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Abstract Simulations of the East Asian summer monsoon

for the period of 1979–2001 were carried out using the

Weather Research and Forecast (WRF) model forced by

three reanalysis datasets (NCEP-R2, ERA-40, and JRA-25).

The experiments forced by different reanalysis data exhi-

bited remarkable differences, primarily caused by uncer-

tainties in the lateral boundary (LB) moisture fluxes over

the Bay of Bengal and the Philippine Sea. The climato-

logical mean water vapor convergence into the model

domain computed from ERA-40 was about 24% higher than

that from the NCEP-R2 reanalysis. We demonstrate that

using the ensemble mean of NCEP-R2, ERA-40, and JRA-

25 as LB forcing considerably reduced the biases in the

model simulation. The use of ensemble forcing improved

the performance in simulated mean circulation and pre-

cipitation, inter-annual variation in seasonal precipitation,

and daily precipitation. The model simulated precipitation

was superior to that in the reanalysis in both climatology

and year-to-year variations, indicating the added value of

dynamic downscaling. The results suggest that models

having better performance under one set of LB forcing

might worsen when another set of reanalysis data is used as

LB forcing. Use of ensemble mean LB forcing for assessing

regional climate model performance is recommended.

Keywords Uncertainty in regional climate simulation �
Ensemble lateral boundary forcing

1 Introduction

Regional modeling is a nonlinear initial-boundary value

problem. A nested regional climate model (RCM) simulation

is subject to uncertainties originating from lateral boundary

(LB) forcing (Miyakoda and Rosati 1977; Anthes et al. 1985;

Gustafsson 2002; Mohanty et al. 1990; Jacob and Podzun

1997; Paegle et al. 1997; Denis et al. 2002; Diaconescu et al.

2007). As stated by Giorgi and Bi (2000), initial perturba-

tions dominate simulated biases only in the early stages of a

simulation. After the LB information pervades interior of the

domain, perturbations in the LB forcing become dominant

sources of errors. Although the effect of perturbation in LB

forcing shows no clear trend (Wu et al. 2005), the simulated

biases induced by LB forcing are generally larger than those

induced by initial conditions, even larger than those induced

by model resolution and physical parameterizations (Vu-

kicevic and Errico 1990). Biases in the output of a general

circulation model can be enlarged by an RCM (Christensen

et al. 1997), and missing synoptic information at the LB

because of coarse resolution can underestimate seasonal

precipitation (Pan et al. 2001). RCM solutions may be par-

ticularly susceptible to the choice of LB locations, and

positioning the LB in the region of small biases can improve

model performance (Qian and Liu 2001; Liang et al. 2001;

Xue et al. 2007). In summary, the quality of LB forcing is
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vital to RCM simulation. The estimation of the simulation

errors arising from LB forcing is a critical element in RCM

simulation or downscaling.

Reanalysis data have been popularly used as LB forcing

in validation of RCM performance (Christensen et al. 1998;

Wang et al. 2003). A number of intercomparison projects of

RCM have focused on multi-model simulation with the

same reanalysis data as LB forcing (Christensen et al. 1997;

Takle et al. 1999; Leung and Ghan 1999; Fu et al. 2005). In

the simulation of the 1998 East Asian summer monsoon

(EASM), Wang and Yang (2008) found that the Weather

Research and Forecast (WRF) model simulations driven by

40-year reanalysis data from the European Centre for

Medium-Range Weather Forecasts (ERA-40) and National

Center for Environmental Prediction-Department of Energy

reanalysis data (NCEP-R2) yield different results. Both

have significant deficiencies in reproducing the observed

extreme rainfall events. The authors found that the large

vapor differences over the Bay of Bengal and the Philippine

Sea are the key factors that induce the largely different

realizations. The ensemble mean of the two reanalyses is

used as driven fields, which lessens the uncertainties in

water vapor and other fields, thereby improving the per-

formance of the WRF model simulation.

However, the study of Wang and Yang (2008) was only

carried out for the summer of 1998, and only two reana-

lyses were examined. Their conclusions need to be verified

by using long-term simulation and more reanalysis data-

sets. In particular, the following questions should be

addressed: How sensitive is the model solution to different

reanalysis forcings? What are the sources of the uncer-

tainties in the large-scale thermal and circulation fields that

give rise to the spread of the model solutions? Can we

reduce the effects of these uncertainties to improve the

performance of the WRF model?

