the sizable THC anomaly has

significantly augmented the predictive power via the signal

component. The latter incidentally is consistent with the

finding of the Collins et al. (2006). Since the THC is linked

to the anomalous density, it has the same predictability as

the dynamical height, the latter has been considered by

Griffies and Bryan (1997b).

Since the relative entropy is greater than the marginal

entropy—the latter contains only partial information, so is

the bivariate predictive power in comparison with its uni-

variate counterparts. Considering also the dominance of the

saline over the thermal predictive power, the full curves

should be similar to—but slightly above—the corre-

sponding saline curves, as indeed seen in Fig. 10b and d:

the predictability of the bivariate state is thus similar to that

of the salinity field. Since the relative entropy is

monotonically decreasing, so should the bivariate predic-

tive power, one infers therefore that there is not likely any

return of skill in forecasting the salinity anomaly, in con-

trast to the thermal anomaly.

To recap, from the evolution of the forecast ensemble on

the state space, we differentiate the roles of the error

growth and dynamical damping in the loss of the predictive

power. Both are highly anisotropic: the growth of the

thermal noise is much faster due to its direct generation by

the stochastic forcing; and the decay of the thermohaline

signal is first differentiated by the THC and then by the

initial condition. The fast growth of the thermal noise

strongly curtails the thermal predictability while the saline

predictive power is prolonged by both the slower error

growth and weaker damping. Since the short-term THC

noise is dominated by the thermal noise, the two have

similar predictability; and with the bivariate predictive

power being a cap to its univariate counterparts, it is

dominated by—hence similar to—its saline counterpart.

4.3 Optimization

Some optimizing measures of the predictability have no

direct applications to the current problem. For example, it

is the nature of the stochastic forcing that it enters mainly

through the surface heat flux (Sect. 2.1); there are thus no

degrees of freedom associated with a stochastic optimal

(Kleeman and Moore 1997; Tziperman and Ioannou 2002).

Since the AMV is defined by the SST, which moreover

directly impacts the surface climate, it serves little practical

purpose in determining the optimizing predictable com-

ponents (DelSole 2007). The optimization that can be

readily exploited in the AMV prediction is the initial

anomaly vector, and to quantify its effect, we plot in

Fig. 11 the predictable time as a function of the initial

condition spanning the state space. The dots indicate

explicit calculations used to draw the contours: they are

intersections of the outer ellipses (and the T-axis) with the

vertical lines that glaze the inner ellipses. The contours are

shown only for the half plane on account of the central

symmetry, and minimum predictable time is shaded to aid

the display.

The predictable time of the thermal field is shown in

Fig. 11a, which lengthens with initial departure from the

climatology (hence the signal component), but the effect is

highly anisotropic, being much greater when the saline and

thermal anomalies are of the same sign, as explained earlier

(Sect. 4.2). Case 3 incidentally represents the optimal

condition on its ellipse: its predictable time is about four

times the minimum (0.6 vs. 0.15). Based on the scales

estimated in Sect. 3.3, case 3 has a thermal anomaly of

0.57 K and saline anomaly of 0.16. While these values are

not out of reach, they are expectedly rare since they lie on
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the 3-SD ellipse with less than 1% chance of occurrence

and the odds are further trimmed by the required sign

agreement; that is, one may expect such anomaly of a

decadal-long duration only over several millennia.

In practical terms, one may exploit the mid-twentieth

century warm event, for example, only if there were con-

current positive saline anomaly, which could be the

observed case—since it was before the arrival of the Great

Salinity Anomaly (GSA), a freshening event. On the other

hand, the GSA peaked around 1970 and hence overlapped

the cool period of the 1980s (Talley and McCartney 1982),

a concurrence that also manifests in model calculations

(Delworth et al. 1997), which may aid the optimization.

But even with these favorable conditions, the predictable

time is seen in Fig. 11a to fall short of a decade, and given

the multidecadal timescale that characterizes such major

events, there is practically no skill in predicting their next

arrival. As a related point, this deduction further under-

scores the vast difference of the AMV from an oscillatory

mode, the latter, being predicated on weak damping, is

naturally more predictable; and to the degree that ensemble

experiments generally yield similar predictable time as the

above estimate (Griffies and Bryan 1997b; Grotzner et al.

