
Precalibrating an intermediate complexity climate model

Neil R. Edwards • David Cameron •

Jonathan Rougier

Received: 16 February 2010 / Accepted: 27 September 2010 / Published online: 13 October 2010

� Springer-Verlag 2010

Abstract Credible climate predictions require a rational

quantification of uncertainty, but full Bayesian calibration

requires detailed estimates of prior probability distributions

and covariances, which are difficult to obtain in practice.

We describe a simplified procedure, termed precalibration,

which provides an approximate quantification of uncer-

tainty in climate prediction, and requires only that uncon-

troversially implausible values of certain inputs and

outputs are identified. The method is applied to interme-

diate-complexity model simulations of the Atlantic

meridional overturning circulation (AMOC) and confirms

the existence of a cliff-edge catastrophe in freshwater-

forcing input space. When uncertainty in 14 further

parameters is taken into account, an implausible, AMOC-

off, region remains as a robust feature of the model

dynamics, but its location is found to depend strongly on

values of the other parameters.

Keywords Uncertainty � Probabilistic prediction �
Thermohaline circulation � Intermediate complexity

climate model

1 Introduction

The credibility of climate predictions rests on the treatment

of uncertainty. For a given forcing, uncertainty arises from

unknown model error, expressed as the discrepancy

between the predicted model state and the actual future

climate state. The two most important sources of error in

this context are structural error, caused by the imperfect

construction of the parameterisations, and parametric error,

caused by non-optimal calibration of model parameter

values. Errors in initial conditions can be treated as

analagous to parametric errors for our purposes.

An archetypal problem is the stability of the Atlantic

meridional overturning circulation (AMOC) often equated

with the Atlantic thermohaline circulation (THC), although

the AMOC forcing is not entirely thermohaline. Changes in

the AMOC would have major consequences for European

and global climate (Vellinga and Wood 2002, 2008) but

models simulate a wide range of possible future behaviour

(Gregory et al. 2005; Stouffer et al. 2006). Most models

tend to show a weakening of the present Northern-sinking

pattern of AMOC, as measured by the average rate of

sinking of water mass in the North Atlantic, in response to

anthropogenic carbon emissions. As part of a large-scale

comparison of modelling results, Gregory et al. (2005)

found a 10–50% weakening of the AMOC in 140-year

simulations with CO2 increasing to four times pre-indus-

trial levels. The AMOC is widely believed to be sensitive

to freshwater forcing, either by a stronger hydrological

cycle in a warmer climate or by ice-sheet melting, thus

much effort has gone into so-called ‘‘hosing’’ experiments

in which fresh water is added to the ocean in high northern

latitudes. Responses to hosing experiments are also widely

spread, with Stouffer et al. (2006) finding a reduction

between 9 and 62% in response to a not-unreasonable
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forcing of 0.1 Sv (1 Sv = 106 m3 s-1). Synthesising

results from 29 simulations performed by nine separate

models for the IPCC’s fourth assessment report (Meehl

et al. 2007), weighted by model skill, Schmittner et al.

(2005) found a weakening of the AMOC by 25 ± 25% at

year 2100.

The prediction of AMOC behaviour thus remains subject

to considerable uncertainty, indeed, the thorough elicitation

study of Zickfeld et al. (2007) revealed that leading experts

believe the range of likely behaviour to be considerably

wider than that found in models, partly because of known

structural deficiencies. The issue of possible overconfidence

in such elicitations is covered in the review by Kynn (2008)

who argues that any such bias can be expected to be small in

well-designed, real-world studies, particularly in predictive

situations and where subjects are experienced in making

probabilistic judgements.

It is important to realise that model ‘‘intercomparisons’’

do not amount to a quantification of structural model error

for three reasons, firstly most studies only consider a set of

‘‘best estimate’’ simulations, thus deliberately avoiding

lower probability outcomes and ruling out comprehensive

sampling of the distribution. Secondly, the models are usu-

ally structurally similar, potentially sharing certain types of

error, Thirdly, differences between models will, in practice,

be a mixture of structural and parametric components.

A convincing quantification of structural error in AMOC

predictions would require quantitative statistical connec-

tion between different simulators (Goldstein and Rougier

2004) and remains some way off. However, parametric

error may well be of at least comparable order of magni-

tude, as evidenced by the wide range of behaviour in sin-

gle-model ensembles (Edwards and Marsh 2005; Murphy

et al. 2004). Quantification of parametric error requires

knowledge of model behaviour throughout a typically

high-dimensional parameter space, and thus requires large

ensembles of runs. Systematic calibration of models

without rigorous quantification of errors can be referred to

as tuning. The intermediate complexity C-GOLDSTEIN

model (Edwards and Marsh 2005), part of the GENIE

model framework (Lenton et al. 2007), has been used as a

test-bed for a range of tuning techniques, firstly by

Edwards and Marsh (2005) who used a basic latin hyper-

cube sampling with 1,000 simulations, then by Beltran

et al. (2006) using a cutting-plane optimisation method,

Hargreaves et al. (2004) with an ensemble Kalman filter,

and Price et al. (2006) who used a multiobjective genetic

algorithm. We will use the same model in this study, but on

a different spatial grid (implying previous tuning exercises

may not be quantitatively relevant). The process of

Bayesian calibration applied to climate models has been

described in abstract terms by Rougier (2007), but the

practical application would be extremely challenging, even

for relatively simple models. The first step in a full cali-

bration is the expert elicitation of prior probability distri-

butions for all important parameters. The expert elicitation

of Zickfeld et al. (2007) involved full-day interviews with

12 experts, for only a handful of well-studied outputs, but

complex models can have hundreds of uncertain inputs.

Furthermore, expert elicitation of priors would ideally

involve additional quantitative analysis, rather than simple

questioning. The second step in Bayesian calibration is a

quantification of model behaviour across input space, the

final step being the incorporation of constraints from

observational data. Using the C-GOLDSTEIN model,

Challenor et al. (2006) proceeded to the second step in a

calibration of AMOC stability and found a surprisingly

high probability (around 30–40%) of an AMOC collapse

by 2100, possibly influenced by the narrow priors, which

were largely based on the posterior distributions found in

the tuning exercise of Hargreaves et al. (2004).

