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Abstract Extreme climate events have been increasing

over much of the world, and dynamical models predict

further increases in response to enhanced greenhouse

forcing. We examine the ability of a high-resolution nested

climate model, RegCM3, to capture the statistics of daily-

scale temperature and precipitation events over the con-

terminous United States, using observational and reanalysis

data for comparison. Our analyses reveal that RegCM3

captures the pattern of mean, interannual variability, and

trend in the tails of the daily temperature and precipitation

distributions. However, consistent biases do exist, includ-

ing wet biases in the topographically-complex regions of

the western United States and hot biases in the southern

and central United States. The biases in heavy precipitation

in the western United States are associated with exces-

sively strong surface and low-level winds. The biases in

daily-scale temperature and precipitation in the southcen-

tral United States are at least partially driven by biases in

circulation and moisture fields. Further, the areas of

agreement and disagreement with the observational data

are not intuitive from analyzing the simulated mean sea-

sonal temperature and precipitation fields alone. Our

evaluation should enable more informed application and

improvement of high-resolution climate models for the

study of future changes in socially- and economically-rele-

vant temperature and precipitation events.

1 Introduction

Extreme weather events—such as heat waves, severe daily

temperatures, and severe precipitation episodes—can sub-

stantially impact physical infrastructure (e.g. Brody et al.

2007; Penning-Rowsell and Wilson 2006), human health

(e.g. Gosling et al. 2007; Poumadere et al. 2005), agri-

cultural production (e.g. Ferris et al. 1998; Lobell 2007;

White et al. 2006), and energy supply and demand (e.g.

Smoyer-Tomic et al. 2003). Such events are responsible for

billions of dollars in economic damage, thousands of

injuries, and hundreds of deaths annually in the United

States alone (e.g. Easterling et al. 2000; Kunkel et al. 1999;

Parry et al. 2007). Extreme temperature and precipitation

regimes have been changing in recent decades (e.g.

Christidis et al. 2005; Easterling et al. 2000; Karl and

Knight 1998; Parry et al. 2007). For instance, in the United

States, the occurrence of hot events has generally

increased, while the occurrence of cold events has gene-

rally decreased (e.g. DeGaetano and Allen 2002; Easterling

et al. 2000; Karl and Knight 1998; Kharin and Zwiers

2000; Meehl et al. 2005). Likewise, the fraction of total

precipitation contributed by the wet tail of the daily pre-

cipitation distribution has been increasing in the United

States (e.g. Easterling et al. 1999, 2000; Groisman et al.

2005).

Dynamical models consistently project further changes

in the tails of the daily temperature and precipitation dis-

tributions in response to enhanced greenhouse gas forcing

(e.g. Diffenbaugh et al. 2007, 2005; IPCC 2007; Schar

et al. 2004). Such a response is expected on a theoretical

basis (e.g. Meehl et al. 2000; Trenberth 1999), with rela-

tively small changes in long-term mean quantities resulting

in much larger shifts in the frequency and intensity of

events currently occurring in the tails of the distribution
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(Diffenbaugh et al. 2007; Katz and Brown 1992; Mearns

et al. 1984). Likewise, higher order statistics suggest that

changes in the extremes of the precipitation distribution

could be distinctly different from changes in the mean

(Wehner 2004).

The prospect of future changes in extreme climate

regimes demands thorough evaluation of the ability of

climate models to capture the structure and dynamics of

extreme temperature and precipitation events (e.g. Hegerl

et al. 2006). This evaluation is particularly urgent given

that climate model biases can affect simulated climate

changes (Hall et al. 2008). To date, most of the evaluation

of simulated daily-scale events has been directed towards

relatively low resolution general circulation models

(GCMs) (e.g. Huth et al. 2000; Kysely 2002). Much less

work has been devoted to assessing the performance and

sources of errors in high-resolution climate models (despite

notable exceptions, including Bell et al. (2004), Duffy et al.