1999; Saravanan et al. 2000; Eden 2002; Collins et al.

2006; Tziperman et al. 2008), which moreover is com-

mensurate with the thermal damping time, they in fact

support a non-oscillatory nature of the AMV.

The predictable time for the salinity signal is shown in

Fig. 11b. If without its coupling to the thermal field, the

contours would be horizontal and their value increases

away from the T-axis, but as discussed in Sect. 4.2, the

thermal effect would lengthen (shorten) the predictable

time if the saline anomaly is of the opposite (same) sign,

resulting in a counterclockwise rotation of the contours.

The predictable time for the THC is plotted in Fig. 11c,

which conspicuously align with the THC lines shown in

Fig. 9 hence may be subjected to the following interpre-

tation: the THC error growth is dominated by the thermal

noise (8), which accounts for their similarly short minimum

time of O (0.1), and beyond this time, its predictive power

is sustained mainly by the signal component hence aligned

with the initial THC anomaly. The predictable time for the

bivariate state is shown in Fig. 11d, which, based on the

earlier discussion, should resemble but cap the saline

values.

4.4 Parameter dependence

Having considered the effect of the initial condition on the

predictability, we now consider the predictive power

averaged over the initial condition as defined in Sect. 4.1. It

represents the expectant predictability when the ensemble

members are initialized by randomly chosen observed

state. We show in Fig. 12 the average predictive power.

When compared with Fig. 10, it is naturally straddled by

the respective curves, but it is nonetheless closer to the null

curve (case 1) as the climatological mean obviously has the

highest probability hence most heavily weighted. As a

general characterization, the predictive powers fall into two

distinct groups: the group of thermal and THC signals is

much less predictable than the group of saline and bivariate

signals. The average predictable time is 0.22 and 0.36 for

the first group and 1.35 and 1.49 for the second, which can

Fig. 11 The predictable time as a function of the initial condition for

a thermal, b saline, c THC and d bivariate T/S signals (noting that the

S-axis has been squashed from that of Fig. 9 to aid the display)
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be converted to dimensional units by multiplying them by a

decade (Sect. 2.3). We see therefore the average predict-

able time for the thermal anomaly is only a couple of years

while that for the saline anomaly may exceed a decade—a

disparity not inconsistent with that found in some model

studies (for example, Griffies and Bryan 1997a).

But how robust is the average predictability? How does it

vary with the model parameters? To address these ques-

tions, we plot in Fig. 13 the average predictable time over

the parameter range considered in Sect. 3. Since the average

predictability is noted above to be similar to that for the null

case, its parameter dependence can be explained by the

dispersion component alone, as provided below.

For the thermal anomaly, we note immediately that its

dependence is similar to that of the climatological variance

shown in Fig. 7a, which can be attributed to the fact that

the short-term error growth rate is approximately unity,

independent of the dynamics. Since the predictable time for

the null case is when the error growth attains half the cli-

matological variance, by simply dividing the two, we

obtain a predictable time of 0.07 for the standard case. This

obviously constitutes a lower bound for the average pre-

dictable time since it needs to be adjusted upward due to

the additional information contained in the initial anomaly

and the fact that the error growth slows in time. These

effects have apparently lengthened the predictable time

about threefold to 0.23 as seen in Fig. 13a.

Since the climatological variance equals the integral of

the spectral density on account of the Parseval’s theorem, it

is seen that the spectral shape, including possible peaks,

has no direct bearing on the predictability. As a counter

example, we see from Figs. 6 and 13a that increasing the

freshwater coupling would render a more distinct thermal

peak, and yet by reducing the thermal variance, it actually

weakens the predictability. On the other hand, if a sharper

spectral peak is the outcome of weaker damping (moving

to the left in these figures), then the latter’s augmentation

of the climatological variance would prolong the predict-

ability. The important point, however, is that there is no

causal linkage between the spectral peak and predictability

(see also Chang et al. 2004), but rather, both respond in

kind to the damping.