Our objective here is to present an alternative to full

calibration that greatly simplifies the procedure, by seeking

only to identify simulated outputs which can uncontro-

versially be classified as unphysical. Our example appli-

cation, which revisits the issue of AMOC stability in

C-GOLDSTEIN, serves to illustrate that even with such

weak constraints, statistical modelling of ensembles of

simulations can still reveal important features of model

behaviour.

2 Precalibration

In this section we start by describing—in general terms—

the statistical approach to model calibration, taking into

account the imperfection of our model. We contrast this

with a ‘lightweight’ alternative that we call ‘pre-calibra-

tion’, which makes fewer demands on our judgements. We

denote our climate model as g(�). Its inputs x 2 X are those

quantities about which we are uncertain: in a climate model

these would typically be sub grid-scale parameterisations

and flux-corrections. Uncertain initial conditions could be

treated similarly in principle, but we do not consider this

possibility further here. We refer to X as the input space,

and the set containing g(x) as the output space. The actual

value of the climate is denoted y, and the observed climate

is denoted z. Here we assume that the selected model

outputs correspond to measurable, observable quantities,

such that the model error could, in principle, be quantified

in terms of the differences z - y and y - g(x).

2.1 Calibration

The inputs to a complex model are often tuned in order to

improve the relationship between the model outputs and

1470 N. R. Edwards et al.: Precalibration of climate models

123



observations on the underlying system. ‘Calibration’ is

used to describe this process when performed within a

statistical framework; see, e.g., Goldstein and Rougier

(2004, 2006), or Rougier (2007) in the context of ensem-

ble-based climate prediction. The standard approach is to

assert the existence of some ‘best input’ x*, and to quantify

the model’s structural error in terms of the discrepancy

y - g(x*). The observational errors z - y also need to be

quantified, unless they are judged to be dominated by

structural error (Rougier 2007). The probability calculus

can then be used, in conjunction with a prior distribution

Pr(x*), to infer a conditional or posterior distribution

Pr(x*|z): the probability distribution of the best input con-

ditional on the observational data. If a point estimate is

needed, e.g. for further evaluations of the model, the value

E (x*|z) is a natural candidate. Goldstein and Rougier

(2009) discuss the ‘best input’ approach, and its founda-

tional and practical limitations.

The main challenge with this approach is to quantify the

structural error, y - g(x*). This is an uncertain vector, and,

assuming for simplicity that the model is judged to be

unbiased and the structural error is chosen to be Gaussian,

the quantification of structural error is in terms of a dis-

crepancy variance matrix. This variance matrix is an

essential part of the calibration process, and it would be a

serious mistake to proceed with the calibration of an

imperfect model, such as a climate model, without quan-

tifying it. Ignoring it completely is akin to setting the

variance to zero—asserting that the model is perfect except

only for uncertainty about the model parameters. This is

not acceptable for the current generation of climate models.

Climate scientists have only recently confronted the

challenge of specifying the structural error variance

(Murphy et al. 2007). Direct attempts are very challenging,

thus it is natural to ask whether alternative approaches can

be developed which allow for the existence of structural

error, and thus do not amount to assuming a model is

perfect, but are nevertheless simple enough to be tractable

and relatively uncontroversial in their basic assumptions.

This is the objective of ‘precalibration’. It is less powerful

than full calibration, in terms of its ability to provide

accurately quantified probabilistic predictions, but it is

considerably less demanding and also less subjective.

Precalibration does not attempt to quantify structural error

as such, but rather to make progress in analysing model

behaviour while allowing for the existence of uncertainty

and error in general terms.

2.2 Precalibration

The basic idea of precalibration is to rule out some choices

of x as candidates for x*. In order to do this, we begin by

identifying model outcomes that are sufficiently contrary to

established system behaviour that they can be relatively

uncontroversially classified as ‘non-physical’; for example,

a pre-industrial Arctic with no sea ice. If g(x) is judged

non-physical, we are prepared to assign a zero or near-zero

value to the probability that x is a good candidate for x*, in

other words, we deem x to be an ‘implausible’ input value.

We use the term ‘unphysical’ to refer to model solutions

that disagree strongly with observations rather than to

states of the world that could not exist. A collapsed AMOC

in a simulation of the modern climate, for instance, will be

classed as unphysical, although it could be a physically

sensible solution in certain paleoclimate regimes. Equally,

the relevant criteria could, for instance, be biological rather

than purely physical.

The attractions of precalibration are: (1) is it based on

simple and relatively uncontroversial criteria; (2) it does

not require us to specify a prior distribution for x*; and (3)

it does not make explicit or detailed use of the actual

observations z. Its limitation is that it does not permit us to

narrow our set of candidate values for x* to the extent that a

fully probabilistic calibration using the same evaluations

and observations might have done. Nevertheless, in prac-

tice there is a balance between the degree to which the

ruling-out becomes controversial, and the extent to which

the set of candidates for x* is reduced. Also note that

precalibration does not rule out a subsequent calibration

using z: there is no double-counting because we do not

have to consult z explicitly when classifying certain values

for g(x) as non-physical. Ultimately, then, precalibration

provides a relatively low-cost opportunity to learn about

the model inputs, which does not compromise further

analysis.

Ideally, the process of precalibration involves the fol-

lowing two steps.

1. Identify a region in the output space of the model g(�)
which is ‘non-physical’;

2. Map this region back into the input space,

N , x 2 X : gðxÞ is non-physicalf g: ð1Þ

In practice, we cannot compute g(x) for every x. Hence, we

define the implausibility of x, which is the probability that

g(x) is non-physical:

Imp xð Þ , Pr x 2 Nð Þ ¼ Pr gðxÞ is non-physicalð Þ: ð2Þ

With infinite resources Imp(x) would be either 0 or 1,

because we would simply evaluate g(x) and see whether or

not it is in N : Implausibilities between 0 and 1 arise

because in practice we are obliged to predict whether or not

g(x) [ N, based on an ensemble of model evaluations.