To answer these questions, we are motivated to simulate

the EASM from 1979 to 2001, a total of 23 summers, driven

by NCEP-R2, ERA-40, the Japanese 25-year reanalysis

(JRA-25), and their ensemble mean. The model description

is provided in Sect. 2, and the experimental design is

described in Sect. 3. Section 4 presents our analysis of the

errors in the experiments driven by the individual reanaly-

sis. The sources of the simulated errors are discussed in

Sect. 5. In Sect. 6, we evaluate the experiment driven by the

ensemble mean of the reanalyses. The added value of the

dynamic downscaling is discussed in Sect. 7. The final

section presents the summary and discussion.

2 Model and data

The WRF model (Skamarock et al. 2005), a primitive

equation model using sigma coordinates, is used in this

study. The physical processes used include Betts-Miller-

Janjic cumulus parameterization (Janjic 2000), rapid radi-

ative transfer model for long-wave radiation (Mlawer et al.

1997), Dudhia (1989) scheme for shortwave radiation, Lin

cloud microphysics (Lin et al. 1983; Chen and Sun 2002),

Noah’s land surface model (Chen and Dudhia 2001), and

Yongsei University planetary boundary layer scheme (Noh

et al. 2003).

The forcing fields are air temperature, specific humidity,

horizontal winds, and geopotential height at pressure lev-

els, which are interpolated by a preprocessor to match the

resolution of the WRF model. In addition, the initial con-

ditions include surface pressure, sea-level pressure, tem-

perature and moisture at a 2-m height, horizontal winds at a

10-m height, skin temperature, soil moisture, and soil

temperature. The skin temperature over the ocean is con-

sidered sea surface temperature.

Three reanalysis datasets were used as sources of LB

forcing: NCEP-R2 (Kanamitsu et al. 2002), ERA-40 (Uppala

et al. 2005), and JRA-25 (Onogi et al. 2007). They are

relaxed in a buffer zone of 10 grid boxes, where the influence

of the reanalyses data decreases from the boundary to the

center of the model domain. The land surface model uses the

following datasets: 30-s topographic data, U.S. Geological

Survey land-use data, and 5-min soil-type data from the Food

and Agriculture Organization of the United Nations.

The ensemble mean of the NCEP-R2, ERA-40, and

JRA-25 was defined as the ‘‘perfect’’ data to validate the

simulated circulation. Two datasets were used to verify

the simulated precipitation—the satellite-based Global

Precipitation Climatology Project (GPCP) monthly pre-

cipitation with a resolution of 2.5� 9 2.5� (Adler et al.

2003) and the gauge-based Monsoon Asia Analysis pre-

cipitation (with a resolution of 0.5� 9 0.5�, constructed by

the Asian Precipitation—Highly—Resolved Observational

Data Integration Towards Evaluation [APHRODITE] of

the Water Resources project; Yatagai et al. 2009). For

comparison with model results, both GPCP and gauge

precipitation were interpolated into the grids of the model

using bilinear interpolation. The validation of bilinear

interpolation was verified by comparison of four-year

(1998–2001) climatological June–July–August (JJA) mean

rainfall between Tropical Rainforest Measuring Mission

(TRMM) 3B43 (Adler et al. 2000) and GPCP at 0.5�
and 2.5� resolutions. The TRMM 3B43 is derived from

microwave and infrared satellite measurements and surface

rain-gauge observations, and is available as a monthly

mean product at 0.25� resolution. To validate the simulated

precipitation over the entire model domain at the same

time, the blended data of the rain gauge over land and the

GPCP over sea were used (i.e., the oceanic grid points of

the bilinear interpolated rain gauge data were filled with

the bilinear interpolated GPCP data).
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3 Experimental design

In this study, the simulation period is comprised of the 23

rainy seasons in East Asia from 1979 to 2001. In each year,

the WRF model ran from 00Z 22 April through 18Z 31

August. The 9 days before 1 May were considered as

‘‘spin-up’’ period (Giorgi and Mearns 1999). The spin-up

time of 9 days may be insufficient for adjusting the

atmosphere to land surface anomalies. Fortunately, the soil

moisture-precipitation feedback is much less important

than the moisture flux convergence anomaly during the

Asian monsoon season (Douville et al. 2001). Our results

confirmed that evaporation is relatively stable and that the

change in precipitation is highly consistent with the change

in moisture flux convergence (figure not shown). The

output from 1 May to 31 August was analyzed.

The model domain covers the EASM region centered at

25�N and 115�E, from 5� to 45�N and from 90� to 140�E.