(2003), Koffi and Koffi (2008). Given that fine-scale cli-

mate processes have been shown to regulate the response

of the tails of the daily-scale temperature and precipitation

distributions (e.g. Bell et al. 2004; Christensen and Chris-

tensen 2003; Diffenbaugh et al. 2005; Duffy et al. 2003),

higher resolution climate models also require rigorous

evaluation.

To that end, our goal is to assess the ability of a high-

resolution nested climate model (RegCM3; Pal et al. 2007)

to capture the statistics of daily-scale temperature and

precipitation events over the conterminous United States,

and to understand the dynamical sources of mismatch

between the model simulation and observational and

reanalysis data. Although those statistics do not necessarily

provide insight into the dynamics of sub-daily, local-scale

severe weather events (e.g. Trapp et al. 2007a), they are

important for understanding the impacts of climate vari-

ability and change (e.g. Parry et al. 2007; Solomon et al.

2007).

2 Methods

2.1 High-resolution climate model

We employ the Abdus Salam International Centre for The-

oretical Physics (ICTP) regional climate model (RegCM3)

(Pal et al. 2007). RegCM3 is a 3-dimensional, primitive

equation, nested climate model. In order to test the effects of

varying horizontal resolution on RegCM3’s ability to cap-

ture the statistics of daily-scale temperature and precipitation

events, we apply the model at both 55-km horizontal grid-

spacing (‘‘Reg55’’; using the grid of Diffenbaugh et al

(2006a), Pal et al. (2000) and at 25-km horizontal grid-

spacing (‘‘Reg25’’; using the grid of Diffenbaugh et al.

(2005). Both grids are centered over the conterminous Uni-

ted States, with 18 levels in the vertical. We perform one

simulation with each grid, following the physics options of

Pal et al. (2000) in both cases. Lateral boundary conditions

for both simulations are provided by NCEP-DOE reanalysis

data (R2) (Kanamitsu et al. 2002). Both simulations cover

the period 1982-2002, with the first year discarded to account

for model equilibration.

2.2 High-resolution reanalysis

We validate the RegCM3 performance against the NCEP

North American Regional Reanalysis (NARR) (Mesinger

et al. 2006). NARR is a long-term, high-resolution climate

dataset for North America, with data available from 1979

through the present. NARR has horizontal resolution of

32 km, with 29 levels in the vertical. Developed as a

regional improvement on the NCEP/NCAR Global

Reanalysis (R1) (Kalnay et al. 1996), NARR includes

many advances in data assimilation—including daily pre-

cipitation observations—which are expected to result in an

accurate representation of extreme events (Mesinger et al.

2006). As with the global reanalysis, 2 m temperature

observations are not directly assimilated (Mesinger et al.

2006). NARR is unique for our purposes in that it allows

for comparisons of sub-daily, 3-dimensional atmospheric

and surface fields at a horizontal resolution similar to that

of our RegCM3 grids.

2.3 Precipitation observations

We compare daily-scale precipitation in both RegCM3 and

NARR with the 0.25� NCEP/NOAA gridded daily pre-

cipitation data [NCEP]. Precipitation data sources included

in the dataset are the River Forecast Center and the Climate

Anomaly Data Base. The number of reliable gauge stations

included in the dataset is maximized from 1998-present

[NCEP]. Therefore, we use the years 1998–2002 for

comparison with the climate model simulations.

2.4 Statistics of daily-scale temperature

and precipitation distributions

We analyze the long-term annual statistics of 95th per-

centile daily maximum temperature (T95), 5th percentile

daily minimum temperature (T05), and 95th percentile

daily precipitation (P95) at each grid point, following

Diffenbaugh (2005, 2006b), Diffenbaugh et al. (2005).