Therefore, the calculation of the relevant probabilities, and

hence of implausibility, is based on an ensemble and on a
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statistical model. As a result Imp(x) will not be totally

objective, because judgements are involved about where to

evaluate the climate model, and how to build the statistical

model. With sufficient evaluations the impact of these

judgements will be minor, but where resource constraints

limit the number of evaluations there will be a trade-off

between the transparency of the method, and the additional

information supplied through our judgements. In our

analysis below we have favoured transparency, but we are

fortunate to have a fairly large ensemble (more than a

1,000 model evaluations). Rougier et al. (2009) provides

an example of using more detailed judgements about the

model.

2.3 Projection

Implausibility scores any point x 2 X . However, if X is not

low-dimensional, it is not easy to convey implausibility

information. What we would really like to be able to

analyse and discuss is the effect of small subsets of the

inputs; for example, in our GENIE-I climate model below we

would like to be able to identify whether a combination of

low values of Atlantic–Pacific moisture flux, APM, and high

values of atmospheric moisture diffusivity, AMD (Table 1)

is likely to be non-physical, and discuss why this might be.

Suppose we are interested in the subset x1, ..., xm of the

inputs x1, ..., xn, spanning a subspace XA � X , where

xA = (x1, ..., xm) and x = (x1, ..., xn) = (xA, xB). We define

the projection of implausibility onto the subspace XA by

asserting that a given point xA 2 XA is implausible if for

every value of xB, we expect (xA, xB) to be implausible.

This notion, first suggested in this context by Craig et al.

(1997), can be expressed

Imp xAð Þ , min
xB

Imp xA; xBð Þ: ð3Þ

If xA is implausible, i.e., Imp(xA) is close to one, then

Imp(xA, xB) must be close to one for all xB, i.e. all values of

x compatible with xA are likely to be implausible.

To illustrate, imagine that x = (x1, x2) and that Imp(x) is

generally low, but has a ridge of high values running along

x1 = x2. In this case, according to (3), both Imp(x1) and

Imp(x2) are low, as we never see the ridge in the one-

dimensional projections. But because of the possibility of

the ridge, it would be wrong to say that all values of x1

were not-implausible. Therefore an implausible region in a

subset of the inputs is strong information, but the absence

of such a region does not rule out the possibility of an

implausible region in a superset of our subset. In practice,

we would hope to find implausible regions in small subsets

of the inputs, as these can be visualised graphically.

3 Our climate model

Our climate model, which we denote GENIE-I, comprises a

reduced physics (frictional geostrophic) 3D ocean model

coupled to a 2D energy moisture balance model (EMBM)

of the atmosphere and a dynamic-thermodynamic sea-ice

model. The ocean model includes realistic bathymetry, an

isoneutral and eddy induced mixing scheme and spatially

varying drag. The version used in this study is configured

on a 64 x 32 grid, with eight logarithmically spaced depth

levels in the ocean. In the work here, we use a seasonal

version of the model (seasonally varying insolation). See

Edwards and Marsh (2005) for a full description of

the model. This version of GENIE (also referred to as

Table 1 Inputs for the GENIE-I

model

The standard value of each input

is midway between the min and

max values (midway between

log(min) and log(max) for the

logarithmic inputs)
a Inputs are treated on a

logarithmic scale

ID Description Min Max

WSF Windstress scaling factor 1 3

OHD Ocean horizontal diffusivity (103 m2 s-1) 0.3 3.77

OVD Ocean vertical diffusivity (10-6 m2 s-1) 2 200

ODC Ocean inverse drag coefficient (days) 0.5 5

AHD Atmospheric heat diffusivity (106 m2 s-1) 1 10

AMD Atmospheric moisture diffusivity (106 m2 s-1) 0.05 5

WAH Width of atmospheric heat diffusivity profile (radians) 0.5 2

ZHA Zonal heat advection factor 0 1

ZMA Zonal and meridional moisture advection factor 0 1

SID Sea ice diffusivity (103 m2 s-1) 0.3 25

APM Scaling factor for Atlantic–Pacific moisture flux (Sv) 0 0.64

THP Threshold relative humidity, for precipitation 0.8 0.9

CRF Climate sensitivity, CO2 radiative forcing (W m-2) 4.77 8.77

SOC Solar constant (103 W m-2) 1.363 1.373

GMR Greenland melt rate due to global warming (10-3 Sv �C-1) 10 30

LRL Logit of velocity relaxation 3 19
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C-GOLDSTEIN) is orders of magnitude less computa-

tionally expensive than most other 3D ocean-climate

models, but still retains the nonlinear dynamics of the

AMOC, and has thus proven a useful model for demon-

stration of climate model calibration techniques (Har-

greaves et al. 2004; Beltran et al. 2006; Price et al. 2006).

However, calibration will depend strongly on the resolu-

tion. The previous studies had a lower resolution in lon-

gitude, and a constant area for all gridcells, implying

different latitudinal distribution of gridpoints with higher

equatorial and lower polar resolution. Nevertheless, the

choice of input parameter ranges is based on these earlier

studies, in particular Edwards and Marsh (2005). In keep-

ing with the philosophy of precalibration, the upper and

lower bounds are intended to exclude only uncontrover-

sially extreme values.

The GENIE-I inputs are given in Table 1. Many of the

inputs are common to other models but some require

explanation: the drag parameterisation replaces all nonlinear

and diffusive momentum effects with a simple linear friction

term for which the inverse coefficient, ODC, has the

dimensions of time; this frictional formulation leads to

excessive dissipation of momentum, which is countered by a

scaling of the windstress by a factor WSF, to give realistic

wind-driven flow; the single-layer atmosphere lacks

dynamical eddies, thus atmospheric transport is perfomed

by diffusion according to fixed latitudinal profile with

amplitude AHD and width WAH for heat, and a constant

amplitude AMD for moisture. There is also advection by

fixed wind fields, scaled by coefficients ZHA and ZMA, but

heat is only advected zonally. Modelled atmospheric

moisture transport from Atlantic to Pacific is relatively

weak, but is critical for maintaining the AMOC, so we add a

constant Atlantic to Pacific moisture transfer, scaled by the

parameter APM. Above a threshold, THP, excess moisture

is rained out of the atmosphere instantaneously (in other

versions of GENIE, a small timelag is applied). Formally,

the time-derivative of velocity is neglected, but at each

timestep the calculated velocity is relaxed back to the value

at the previous timestep at a rate controlled by parameter

LRL.