The grids of the model consist of 101 (zonal) 9 92

(meridional) horizontal grid points at about a 50-km grid

space and 31 vertical layers up to 50 hPa. Figure 1 shows

the domain and topography map. The steep slope of the

Tibetan Plateau is located west of the domain. The Bay of

Bengal, a source of abundant moisture, is located south-

west of the domain. The western North Pacific (WNP)

subtropical high, which dominates the evolution of sea-

sonal monsoon precipitation, is located east of the domain.

To study the effect of the LB conditions on the WRF

model, we initially designed three sensitivity experiments,

in which the NCEP-R2, ERA-40, and JRA-25 reanalyses

were used as initial and LB conditions. The experiments

were labeled Exp-R2, Exp-40, and Exp-25, respectively.

Because Wang and Yang (2008) indicated the ensemble

mean of the NCEP-R2 and ERA-40 in their study yields the

best result, in this study we designed another experiment

driven by the ensemble mean of the three reanalyses and

referred to it as the control experiment (CTL). Generally,

the reanalyses datasets are available at 6-h intervals with a

horizontal resolution of 2.5� 9 2.5� on identical grids. As

the NCEP-R2 and ERA-40 have only 17 pressure levels,

the same pressure levels of the JRA-25 were selected from

its original 23. The JRA-25 only has moisture at 12 pres-

sure levels up to 100 hPa that are identical to the 12 lower

levels of the other reanalyses. The moisture of the JRA25

at the 5 upper levels was filled with zero. Thus, the three

reanalyses were prepared on the same grid and were used

to generate the LB conditions for the four experiments.

Different from the ERA-40 and JRA-25, the surface data

of NCEP-R2 is 1.85� 9 1.85� and was interpolated to

2.5� 9 2.5� grid with a bilinear scheme. The initial con-

ditions of experiments Exp-R2, Exp-40, and Exp-25 were

taken from the NCEP-R2, ERA-40, and JRA-25 reanalyses,

respectively. The initial conditions of the CTL were cre-

ated from the mean values of the three reanalyses. The

physical parameterizations and model configuration are

uniform for all experiments. All model parameters are

taken with the default values without tuning.

4 Systematic biases in simulations forced by individual

reanalysis

Forced by different LB conditions, the three sensitivity

experiments yielded different systematic biases in their

simulations of JJA mean low-level circulations. Figure 2b,

c, and d show the biases in the 850-hPa circulations pro-

duced by Exp-R2, Exp-40, and Exp-25, respectively. The

biases were defined by the deviation of the RCM simula-

tions from the ensemble mean of NCEP-R2, ERA-40, and

JRA-25. The bias in Exp-R2 (Fig. 2b) was a notable anti-

cyclonic high-pressure bias over eastern China and the

surrounding ocean. The bias in Exp-40 (Fig. 2c) was larger

than that in Exp-R2 but it had an opposite sign: a major

cyclonic low-pressure bias was located over eastern China

and the East China seaboard centered in Taiwan. The bias

in Exp-25 (Fig. 2d) was a high-pressure bias observed

mainly over WNP and the Indochina Peninsula and its

associated circulations. These different biases reflected the

large uncertainty in experiments driven by individual

reanalysis. The WNP subtropical high is the key weather

system of the EASM. Therefore, the discrepancies have

marked effects on the summer monsoon precipitation and

circulation in the experiments.

Fig. 1 Simulation domain and topography (color shading in units of

meters). Topographic contours of 1,500, 4,000, and 5,000 m are

highlighted. Analysis areas over land enclosed by dashed lines refer to

South China (20�–26�N, 105�–122�E), the Yangtze River Basin (26�–

32�N, 105�–122�E), and North China (32�–40�N, 105�–122�E)
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The biases in the low-level circulations were also observed

in individual years. Figure 3 shows the root mean square error

(RMSE) of the simulated JJA mean geopotential height at

850 hPa, relative to the ensemble mean (of NCEP-R2, ERA-

40, and JRA-25) in each of the 23 years. Only the sensitivity

experiments are considered here (i.e., only the red, green, and

blue points in Fig. 3). Of the three sensitivity experiments,

Exp-25 yielded the geopotential height most similar to the

ensemble mean of three reanalyses, i.e., Exp-25 had the

smallest RMSE in 17 out of 23 years. Exp-R2 produced

results that were, to a large extent, closer to the ensemble mean

than those of Exp-40 in most years. The variations in model

performance provided evidence that the systematic differ-

ences in large-scale forcing could systematically influence the

RCM in an identical manner in most years, but not in all years.