The predictable time for the saline signal (Fig. 13b) is

several times longer than its thermal counterpart and also

exhibits qualitatively different behavior. It shortens with

stronger freshwater coupling but is insensitive to the ther-

mal damping, and importantly, unlike the thermal time, it

does not vary as the climatological variance shown in

Fig. 7b. This is because the growth of the saline noise,

unlike that of the thermal noise, can be hastened by the

freshwater coupling (13), an effect that apparently domi-

nates the variation of the climatological variance in con-

trolling the predictable time.

For the THC, its average predictable time (Fig. 13c) is

only slightly longer than the thermal time, and again

aligned with its climatological variance, hence may be

interpreted similarly. The predictable time for the bivariate

T/S is shown in Fig. 13d, which varies similarly as the

saline time, at least in terms of the dominant effect of

the freshwater coupling. It does have minor dependence on

the thermal damping, which is opposite to that for the

saline field and can be explained by the effect of the

thermal predictable time.

Fig. 12 The average predictive power when the initial condition is

weighted by the climatological distribution

Fig. 13 The average predictable time for a thermal, b saline, c THC

and d bivariate T/S perturbations
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With the above, it is seen that over the plausible

parameter range, the average predictable time does not

vary by more than 50% from the standard case, we con-

clude therefore, as a general characterization, the average

predictable time for the thermal and the THC signal is well

short of a decade while that for the saline and the bivariate

field is decadal. Since AMV is defined by the thermal

anomaly, we conclude therefore it is largely unpredictable.

5 Summery and discussion

The AMV is dominated by the SST anomaly in the sub-

polar North Atlantic, which exhibits discernible multi-

decadal timescale. Assuming that the AMV is a small

perturbation of the base state sustained by the stochastic

atmosphere, we construct a box model to examine its

genesis and predictability. Through thermohaline balances

of the subpolar cold box coupled through a density-

dependent THC, it is seen that the latter would strongly

differentiate the thermal and saline damping, and facilitate

a negative feedback between the two fields. This negative

feedback would preferentially suppress the low-frequency

thermal variance, and together with its high-frequency

suppression by the ocean storage, the thermal spectrum

exhibits a broad peak bounded by the thermal and saline

damping time. We offer this ‘‘differential variance sup-

pression’’ as an alternative paradigm of the AMV in place

of the prevailing ‘‘damped oscillation’’—as the latter is

generally not allowed by the deterministic dynamics and in

any event bears no relation to the thermal peak. Although

the model is extremely crude, its deductions compare

favorably—and in quantitative sense—with the observed

variability, suggesting that the model has captured the

minimal physics of the AMV.

With validation of the model dynamics, we then con-

sider the potential predictability of the AMV based on the

relative entropy—a measure of the difference between the

forecast and climatological (probability) distributions,

which may decay due both to the error growth and

dynamical damping of the ensemble mean. Since the sto-

chastic forcing is mainly in the surface heat flux, the

thermal noise grows rapidly and together with a climato-

logical variance limited by the THC-enhanced thermal

damping, they strongly curb the thermal predictability. The

predictability can be optimized by initial thermal and saline

anomalies that are of the same sign, but even for rare

events of less than 1% chance of occurrence (for example,

a decade-long anomaly that occurs only once in a millen-

nium), the predictable time still falls well short of a decade;

we contend therefore that the AMV defined by the thermal

anomaly is effectively unpredictable. Due both to slower

error growth and weaker damping, the saline anomaly,

however, has longer predictable time, which may exceed a

decade.

Within the proposed paradigm, some outstanding ques-

tions of the AMV may be resolved. For example, the THC

spectra are widely calculated in modeling studies, which

typically show unremarkable peaks that barely rise above

the red background. This, however, is to be expected since

the low-frequency suppression of the thermal variance is

due precisely to the redder saline and—hence—THC

spectra. The absence of the THC peak, however, should not

equivocate the robustness of the thermal peak that defines

the AMV, as seemingly suggested by some model studies.

Since the thermal peak is unrelated to oscillation and

bounded only broadly by the disparate thermal and saline

damping time (decadal versus centennial), the model may

explain the observed migratory behavior of the thermal

peak within this range (Gray 2004) and equally divergent

timescales produced in climate models (Delworth et al.

2007; Danabasoglu 2008).