4 Sequential design

Our intention is to evaluate the parameter-space of GENIE-I,

in order to identify, if possible, low-dimensional regions

that are implausible. These regions will help us to under-

stand GENIE-I better, and make our subsequent use of the

model more efficient, for example by avoiding model

evalutions at implausible input values.

In a pilot study we discovered that the GENIE-I solver

failed to complete the spin-up at some input values. Such

numerical failures could have two possible causes, either

the discrete numerical solver has failed to approximate the

correct, physically reasonable solution to the continuous

model equations, or the solution to the continuous model

equations for the given inputs is itself unphysical, featuring

extreme values which cause the solver to fail. The dis-

tinction between these possibilities may be important for

subsequent improvements to the model and solver, but at

this stage of the analysis we are concerned with locating

implausible input values for a given configuration of the

model and solver, thus we treat the failure of the solver to

spin-up at x as prima facie evidence that g(x) would be

non-physical. In other words, Cc � N , where C is that part

of the input space where the solver completes, and Cc is its

complement. Further examination (see below) revealed that

most of the failures were ultimately physical in origin

although in general applications it may not always be

practical to determine whether the origin of failure is

numerical or physical.

We divided our budget of approximately 2000 evalu-

ations into two parts. In the first part we used a space-

filling design over the whole of the input space. We used

the result of this ensemble to construct a statistical model

for Pr x 2 Cð Þ. We find that 341 of the evaluations in this

ensemble of 1,000 evaluations completed. For the second

ensemble we used this statistical model to select evalua-

tions that had a high probability of completion. 799 out of

this second ensemble (of 1,087) completed. It is important

to appreciate that although 2,087 evaluations may seem

like a lot, they are very sparsely distributed through a 16-

dimensional space, which has 216 = 65,536 corners.

Despite our ensemble, we remain uncertain about whether

x 2 C, for an arbitrary x 2 X .

We now describe our approach in more detail.

4.1 First design

Design for computer experiments is a well-developed area;

see, e.g., the review paper of Koehler and Owen (1996), or

the textbook of Santner et al. (2003). The standard

approach for an initial design is to use a space-filling

design such as a maximin Latin Hypercube. This gives

reasonable coverage of the input space, providing good

information about the main effect of each input, and some

information about the low-order interactions.

A maximin Latin Hypercube treats all of the

inputs equally. We make one modification, to prioritise

the inputs which we judge to be important, termed the

‘active’ inputs (Craig et al. 1997, 2001). We identify OHD,

AHD, AMD, WAH, ZHA, and ZMA as likely to be active

inputs for our evaluations of GENIE-I. These were chosen as

they control important transports of heat/moisture in the

ocean and atmosphere (ZHA, ZMA: atmospheric advection;
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AHD, AMD: atmospheric heat and moisture diffusion; OHD:

ocean heat diffusion). We would like our design to be sen-

sitive to interactions among these inputs in particular.

Therefore, having generated a 1,000 9 16 maximin Latin

Hypercube, we examine all
16

6

� �
¼ 8; 008 sets of six col-

umns, to find the set with the best properties for identifying

interactions. We quantify this using the determinant of the

6 9 6 correlation matrix. We assign our six active inputs to

the six columns with the largest determinant; crudely, if there

was a linear combination among the columns the determi-

nant would be zero, and this is the kind of design we would

like to avoid. This type of assignment of inputs to columns is

a simple way to prioritise some of the inputs on the basis of

weak judgements about which inputs will be active. Bayes-

ian experimental design (see, e.g., Chaloner and Verdinelli

1995) allows for more detailed judgements, where they exist.

Note that while the choice of active inputs may be more

controversial than other choices in the precalibration pro-

cess, it can be verified a posteriori, see Sect. 6.1, and is

designed purely to aid the statistical modelling process. The

conclusions should not be significantly affected.

4.2 Modelling the probability of completion

We evaluate GENIE-I at the 1000 values for x, of which 341

complete. We would like to map the relationship between

x and completion, in order to avoid performing evaluations

with a high chance of failing to complete in the second part of

our experiment. For simplicity and transparency, we use

standard statistical tools for this task, namely logistic

regression with stepwise variable selection, implemented in

the Statistical Computing Environment R (R Development

Core Team 2004), using the stepAIC function (in the

MASS library, see Venables and Ripley 2002). There are

some technical concerns about applying logistic regression

to the output of a deterministic model such as GENIE-I (dis-

cussed in Rougier et al. 2009), but we do not consider these

to be critical for what is effectively an exploratory analysis.

First, we transform the inputs OHD, OVD, ODC, AHD,

AMD, and SID, by taking logarithms. Then we map all

inputs onto the range [-1, 1] using the minimum and

maximum values in Table 1. This range makes odd and

even functions orthogonal with respect to a uniform

weighting function, improving the selection of terms in the

stepwise selection. We initialise our statistical model with

a constant and linear terms only. Then we grow the sta-

tistical model using stepwise selection on all quadratics,

cubics, and two- and three-way interactions (see, e.g.,

Draper and Smith 1998, ch. 15). Our chosen statistical

model maximises the Akaike Information Criterion (AIC).

Fifty-five terms are added using this approach, and the

linear term in LRL is deleted (indicating that LRL has little

influence on completion), so that there are no terms in LRL

in the resulting statistical model; the SOC input is also

marginal. The first interactions selected (i.e. most impor-

tant) are WAH:AHD, ZMA:OHD, ODC:OHD, AMD:AHD,

AMD:OHD, ZHA:AHD, ZMA:AHD, and ZHA:WAH. In

Fig. 1 we present a simple visual summary of the way in

which the inputs interact with each other. We construct a

undirected graph where the vertices are the inputs, and

edges indicate interactions. We do not show all the inter-

actions, since that would be hard to read, instead we show

the top interactions according to the order in which they are

selected. In the absence of a thorough sensitivity analysis

of the form of the graph to the details of the statistical

model fitting process, the graph must be interpreted with

great caution. Nevertheless, where parameters are multiply

connected, this suggests that they are relatively important

in the determination of completion, and where parameters

are linked, there may be nonlinear interactions which are

also important. Conversely, parameters which are isolated

or do not appear at all may have relatively little influence.