Therefore, reducing the systematic biases of large-scale

forcing may generally improve RCM performance.

The different simulated results were observed not only in

dynamic fields but also in seasonal and daily mean precipi-

tation. The performance of the model in terms of seasonal

rainfall is shown in Fig. 4, which presents the spatial corre-

lation coefficients between the simulation and the rain-gauge

observation of the 23 JJA mean rainfall in three regions over

land (i.e., North China, the Yangtze River Basin, and South

China). Among the three sensitivity experiments, Exp-R2

had the highest mean correlation coefficient (i.e., 0.45) of the

69 JJA correlations (23 years among the three regions). The

corresponding correlation coefficient means of Exp-25 and

Exp-40 were 0.33 and 0.22, respectively. Figure 5 shows the

daily precipitation averaged over North China, the Yangtze

River Basin, and South China. Measured by the correlation

coefficient and RMSE relative to the observation, Exp-40

performed best in the Yangtze River Basin, whereas Exp-25

performed best in North China and South China.

(a) (b)

(c)

(e)

(d)

Fig. 2 a The climatological

June–July–August (JJA) mean

geopotential height (shading in

units of meter) and horizontal

winds (vector in units of m s-1)

at 850 hPa that are derived from

the ensemble mean of NCEP-

R2, ERA-40, and JRA-25

reanalyses data. Respectively,

b, c, d, and e are the biases

simulated with lateral boundary

(LB) conditions derived from

b the NCEP/DOE reanalysis 2

(NCEP-R2), c the ECMWF

40-year reanalysis (ERA-40),

d the Japanese 25-year

reanalysis (JRA-25), and

e ensemble mean of the three

reanalyses. All the biases are

defined by the deviation of

RCM simulations from the

ensemble mean of NCEP-R2,

ERA-40, and JRA-25. The

green circles indicate the

significant areas with 95%

confidence level in the

difference of geopotential

height by t test
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The climatological summer precipitation of the three

sensitivity experiments also exhibited distinctive features.

Relative to the observed climatological summer precipita-

tion, which is the blended data of the rain gauge over land

and the GPCP over sea, the pattern correlation coefficients

of the simulated climatological summer precipitation of

Exp-R2, Exp-40, and Exp-25 were 0.71, 0.74, and 0.67,

respectively (Table 1). Exp-R2 notably underestimated

precipitation over the Philippine Sea, Korea, and Japan.

Exp-40 overestimated precipitation over almost all of the

ocean areas and underestimated precipitation over land.

Exp-25 produced more precipitation than was observed

mainly over the Philippine Sea (figures not shown).

In addition to the climatological summer precipitation,

the inter-annual variations in seasonal precipitation of the

three sensitivity experiments, as represented by the tem-

poral standard deviation of the seasonal precipitation, also

differed remarkably. Relative to the inter-annual variation

in seasonal precipitation of the blended observation, the

pattern correlation coefficients of the corresponding fields

of Exp-R2, Exp-40, and Exp-25 were 0.53, 0.61, and 0.61,

respectively (Table 1). Compared with the blended obser-

vation, seasonal precipitation in Exp-R2 showed notably

more inter-annual variations over the Bay of Bengal and

the Indo-China Peninsula. In addition to the same features

in Exp-R2, seasonal precipitation in Exp-40 and Exp-25

showed larger inter-annual variations than the blended

observation over the South China Sea and the Philippine

Sea (figures not shown).

With the same configuration, the aforementioned dif-

ferences among the three sensitivity experiments could

only have been caused by the different LB forcings. Thus

far, however, the component of LB forcing that causes

Fig. 3 RMSE of the simulated JJA mean geopotential height at

850 hPa relative to the ensemble mean of NCER-R2, ERA-40, and

JRA-25 in 23 years. The red, green, blue, and black dots denote

RMSE of Exp-R2, Exp-40, Exp-25, and CTL, respectively. The

bracketed number in the legend is the total number of years in which

the CTL experiment has the smallest RMSE

Fig. 4 Spatial correlation

coefficients (R) of the simulated

JJA precipitation relative to the

observed gauge rainfall in

23 years over the land areas of

North China, the Yangtze River

basin, and South China (see

Fig. 1 for definition). The red,

green, blue, and black dots
denote R of Exp-R2, Exp-40,

Exp-25, and CTL, respectively.

The bracketed number in the

legend is the total number of

years in which the CTL

experiment has the largest R

H. Yang et al.: Reduction of systematic biases 659

123



these large differences, as well as its mechanism, remains

unknown. A detailed discussion of these issues is presented

in the next section.