Model runs with only stochastic freshwater forcing—

though of little relevance to the AMV—have produced

spectral peak of much longer period (200–300 years,

Mikolajewicz and Maier-Reimer 1990; Mysak et al. 1993),

which can be accommodated within the proposed para-

digm. Since the ocean dynamics hence the eigenmodes are

unchanged by the external forcing, this disparate timescale

from that of the AMV further discounts the relevance of the

eigenmodes to the spectral peak. With the absence of the

thermal forcing and the strong thermal damping, the ther-

mal spectrum, however, should mimic the saline spectrum;

and following the same reasoning as that for Fig. 5, the

saline spectrum should be red and level off beyond

the saline damping time (about 150 years)—if without the

THC coupling, but with the low-frequency suppressed of

its variance by this coupling, the saline and—hence—all

spectra should exhibit a spectral peak beyond the saline

damping time, as seen in the above model runs.

There have been discussions as to whether the AMV is a

coupled or ocean-only mode, but based on our paradigm,

it’s first of all not a mode, but is the remnant when the

surrounding variance is preferentially suppressed. The

source of the variance is the stochastic atmosphere, which

is uncoupled to the climatic SST, and the processes that

differentially suppress the variance are oceanic—thermal

inertia on the high-frequency side and THC-induced neg-

ative feedback on the low-frequency side. The moisture

coupling considered by Timmermann et al. (1998) is con-

tained in m, which in fact is dominated by the Arctic effect

(Sect. 2.3), but nonetheless since m merely augments the

THC effect (15), it is not required for the positivity of the

coupling constant c2 and hence the genesis of the AMV.

With the above, our view thus is closer to Delworth and

Greatbatch’s (2000) that the AMV is generically an
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oceanic phenomenon. In addition, with the Arctic domi-

nating the freshwater coupling, our model may explain why

climate models that include such coupling tend to produce

more pronounced AMV (Delworth et al. 1997).

While the atmospheric coupling is not required for the

thermal peak, it does affect the height of the peak through

l in (16): a stronger thermal coupling implies a smaller l
hence weaker damping, resulting in a stronger AMV

signal. This could explain why in coupled models, the

surface heat flux may attain greater anomaly particularly

in the convective region (Delworth and Greatbatch 2000)

despite its amelioration by a responsive SAT (Barsugli

and Battisti 1998). Moreover, because of the atmospheric

coupling, the observed SAT spectrum contains the imprint

of the SST variability hence may not be taken as the

external forcing—as implicated in the use of restoring

condition in ocean-only models. Rather, to isolate the

external forcing, we have invoked the output from

atmosphere-only models that have produced the stochastic

hence uncoupled forcing (Sect. 2.3). With the latter now

justifiably posed as the external forcing and together with

the inner working of the ocean that differentiates its fre-

quency response, the causality of the AMV thus may be

established.

The THC in the model represents a proxy of the

meridional transport mechanism of watermass properties,

which may be facilitated as well by eddy exchanges. In

fact, recent observational analysis suggest that eddies

dominate the THC, and there is little evidence of a con-

tiguous MOC depicted in climate models (Lozier 2010).

Since in such models, MOC is the ageostrophic flow driven

by the meridional pressure gradient and with fixed dia-

pycnal diffusivity, its transport is expectedly proportional

to the density contrast, as postulated in our model. But if

the THC is dominated by random eddy exchange, can we

still justify this linkage? One possible argument in its favor

goes as follows: if the exchange were random, then its rate

is independent of the density stratification; the latter,

however, does govern the eddy dimension through the

deformation radius. Since the volume exchange rate (the

relevant quantity that corresponds to the MOC transport) is

the product of the eddy exchange rate and the eddy volume,

it is then proportional to the density stratification, as

required. Here we reiterate the advantage of using the

fractional perturbations so that the solution is independent

of the proportional constant—hence the unknown eddy

exchange rate.
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Appendix A: Spectral peak