The completion graph can be interpreted in terms of the

analysis of failure modes. In an analysis of 100 randomly

selected failed simulations, 98 failed apparently as a result

of extremely low temperatures, below -150�C. Of these,

12 had high values of AHD and WAH, apparently leading to

numerical failure via diffusional instability in the atmo-

sphere. All but 18 of the remaining failures appeared to

result from insufficient atmospheric heat transport to the

poles, with low values of some or all of the parameters

Fig. 1 Graph of the main relationships between the inputs for

determining the probability of completion. An edge between two

inputs indicates a two-way interaction. Three edges to a star indicate

a three-way interaction and all three two-way interactions
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WAH, AHD, AMD and ZHA. In the graph, a high-diffusion

failure mode involving WAH, AHD, is visible around the

upper-right star, this region of the graph also contains a

low-diffusion failure mode involving WAH, AHD, AMD

(which implies latent heat transport through moisture

transport) and ZHA, the latter two having no direct con-

nection, perhaps because zonal heat advection can only act

on poleward heat advection indirectly, via zonal redistri-

bution of heat, e.g. between land and ocean regions. Such

nonlinear effects connecting atmosphere and ocean (via

ZMA–OHD) and involving heat and moisture fields, appear

in the lower left of the graph. Apart from this link, ocean

parameters are surprisingly isolated at the top and bottom

of the graph, suggestive of a relatively weak influence on

completion. This may be related to a better initial con-

straint on ocean parameters, or the better conservation of

properties in the ocean part of the coupled system (where

heat is conserved in the interior), or a less heavily pa-

rameterised model than the simple EMBM atmosphere, or

simply a better solver, and hence a lesser role in failures.

There is no obvious evidence for high fluid-velocity Cou-

rant–Friedrichs–Lewy (CFL) failures (e.g. near-limiting

velocities prior to numerical failure), and this failure mode

was not identified as important, again probably reflecting

conservative input parameter ranges.

As a form of statistical model criticism, we can use the

resulting statistical model to compute a point prediction for

Pr x 2 Cð Þ at any x 2 X . As a simple guide to the quality of

our statistical model, the following table shows the pre-

dicted and actual outcomes for the ensemble, based on our

statistical model and a threshold of 50%:

x 2 Cc x 2 C Sum

Pr x 2 Cð Þ\0:5 617 40 657

Pr x 2 Cð Þ� 0:5 42 301 343

Sum 659 341 1; 000

ð4Þ

This shows a misclassification error for acceptance,

defined as the probability that a point above our threshold

fails to complete, of 42/343 &12%, and a misclassifi-

cation error for rejection, defined as the probability that a

below-threshold point would have completed, of 40/657

&6%. These are much better than could be achieved from

a more limited knowledge of the ensemble. The case of

no predictive knowledge other than the mean, for exam-

ple, analagous to tossing a biased coin with probabilities

341/1,000 and 659/1,000, would give misclassification

errors of 66 and 34% for acceptance and rejection

respectively.

4.3 Second design

We use our statistical model for Pr x 2 Cð Þ to assess each

candidate for our second design. We set a threshold m and

keep the candidate x if Pr x 2 Cð Þ� m. There are two errors

we can make with this approach. First, we can screen out

an x which would have completed. Second, we can fail to

screen out an x which does not complete. As m decreases

from one to zero we trade the probability of the first error

(which is one when m = 1) against the probability of the

second (which is one when m = 0). Where we set m will

depend on the cost of the two types of error. We regard the

the first error as the more critical, and we aim to choose a

value for m that makes the first error roughly half as

probable as the second. As shown in the table in (4) the

choice of m = 0.5 satisfies this criterion, based on the

results of the first ensemble. About 34% of the evaluations

get past the threshold, so if we generate an initial design of

1,000/0.343 &2,915 over the whole of X then after

screening we should end up with about 1,000 evaluations in

our second design, favouring C.
We follow the same steps as before, generating a

2,915 9 16 maximin Latin Hypercube, and assigning the

active inputs to the best subset of six columns. Then we

predict Pr x 2 Cð Þ for each candidate value for x in turn, and

keep those for which this is not \0.5. The result is 1,087

evaluations in the second ensemble. After evaluating them,

we find that 799 complete, or 74%.

4.4 Transient runs

At this stage of the experiment, we have 2087 evaluations,

of which 1,140 complete their spin-up. We now run each

spun-up evaluation forward using 1%/annum compound

increase in CO2 from 1850 to 2100: in the case of GENIE-I

this is represented as a direct increase in radiative forcing.

At this stage we lose another 94 evaluations (39 from the

first design and 55 from the second), for which the solver

failed to handle the transient behaviour; again, we classify

these as non-completers. This leaves us with 1,046 com-

pleted evaluations after both the spin-up and transient

phases.

5 Implausibility analysis

5.1 Non-physical ranges

The precalibration outputs and ranges for the GENIE-I

model are given in Table 2. Note the deliberately wide

‘physical’ ranges. We determined these limits by consi-

dering what we would class as non-physical for our GENIE-I

model. Although we treated the five target outputs indi-

vidually, it turns out that there is a dominant non-physical

mode, which is the absence of positive AMOC cell. In this

case the maximum Atlantic streamfunction will be too low;

the temperature in the upper Atlantic will be too low; and
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the Atlantic will be too fresh relative to the Pacific, as the

interbasin salinity contrast is known to be closely associ-

ated with the northern-sinking positive AMOC state, pre-

sumably because denser, high-salinity water is prone to

sink in the North Atlantic. Table 2 also shows the per-

centage of evaluations in our ensemble that are too low or

too high in at least one of the years 1850, 1900, 1950, 2000.

In total, 23% of our 2,087 evaluations satisfy all five ran-

ges, which is to say that 77% are classified as non-physical.

5.2 Statistical modelling

We now focus on a second set of probabilities, namely

Imp(x), as defined in Sect. 2.2. Rather than construct a

single statistical model, we choose to construct two, and

combine them using the rules of probability:

Imp xð Þ ¼ Pr x 2 Nð Þ
¼ 1� Pr x 2 Ncð Þ
¼ 1� Pr x 2 N c

; x 2 Cð Þ
¼ 1� Pr x 2 N cjx 2 Cð Þ Pr x 2 Cð Þ

ð5Þ

where the introduction of x 2 C in the third line follows

from x 2 N c ) x 2 C. and ‘|’ denotes ‘conditional upon’.