5 The source of the systematic biases

To clarify which field in LB forcing had the largest dif-

ference among the three reanalyses, we investigated the LB

forcing variables: horizontal wind, geopotential height,

absolute humidity, and temperature. We used the spatial

average of noise-to-signal ratio (NSR; the spatial average

of the inverse of signal-to-noise ratio), on each side of the

LBs to determine the relative differences of a variable

among the three reanalyses. For example of temperature at

the western boundary, we first calculated the climatological

JJA mean temperature for the three reanalyses. Then for

each point on the western boundary, we calculated the

noise-to-signal ratio from the three climatological JJA

mean temperatures. Finally, the NSR was defined as the

spatial average of the noise-to-signal ratio at the western

boundary. Larger (smaller) values of NSR mean that the

relative differences of a variable among the three reana-

lyses were larger (smaller). Near a wind shear, the u or

v component of the horizontal wind becomes very small,

leading to a huge NSR value that cannot reflect the actual

differences in winds among the three reanalyses. There-

fore, wind speed was used to measure the wind differences

instead of u or v.

Table 2 shows that the NSRs of absolute humidity had

the largest values on each side of the lateral boundaries,

which means that the difference in absolute humidity

among the three reanalyses is the largest among the four

variables. The NSRs of wind speed were less than half

those of absolute humidity. The very small NSRs of geo-

potential height and temperature indicated that almost no

relative differences in these fields existed.

The large relative differences in absolute humidity at the

eastern, western, and southern boundaries were most likely

the key factors producing the large differences in the sen-

sitivity experiments. Although the NSR value (0.18) was

largest at the northern boundary, the spatial average of the

(a)

(b)

(c)

Fig. 5 Climatological daily

precipitation rates (mm day-1)

from May 1 to August 31,

averaged over the land area of

a North China, b the Yangtze

River Basin, and c South China

(see Fig. 1 for definition). The

cyan, red, green, blue, and black
lines denote the rain gauge

observation, Exp-R2, Exp-40,

Exp-25, and CTL, respectively.

Correlation coefficients between

observed and simulated curves

are the upper numbers in the

brackets in the legend; root

mean square errors between

observed and simulated curves

are the lower numbers in the

brackets in the legend

Table 1 Spatial correlation coefficients (R) of climatological mean

(CM) and inter-annual variation (IAV) of seasonal precipitation over

model interior domain (10�–40�N, 95�–135�N) between the blended

observation and reanalyses (experimental results) of NCEP-R2 (Exp-

R2), ERA-40 (Exp-40), JRA-25 (Exp-25), and ensemble mean of

reanalyses (CTL)

R NCEP-R2 (Exp-R2) ERA-40 (Exp-40) JRA-25 (Exp-25) Ensemble (CTL)

CM 0.52 (0.71) 0.61 (0.74) 0.58 (0.67) 0.65 (0.80)

IAV 0.35 (0.53) 0.43 (0.61) 0.44 (0.61) 0.56 (0.64)
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mean absolute humidity (i.e., an approximation of the

signal in NSR) was the smallest (i.e., 2.85), indicating that

the relative difference was actually minimal.

The JJA mean vertical profiles of moisture flux across

the western, southern, and eastern lateral boundaries below

300 hPa are presented in Fig. 6. In conjunction with Fig. 6,

the zonal and meridional features of moisture uncertainty

are shown in Fig. 7, for which the JJA mean vertically

integrated moisture fluxes from the surface to 300 hPa

across the three lateral boundaries were calculated. The

moisture flux across the northern boundary is not shown

because it is negligible. Fluxes are positive towards the

north and east.

The three major channels that supply abundant moisture

into the EASM and affect its variability are the strong low-

level jet over the Bay of Bengal, the cross-equatorial

Southern Hemisphere flows, and the circulation over the

WNP (e.g., Ding and Sikka 2006; Zhou and Yu 2005). To

investigate the roles of these moisture channels, we divided

the western and eastern boundaries into two parts at 26�N.