Differentiating the thermal spectral density (32) with

respect to the Fourier frequency and setting it to zero, we

derive the spectral peak at

rmax ¼ �a2
2 þ H1=2

� �1=2

; ð44Þ

where

H � a4
2 þ 2a2

2ðd2 � d2
1=2Þ þ d2

2 ; ð45Þ

with

d1 ¼ a1 þ a2; ð46Þ
d2 ¼ c1c2 þ a1a2: ð47Þ

Appendix B: Covariance

From (41), we derive that

V11 ¼ e
Z t

0

G11ðt0Þ2dt0 ¼ e

2ðk1� k2Þ2

� ðk1� a2Þ2

k1

� 1� e�2k1t
� �

þ ðk2� a2Þ2

k2

� 1� e�2k2t
� �

�
(

4ðk1 � a2Þðk2 � a2Þ
k1 þ k2

� 1� e�ðk1þk2Þt
� �


; ð48Þ

V22 ¼ e
Z t

0

G21ðt0Þ2dt0 ¼ ec2
2

2ðk1 � k2Þ2
� 1

k1

� 1� e�2k1t
� ��

þ 1

k2

� 1� e�2k2t
� �

� 4

k1 þ k2

� 1� e�ðk1þk2Þt
� �


;

ð49Þ

V12 ¼ e
Z t

0

G11ðt0ÞG21ðt0Þdt0 ¼ ec2

2ðk1 � k2Þ2
� ðk1 � a2Þ

k1

�

� 1� e�2k1t
� �

þ ðk2 � a2Þ
k2

� 1� e�2k2t
� �

�

2½ðk1 � a2Þ þ ðk2 � a2Þ�
k1 þ k2

� 1� e�ðk1þk2Þt
� �


: ð50Þ

Setting t ? ?, we obtain the climatological

covariance:

V11;1 ¼ e � ðc1c2 þ a1a2 þ a2
2Þ

2ðc1c2 þ a1a2Þða1 þ a2Þ
; ð51Þ

V22;1 ¼ e � c2
2

2ðc1c2 þ a1a2Þða1 þ a2Þ
; ð52Þ
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V12;1 ¼ �e � c2a2

2ðc1c2 þ a1a2Þða1 þ a2Þ
: ð53Þ

Tagging the THC as the variable ‘‘3’’, its variance can

be derived from (8) to yield

V33 ¼
1

ð1� cÞ2
� ðV11 � 2cV12 þ c2V22Þ: ð54Þ

The standard deviation (r) is the square root of the

autovariance hence can be calculated.

Appendix C: Average predictive power

The average predictive power is given by (8) with

p1 ¼
1

2p
ffiffiffiffiffiffiffiffiffiffi
jV1j

p exp
1

2
1~T

0 V�1
1 1~0


 �
: ð55Þ

Substituting from (39) to (40) the signal component of

the relative entropy, (4.8) can be integrated to yield

P̂ ¼ 1� expð�RdÞ �
1

2
jV1jadð Þ1=2; ð56Þ

in which the temporal functions are given by

d ¼ c� b2=ð4aÞ; ð57Þ

with

a¼ 1

2jV1j
V22;1G2

11� 2V12;1G11G21þV11;1G2
21þV22;1

� �
;

ð58Þ

b ¼ 1

jV1j
V22;1G11G12 � V12;1ðG11G22 þ G12G21Þ
�

þV11;1G21G22 � V12

�
; ð59Þ

c¼ 1

2jV1j
V22;1G2

12� 2V12;1G12G22þV11;1G2
22þV11;1

� �
:

ð60Þ

The marginal entropy for the thermal signal is

R1 ¼ Rd;1 þ Rs;1; ð61Þ

with

Rd;1 ¼
1

2
ln

V11;1
V11

þ V11

V11;1
� 1

� �
; ð62Þ

Rs;1 ¼
12

1

2V11;1
; ð63Þ

and the average predictive power is

P̂1 ¼ 1� expð�Rd;1Þ �
1

2
jV1jadð Þ1=2; ð64Þ

with d given by (57) and

a ¼ 1

2jV1j
V22;1G2

11 þ V22;1
� �

; ð65Þ

b ¼ 1

jV1j
V22;1G11G12 � V12;1
� �

; ð66Þ

c ¼ 1

2jV1j
V22;1G2

12 þ V11;1
� �

: ð67Þ

Similar expressions can be derived for the univariate

saline signal.
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