The last line follows from the definition of conditional

probability. This decomposition allows us to construct the

full implausibility from our model of completion and from

the ensemble of completed runs.

The statistical model for Pr x 2 Cð Þ is similar to the sta-

tistical model we have already constructed from the first

part of our design (see Sect. 4.2). We refit the statistical

model, with the same choice of regressors, but now using

the full ensemble of 2,087 evaluations. The incomplete

evaluations in the spin-up of the second ensemble are likely

to be particularly informative, because they contradict the

prediction of the model fitted on the first ensemble alone.

The misclassification rate rises to 15%, but a rise is to be

expected because we do not re-select the regressors in the

model, as a precaution against over-fitting. If the mecha-

nism that triggers a solver failure in the transient phase

were different from that in the spin-up, it would tend to

cause a rise in the misclassification rate, but we have no

evidence that this has occurred in our case.

The statistical model for Pr x 2 N cjx 2 Cð Þ is fitted only

on the 1,046 evaluations which complete, in the same way

as described in Sect. 4.2. The misclassification rate of the

statistical model is 0.5%. Figure 2 shows the graph of the

main relationships between the inputs, after building our

statistical model. Perhaps not surprisingly, this graph is

easier to interpret than the graph for simulation failures.

There is a broad separation between ocean parameters on

the right and atmosphere parameters on the left, with

parameters in the centre of the graph being of the greatest

significance for ocean–atmosphere interaction and exhib-

iting the largest number of interactions in the graph, six for

AMD, five for APM and OHD. Ignoring CRF the lower left

region comprising THP, ZMA, AMD and APM all control

moisture flux, whereas the upper right four parameters

control heat flux. The graph reveals which parameters are

most important in ocean–atmosphere interactions control-

ling the AMOC (the principal unphysical mode) and con-

firms the importance, but relative isolation, of ocean drag

(ODC), and of the precipitation threshold (THP) and

moisture advection (ZMA) in the atmosphere, parameters

which it can be tempting to ignore in trying to understand

the model.

We compute the implausibility using two statistical

models combined, rather than just one (which we could

Table 2 Precalibration ranges for the climate values corresponding to the GENIE-I outputs

Climate quantity ‘Physical’ % too

Min Max Low High

Maximum Atlantic streamfunction (Sv) 10 35 24 31

Mean temperature in the upper Atlantic (�C) 6 12 6 7

Mean temperature in the deep Atlantic (�C) 2 8 22 9

Diff. in mean salinity between the upper Atlantic and the upper Pacific (PSU) 0 1.5 22 2

Difference in mean temperature between the upper Atlantic and the upper Southern Ocean (�C) -1 9 17 0

The final two columns show the percentage of completed runs that lie outside the range

The separation between upper and deep water is at 1,158 m depth, the Southern Ocean includes all point south of the tip of South America,

Atlantic and Pacific sectors include all points in these sectors north of the Southern Ocean

Fig. 2 Graph of the main interactions between the inputs for

determining the probability of a not-unphysical output, among

evaluations that complete. See the caption of Fig. 1 for details
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have constructed using the 481 not non-physical outcomes

from 2,087 evaluations), because this allows us to attribute

high implausibility consistently between the two possible

causes: a failure to complete at x or, if complete, a non-

physical outcome. An additional advantage is that the

statistical model for Pr x 2 N cjx 2 Cð Þ is more focused than

the model for Pr x 2 N cð Þ, being constrained to a smaller

region of the input space, and being descriptive of a sim-

pler outcome. This makes it easier to fit the statistical

model (cf the low misclassification rate), and—we hope—

easier to interpret the result.

6 Further analysis using implausibility

At this stage we have derived a statistical model for

Imp(x) for all values of the input vector x in our input

space. This function is many orders of magnitude cheaper

to evaluate than the original numerical model, but its form,

as a multidimensional function of its inputs, potentially

contains valuable information about the behaviour of the

underlying model. To illustrate how the implausibility

function may be interrogated to obtain such information,

we now consider three linked examples. First we order the

parameters by importance, then we project the implausi-

bility onto the four most important parameters, then we

turn to the existence of the cliff-edge AMOC catastrophe.

6.1 What are the important inputs?

A simple scalar measure can be used to summarise the

importance of each input in determining implausibility.

Here, an input is deemed important if it can cause a large

change in implausibility. Note that this differs from the more

usual interpretation, in which an ‘important’ input is one

which can cause a large change in g(x), as identified in a

sensitivity analysis. Therefore, for each input in turn we take

a sequence of values from small to large, and for each value

we compute the implausibility over a space-filling design in

the other inputs. We then take the mean absolute value for

the changes in these implausibilities as the value increases,

and summarise these in a single mean value for each input.

The result is shown in Fig. 3. The two inputs AHD and

AMD are the most important, followed by WAH and OHD.

The first five inputs were among the six specified as

‘active’ inputs in our experimental design, providing an

a posteriori verification of their importance. Indeed the

ordering suggests that the quantitative importance of inputs

in controlling implausibility is primarily determined by

their effect on meridional heat and moisture transport. Note

that the effect of each input is measured relative to its

assumed input range, in other words to our uncertainty

about its best input value. In the heavily parameterised,

largely diffusive EMBM atmosphere of GENIE-I, the weakly

bounded diffusivity amplitudes, AHD and AMD which

strongly control heat and moisture transport, thus appear as

the dominant parameters. The next six inputs also play

significant roles in global heat or moisture transport, the

ocean drag coefficient ODC by exerting a frictional drag on

the large-scale ocean transport, and the ocean vertical

diffusivity OVD via its effect on the AMOC. The remaining

eight parameters generally have only indirect effects on

global-scale transports, with the exception of ZHA which

was amongst our six ‘active’ inputs but, unlike ZMA, does

not affect meridional transport, and furthermore is con-

strained to a small maximum value relative to the diffusive

transports, possibly explaining its relatively minor role in

implausibility.