At the western boundary, the large differences in moisture

flux were concentrated below 700 hPa (Fig. 6a) over the

Bay of Bengal (Fig. 7). ERA-40 reanalysis exhibited the

largest moisture flux, whereas JRA-25 reanalysis showed

the smallest in this area. At the southern boundary, large

differences in moisture flux appeared at middle levels and

within the boundary layer (Fig. 6b). ERA-40 reanalysis

showed the largest flux in this area (Fig. 7). The flux in

NCEP-R2 was smaller than that in JRA-25 at the middle

levels and was larger at the low-level and within the

boundary layer in this area (Fig. 6b). Different from the

western and southern boundaries, the positive moisture

fluxes above 900 hPa at the eastern boundary were out-

flows of water vapor, whereas the negative moisture fluxes

Table 2 Spatial average of noise-signal ratio (NSR) of large-scale

forcing fields at the western, eastern, southern, and northern lateral

boundaries. The symbols WS, z, a, and T represent wind speed,

geopotential height, absolute humidity, and air temperature, respec-

tively. The spatial average of the signal (mean) of absolute humidity

is also shown

NSR/mean WS z a T

West 0.06 0.00 0.16/5.49 0.00

East 0.03 0.00 0.13/6.14 0.00

South 0.05 0.01 0.11/6.65 0.00

North 0.03 0.00 0.18/2.85 0.00

Fig. 6 Climatological JJA

mean vertical profiles of

moisture fluxes from the surface

up to 300 hPa, averaged along

the a western, b southern, and

c eastern lateral boundaries. The

red, green, and blue lines
indicate results obtained from

NCEP-R2, ERA-40, and JRA-

25 reanalyses
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in the boundary layer were influxes (Fig. 6c). Among the

three reanalyses, the amount of moisture in NCEP-R2

reanalysis going out of the domain is the largest at levels

above 900 hPa (Fig. 6c) as well as on the northern flank of

the WNP subtropical ridge located at 26�N (Fig. 7). In the

boundary layer to the southern flank of the WNP sub-

tropical ridge, NCEP-R2 reanalysis transferred the smallest

amount of moisture into the domain (Figs. 6c, 7).

To determine the roles and uncertainties of the moisture

flux channels, we used the mean moisture fluxes and their

standard deviations to measure the uncertainties of the

moisture flux. The largest mean value of 14.92 g m-2 s-1

and the largest standard deviation of 1.06 g m-2 s-1

occurred in the southern part of the western boundary over

the Bay of Bengal (Fig. 7), indicating that the Bay of

Bengal was not only the largest moisture source but was

also the location where moisture flux introduced the

greatest uncertainty. The second-largest standard deviation

of 0.59 g m-2 s-1 was seen over the Philippine Sea from

5� to 26�N, but the second-largest mean fluxes occurred

over the northern flank of the WNP subtropical ridge

(Fig. 7). The three reanalyses held relatively less moisture

transport over the Philippine Sea; the uncertainty there was

large. The huge discrepancies in the moisture transport

over the Bay of Bengal and the WNP among the three

reanalyses were mainly caused by a shortage of observa-

tions over these oceanic areas, which agrees with the

findings of Wang and Yang (2008).

The climatological JJA mean moisture flux conver-

gences from the three LBs are shown at the center of

Fig. 7. The convergence in the ERA-40 reanalysis

(5.22 mm day-1 m-2) was about 24% higher than that in

the NCEP-R2 reanalysis (4.21 mm day-1 m-2). The

moisture uncertainties went through the buffer zone and

eventually influenced the hydrological cycle of the model

in the interior domain.

6 Improved simulation using ensemble mean LB

forcing

The different reanalysis data were produced using models

with different parameterizations of physical processes. The

errors in the physical parameterizations of the models may

be considered independent of each other; thus, the errors in

different reanalysis datasets may be considered random. If

so, an ensemble mean of these reanalyses would potentially

reduce the random errors present in individual reanalysis

datasets. A similar rationale was employed in the multi-

model ensemble (MME) climate prediction (e.g., Krish-

namurti et al. 1999), in which the MME prediction

outperforms that of any single-model component (e.g.,

Palmer et al. 2000; Shukla et al. 2000; Wang et al. 2004).

The climatology and inter-annual variability of the

ensemble mean precipitation derived from the three

reanalysis datasets matched the blended observational

counterparts better than any individual reanalysis did

(Table 1). This provides evidence that ensemble reanalysis

datasets indeed reduce errors in the precipitation field.

In this work, the ensemble means of winds, geopotential

height, temperature, and humidity from the NCEP-R2,

ERA-40, and JRA-25 reanalyses were used as LB forcing

in the CTL. The physical parameterizations and model

configuration in the CTL are identical to those in the sen-

sitivity experiments.

Ensemble forcing improved the simulated precipitation.

Figure 4 shows that the CTL outperformed the three sen-

sitivity experiments in terms of spatial patterns of seasonal

precipitation in all three land regions (North China, the

Yangtze River Basin, and South China). In 23 years, the

CTL produced the best seasonal precipitation in 13 years in

North China, 13 years in the Yangtze River Basin, and

11 years in South China. The CTL exceeded the runner-up

(Exp-R2) in 7 years in North China, 5 years in the Yangtze

River basin, and 3 years in South China. In three regions

and 23 years, the CTL run achieved the highest score of a

Fig. 7 Climatological summer (JJA) mean of total vertical integrated

water vapor fluxes (colored numbers in units of g m-2 s-1) through

the various segments of the lateral boundaries. The colored numbers
in the center of the domain indicate the JJA mean domain averaged

total water vapor convergence per unit area of the large-scale forcing

(in units of mm day-1). The values marked in red, green, and blue are

derived from NCEP-R2, ERA-40, and JRA-25 respectively, whereas

the numbers in black are the standard deviations of the colored

numbers in the same column or row. The thick arrows indicate the

direction of water vapor transport. The arrows in the model domain

represent the climatological JJA mean total vertical integrated water

vapor transport vectors derived from the ensemble mean of NCEP-

R2, ERA-40, and JRA-25 with a unit of 15 g m-2 s-1. Topography is

shaded according to units of meters. The dashed box indicates the

interior domain. The area between the lateral boundaries and dashed
box indicates the buffer zone
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mean correlation coefficient of 0.48. Figure 5 shows the

daily precipitation averaged over North China, the Yangtze

River Basin, and South China. Although the CTL run did

not achieve the highest score in correlation coefficients, it

was comparable to the best sensitivity experiment in all the

regions. Thus, the overall performance of the CTL run

(0.69), denoted by the averaged correlation coefficients

among three regions, exceeded those of Exp-R2 (0.64),

Exp-40 (0.38), and Exp-25 (0.67). The RMSEs in Fig. 5

show that the CTL achieved the highest score over both

North China and the Yangtze River Basin, whereas the

CTL simulated too much precipitation in June and obtained

the lowest score in South China. Table 1 provides the

pattern correlation coefficients of climatological mean and

inter-annual variation in summer precipitation between the

simulation and observation. The CTL achieved the best

correlation score for the climatological mean (0.80) and for

inter-annual variations (0.64).

The superiority of the CTL was also observed in low-

level circulation. Figure 2e shows model biases of 850-hPa

geopotential height and horizontal winds of the climato-

logical JJA mean in the CTL. Compared with Exp-R2 and

Exp-40 in Fig. 2b and c, the CTL dramatically reduced

circulation biases, only slightly underestimating the geo-

potential height over the central domain and overestimating

the geopotential height near the southern and eastern

boundaries. Compared with Exp-25, the CTL also pro-

duced smaller biases over WNP, Indochina Peninsula, and

the northeastern area of the domain. The significant biases

of the CTL (Fig. 2e, green circles) existed only at the Bay

of Bengal and the southern Philippine Sea. The cyclonic

wind biases over the domain center in the CTL were

insignificant.

The superiority of the CTL was also observed in sea-

sonal mean circulation in each individual year. The black

dots in Fig. 3 represent the RMSE of the CTL relative to

the ensemble of the reanalyses. In 23 years, the CTL run

presented the smallest RMSE in 14 years and only tended

to have larger RMSE in 1982 and 1994, compared with

Exp-R2 and Exp-25. The results in this study suggest that

the use of ensemble forcing systematically reduced the

biases in RCM simulations in most of the years, but not in

all years.

The results shown in Figs. 2 and 5 and Table 1 indicate

that, with the ensemble mean LB condition, the WRF

model produced smaller biases in summer mean circulation

and precipitation, inter-annual variation in seasonal pre-

cipitation, as well as in most cases of daily precipitation

than those simulated using individual reanalysis forcing. In

terms of the number of summers in which the model pro-

duced the smallest biases in seasonal mean, the CTL run

also outperformed all sensitivity experiments in both sea-

sonal circulation and precipitation (Figs. 3, 4).

7 The added value of RCM downscaling

This section analyzes the added values of RCM simulations

against their corresponding large-scale forcings, which is

different from the value of ensemble approach. Against the

blended observation, the pattern correlations of the simu-

lated climatological mean summer precipitation in Exp-R2,

Exp-40, Exp-25, and CTL were 0.71, 0.74, 0.67, and 0.80,

respectively. The values were higher than those of the

corresponding reanalysis values of 0.52, 0.61, 0.58, and

0.65 (Table 1). The pattern correlations of the inter-annual

variability in summer precipitation between simulations

and observation in Exp-R2, Exp-40, Exp-25, and CTL were

0.53, 0.61, 0.61, and 0.64 respectively, whereas the cor-

relations between reanalyses and observation in NCEP-R2,

ERA-40, JRA-25, and their ensemble were 0.35, 0.43, 0.44,

and 0.56, respectively.