6.2 Implausibility of the four most important inputs

We now project implausibility onto the four most impor-

tant inputs identified in Sect. 6.1. Figure 4 shows a four-

way layout. The lightest areas have implausibility of\5%,

while the darkest areas have implausibility of [95%. The

difference between the left- and right-hand panels shows

that low values of WAH are more implausible than high

values, and the lack of difference between the top and

bottom panels shows that changing OHD does not alter this.

Within the right-hand panels, very large values of AHD are

implausible for all values of AMD. As AHD and WAH both

affect the form of the atmospheric thermal diffusivity as a

function of latitude, implausibility at high AHD and WAH

could be related to high-diffusivity numerical breakdown.

Nevertheless, even though AHD and WAH are very closely

related, their effects on implausibility are not trivially

related. The lowest values of all four transports, in the

bottom left of the upper left plot, also show high implau-

sibility, possibly related to the unphysical polar conditions
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Fig. 3 Scalar summary of the importance of each input in determin-

ing implausibility, ordered from most to least important (see text for

details). The value indicates the degree to which a change in the value

of the input changes implausibility over the input space as a whole
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identified previously for low diffusion. The interaction

between heat and moisture diffusivities AHD and AMD is

not simple: starting from the saddle point in the lower left

plot, a reduction in AMD increases implausibility but can be

offset by either an increase or a decrease in AHD or, to a

lesser extent, a decrease in ocean heat diffusivity OHD. It

could be relevant that increased moisture transport implies

increased latent heat transport but, on the other hand,

meridional moisture and heat transport have opposing

direct density effects on driving the thermohaline circula-

tion. Alternatively, the nonlinear features of the plot may

be related to competition between the five different phys-

icality targets. We do not attempt to rationalise the form of

the implausibility surface in any more detail, since our

objective was simply to illustrate the potential for mapping

out its behaviour in multiple dimensions. In general, the

surface will have some complicated dependence on all 16

inputs. In the next section, we focus on a more tractable

projection onto only two dimensions.

6.3 The AMOC ‘cliff-edge’ catastrophe

We now consider the question of the existence of a ‘cliff-

edge’ AMOC catastrophe in freshwater forcing input

space, as identified by Marsh et al. (2004), by considering

projections of implausibility onto relevant subspaces of the

inputs. Figure 5 compares a cross-section through

Imp(x) with the relevant projection Imp(xA) from (3). In the

left-hand panel of Fig. 5 APM and AMD have been varied in

a grid, with the other 14 model inputs held fixed at their

standard values. This picture tells us about GENIE-I’s

response on one 2-dimensional plane through the 16-

dimensional model input space. The ‘cliff-edge’ indicates

that on this plane there is a sharp division between settings

of APM and AMD for which the model’s response is non-

physical, and those for which it is not. This panel is

somewhat comparable to the top-left panel of Fig. 5 of

Marsh et al. (2004). In that analysis the only indicator of

non-physicality was the absence of a strong positive

AMOC. The boundary ran bottom-left to top-right. Our

figure shows that low values of AMD also cause non-

physical outcomes. In comparing these two results it is

natural to hypothesise that the additional non-physical

region in our analysis is due to the additional indicators of

non-physicality that we include. It is also worth noting that

this low AMD region corresponds to the strongest AMOC

region in the plot, thus it presumably corresponds to

the high-AMOC failures. This could occur where low
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Fig. 4 Implausibility projected

onto the four most important

inputs, as judged from Fig. 3;

the darker areas are more

implausible, and the contour
lines are at 5, 25, 50, 75, and

95%. Each panel shows AHD
and AMD, while the four panels
comprise a two-way layout of

OHD (top low, bottom high) and

WAH (left low, right high). Note

that both AHD and AMD are

modelled on a logarithmic scale.

Units are given in Table 1
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atmospheric heat transport is being compensated by the

ocean. Also it may be significant that the lowest value for

AMD used by Marsh et al. was 5 9 104 m2 s-1, while the

different resolution and lack of seasonality could also have

a bearing on the failure modes.

The lefthand panel of Fig. 5 tells us nothing about the

model input space as a whole. The righthand panel, on the

other hand, does exactly this, as it shows the projected

implausibility, for APM and AMD, which involves projecting

through the other 14 model inputs. Minimising over the

other 14 model inputs cannot result in an implausibility that

is larger than that when the other 14 are at the standard

values, hence no point in the righthand panel can be darker

than in the lefthand panel. The result of projection is that

much of the implausible region disappears: for low mois-

ture diffusivity AMD and high Atlantic–Pacific moisture

flux APM, compensating adjustments in other parameters

can give rise to physical model output. On the other hand,

the low APM, high AMD region, corresponding to the

AMOC cliff-edge, shifts towards more extreme values, but

otherwise remains intact. In this region, even wide-ranging

adjustments in 14 other parameters apparently cannot

produce physical output.

To illustrate the connection between the cliff-edge and

the AMOC, Fig. 6 shows the AMOC in three simulations

corresponding to the crosses marked in Fig. 5 along a

transect across the cliff-edge. At each point, the values of

the remaining 14 inputs are chosen to minimise the

implausibility Imp(x). As expected, in the uppermost panel,

corresponding to the implausible region in the projected

APM-AMD space, the AMOC is in a fully collapsed state.

The middle panel represents an intermediate point on the

cliff edge itself, at which the least implausible state, as

shown, has a visible, but very weak positive AMOC cell in

the deep Atlantic. The lower panel shows a location which

is plausible even at standard values of the remaining

parameters, where the least implausible inputs give a strong

positive AMOC.

Note that the Figs. 4 and 5b involve non-trivial com-

putation, as the calculation of Imp(x), from (3), requires a

numerical minimisation of the statistical model for

Imp(x) over all the input dimensions not shown in the

figures. The projection code divides the inputs into three

types: the ones we are projecting onto, other active inputs,

and remaining inputs. The ‘other active’ inputs are

explicitly minimised over, while the remaining inputs are

spanned with a space-filling design, (the Sobol sequence,

implemented in Würtz 2007). The minimum over the

points in the space-filling design is taken to be the mini-

mum over the whole input space. Therefore, our implau-

sibility values are upper bounds, but sensitivity tests

suggest that our results are relatively accurate.

7 Summary and discussion

Perturbed physics experiments (PPEs) allow us to account

for our uncertainty about the values of the inputs to a

complex model, such as an EMIC. Typically we express

our uncertainty marginally, input-by-input, for example in
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Fig. 5 The probability that the model output is non-physical (Imp(x))

shown for combinations of the Atlantic–Pacific moisture flux, APM
(Sv), and the atmospheric moisture diffusivity, AMD (910 6m2 s-1).

a All other model inputs set to their standard values, see Table 1.

b Implausibility, projected through the other model inputs, using Eq.

3. Darker shading indicates a larger probability. Crosses indicate the

points plotted in Fig. 6
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terms of ranges and simple transformations, as we have

done in our example (Table 1). A problem can arise in this

type of experiment: the model’s solver might break down

at some combinations of input values. Typically the solver

will be tuned to perform well in the region centred on the

model’s standard input values. It may also be robust against

one-input perturbations; e.g. axial designs in which each

input in turn is taken to its minimum and maximum values,

with all other inputs at their standard values (see, e.g.,

Murphy et al. 2004). but it may break down when several

inputs are varied simultaneously.

This is exactly the problem we faced with our GENIE-I

EMIC, where combinations of extreme (and even not-so-

extreme) input values caused the model to fail to complete

its spin-up. In this situation we can write a more robust

solver (e.g. take smaller time-steps or make more funda-

mental changes to the model), or we can treat the solver

failure as informative for the model. After investigation,

we adopted the latter course, and classified those input

values for which the solver failed implausible (for this

particular model setup). This was a particularly convenient

choice in our analysis, but it is also a natural generalisation

of the current practice of only running complex models at

their standard input values, which amounts to treating all

non-standard choices of the input values as implausible

(i.e. not worth evaluating). Our approach is a generalisation

because we treat the standard value as only one point

within a set of not-implausible input values. Our approach

is best understood from the standpoint of calibration, which

attempts to find the ‘best input’ value x*. Precalibration is

concerned with reducing the set of possible candidates for

x*. In either case, we must begin by fixing a definition of

our model and its solver, and deciding which parameters

are available as inputs. These choices could be revisited if

solver failure turns out to be a major issue, as indeed could

the form of the parameterisations themselves. Indeed,

learning about model parametric error would ideally con-

stitute part of an iterative process to modify both solver

design and model parameterisations. The treatment of non-

completions is liable to be even more important in more

expensive models and alternative approaches could be

envisaged, such as including timestep length as a variable

parameter. In any case, it will be desirable to avoid

excessive non-completions, which are largely wasted

simulations.

One of the difficulties of PPEs is that it can be hard to

specify our prior uncertainty about the best value of the

model inputs. This is often because of difficulties with the

operational definition of the model inputs, a problem that

becomes more acute in lower resolution models. Ideally,

we would have sufficient observations that, in a statistical

calibration, our quantification of prior uncertainty would be

relatively unimportant; we could then use wide intervals

and simple distributional shapes (e.g., triangular, Beta,

Gamma). Unfortunately, this is seldom the case with cli-

mate models, where the observations, though abundant, are

strongly correlated, so that the likelihood function, i.e. the

region of ‘‘good’’ inputs to the model, tends not to con-

centrate, but to have long ridges (Rougier 2007). Another

problem is that this calibration requires us to quantify a

measure of our model’s structural error: this is very

challenging.
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In this paper we have proposed a simpler version of

calibration, which we term precalibration, based on the

notion of implausibility (Craig et al. 1997). Precalibration

is a low-cost way of ruling out input values that give rise to

non-physical outcomes, and requires us only to specify

what outcomes we deem to be non-physical. We use our

ensemble to construct a statistical model that allows us to

compute the probability that any particular input value will

give rise to a non-physical outcome. It is important in this

case that our ensemble explores the model’s input space in

an efficient way, so that we get as much information as

possible from our finite set of evaluations. In this paper we

have used space-filling designs from the statistical field of

Computer Experiments, and we have used sequential

design to avoid evaluations likely to be non-physical.

The extent to which the physicality criteria are uncon-

troversial will, in practice, be a compromise against the

extent to which the candidate region for x* is reduced.

Tighter bounds of physicality imposed on the model output

would, in general, reduce the size of the region of not-

implausible inputs, but make the ruling out process corre-

spondingly more controversial. Similarly, although prior

distributions for inputs are not required, narrower input

ranges may lead to better resolution of the output space, but

would imply more controversial a priori decisions. In

principle, however, the objective is only to remove regions

with zero probability (which implies that precalibration

should not distort any subsequent calibration). This may be

highly pertinent in probabilistic risk assessments which are

driven by the tails, such that ‘almost implausible’ inputs

are associated with high costs. Multiple iterations of pre-

calibration (which may either increase or decrease the

implausible region) could be highly valuable in such cas-

eses since the exercise focuses implicitly on defining the

edges of acceptable space. To proceed to a probabilistic

risk analysis, however, requires explicit weighting of

outcomes.

In our illustration with the GENIE-I EMIC we have used

implausibility to identify implausible choices for various

selected inputs. In so-doing we have generalised the anal-

ysis of Marsh et al. (2004), which considered APM and AMD

only, and we have shown that, in our model, the existence

of a cliff-edge catastrophe is robust to the inclusion of

uncertainty about more model inputs, but that the location

of the cliff-edge depends strongly on other parameters. It is

worth stressing that our analysis uses an ensemble of model

evaluations which is completely general; which is to say

that many other questions can also be addressed using the

same ensemble. Given that ensembles are expensive and

time-consuming to generate, we would strongly recom-

mend the use of statistical experimental design techniques

to construct general purpose ensembles. These can then be

used to address specific questions using the techniques we

have outlined here. As an example, Holden et al. (2009)

apply precalibration to the estimation of glacial and future

climate sensitivity and changes in terrestrial carbon stor-

age. Their analysis demonstrates that the application of

weak constraints on model inputs and outputs, even in two

contrasting climate states, still allows for a wide range of

predicted behaviour. For a detailed analysis, more statisti-

cally intensive approaches are also possible (see, e.g.

O’Hagan 2006; Rougier and Sexton 2007; Rougier 2008).

However, these require more specialised statistical input

and more computing resources. But an initial exploratory

analysis using implausibility is inexpensive and may often

prove fruitful.
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