These results show that both sensitivity and CTL

experiments exhibited appreciably higher performance for

climatological mean and inter-annual variability in summer

precipitation than those in the corresponding reanalyses,

although the precipitations of the reanalyses are quite close

to the observation due to assimilation. This added value

shows that the WRF model produced the expected small-

scale information, and therefore, had value-added dynamic

downscaling skills on the EASM.

8 Summary

Simulations for 23 years (1979–2001) of the East Asian

summer monsoon (EASM) were carried out using the WRF

model forced by three reanalysis datasets (i.e., NCEP-R2,

ERA-40, and JRA-25) and their ensemble mean (algebraic

average of the three reanalyses). The simulation results

using three different reanalysis forcings showed large

discrepancies in mean circulation and precipitation, inter-

annual variations in seasonal precipitation, and daily pre-

cipitation (Table 1; Figs. 2, 3, 4, 5). Diagnostic analysis

reveals that the differences in the large-scale moisture

forcing fields at the eastern, western, and southern

boundaries were responsible for the large discrepancies.

Surprisingly, the climatological mean water vapor con-

vergence into the model domain computed from ERA-40

was about 24% higher than that computed from the NCEP-

R2 reanalysis. The largest moisture uncertainty was found

over the Bay of Bengal, and the second-largest moisture

uncertainty appeared over the Philippine Sea.

As expected, the experiment forced by the ensemble LB

condition (CTL) reduced the simulation biases in clima-

tological summer circulation and precipitation, inter-annual

variation in seasonal precipitation, and in most cases of

daily precipitation in the East Asian region. In terms of the
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number of summers in which the model produced the

smallest biases in seasonal mean, the CTL outperformed all

sensitivity experiments in both seasonal circulation and

precipitation. This result indicates that the biases in RCM

simulation may be reduced using an ‘‘ensemble’’ average

of three or more reanalyses as LB forcing, which agrees

with the results obtained by Wang and Yang (2008) for a

specific summer.

The premise of using ensemble reanalyses as driving

fields is the consideration that the errors in different rea-

nalyses are independent of each other, and an ensemble

mean would potentially reduce the uncertainties by can-

celing out random errors. Evidence supporting this

hypothesis is that the ensemble mean precipitation of the

three reanalyses was closer to the observation in both cli-

matology and inter-annual variability than that of any

individual reanalysis.

Given the more accurate physical packages and higher

resolution, which allows for a better resolved representa-

tion of the physical processes in the WRF model compared

with the reanalyses model, the former exhibited better

performance in terms of climatological mean and inter-

annual variability in summer precipitation in both the

sensitivity and CTL experiments than those in the original

reanalyses. This added value shows that the WRF model

produced the expected small-scale information and there-

fore had good dynamic downscaling skills on the EASM.

Limited by resources, we carried out our experiments

with only one RCM, which was forced by three reanalyses

and their ensemble mean for 23 EASM cases. This type of

study should be repeated under different circulation

regimes with varying LB locations, different dynamic core

and physical parameterizations of the WRF model, and

even different RCMs driven by more reanalyses before

generalizing the findings of this work. However, as long as

the moisture flux through the LB has large uncertainty,

RCM solutions would have large uncertainties. Our addi-

tional studies show that the large uncertainty pertaining to

moisture among the three reanalyses existed in a large area

around the LB location of our model domain (figure not

shown). Thus, changing the LB location, the model setup,

or even the RCM would only change our results quantita-

tively. Further comparison of circulation between model

simulation and the corresponding reanalysis forcing

showed more favorable results, supporting the advantages

of the ensemble approach (figures not shown). The

ensemble method in this study is the algebraic average.

More reasonable ensemble methods will be considered in

future work, especially with regard to the moisture field of

the reanalyses, which may further reduce uncertainties.

In the EASM region, the primary LB uncertainties of

regional climate modeling are found in the moisture flux

over the ocean. Although the ensemble approach to large-

scale forcing partly reduces these uncertainties and

improves model performance, the application of improved

satellite data of three-dimensional moisture in future

reanalysis might be an essential step forward.
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