Each of these metrics is first calculated for each year of the

timeseries, with the values from each year averaged to

create the long-term mean statistic at each grid point. For

the temperature metrics, there is one daily maximum and

one daily minimum recorded for each day of the year.
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Thus, for each year, the 95th percentile daily maximum

temperature can be taken as the 18th hottest daily maxi-

mum of the year, while the 5th percentile daily minimum

temperature can be taken as the 18th coldest daily mini-

mum of the year. For T95 (T05), we first identify the 18th

hottest (coldest) day of each year at each grid point. For

each gridpoint, we then calculate the mean of all of the

yearly T95 (T05) values, yielding the mean threshold value

across all of the years in the timeseries.

Alternatively, precipitation will not necessarily occur at

each grid point in each day of the year. Thus, for the P95

metric, we must first determine whether a precipitation day

has occurred. As in Diffenbaugh et al. (2005) and Dif-

fenbaugh (2005), we follow Salinger and Griffiths (2001)

in defining a ‘‘rain day’’ as a day in which precipitation

exceeds 1.0 mm. Then, for each year, we rank the rain days

by magnitude at each grid point, and identify the 95th

percentile rain day from the respective ranked lists. We

then calculate the mean of all of the yearly 95th percentile

values at each grid point, yielding the mean threshold value

across all of the years in the timeseries. In addition to P95,

we record the annual number of rain days (NRD) at each

grid point. Further, we calculate the sum annual precipi-

tation (SAP) at each grid point as the mean of the total

precipitation that falls during rain days in each year, and

the precipitation event average (PEA) as SAP divided by

NRD at each grid point.

For each of these variables, we analyze the mean,

interannual standard deviation, and linear trend across the

years of the time series at each grid point. In order to

calculate quantitative differences between fields from

RegCM3 and NARR, RegCM3 data are regridded from

their original grid to the NARR grid. Differences are then

taken as RegCM3 minus NARR for each grid point in each

of the RegCM3 simulations (Reg55 and Reg25). It should

be noted that, given the difference in horizontal resolution

between the different grids, some information can be lost in

the regridding. Specifically, the information on the 25-km

RegCM3 grid will be somewhat smoothed when inter-

polated to the 32-km NARR grid. This smoothing could

spuriously affect the calculated differences, particularly in

areas of high spatial variability such as the western United

States.

3 Results

3.1 Seasonal means, 1983–2002

Both Reg25 and Reg55 capture the pattern of seasonal

temperature and precipitation seen in the NARR dataset

(Figs. 1, 2). Key temperature biases include overly warm

December-January-February (DJF) temperatures over the

northern Great Plains in both Reg25 and Reg55, overly

cool March-April-May (MAM) and September-October-

November (SON) temperatures over lower elevation areas

of the Mountain West in Reg25 and Reg55, and overly

warm June-July-August (JJA) temperatures over the

southern Great Plains in Reg55 (Fig. 1). Reg25 improves

the agreement of seasonal temperature with NARR

Fig. 1 Mean seasonal surface air temperature, 1983–2002. a–d NARR. e–h Reg55. i–l Reg25
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(relative to Reg55) over the southern Great Plains in JJA,

and over the topographically complex Mountain West in

MAM, JJA and SON.

Key precipitation biases include overly wet DJF pre-

cipitation over high elevation areas of the Mountain West

in Reg25, overly dry MAM, JJA, and SON precipitation

Fig. 2 As in Fig. 1, but for precipitation

Fig. 3 Annual 5th percentile

minimum temperatures, 1983–

2002. a, d, g 20-year mean,

standard deviation, and linear

trend for NARR. b, e, h 20-year

mean, standard deviation, and

linear trend for Reg55. c, f, i 20-

year mean, standard deviation,

and linear trend for Reg25
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along the Gulf Coast in Reg55, and overly wet JJA pre-

cipitation over parts of the Mountain West and along the

Gulf Coast in Reg25 (Fig. 2). Reg25 improves the agree-

ment of seasonal precipitation with NARR (relative to

Reg55) over the Midwest in JJA. In addition, Reg25

improves the spatial structure of seasonal precipitation over

the topographically complex Mountain West in DJF, MAM

and SON.

3.2 T05, 1983-2002

The spatial patterns of T05 means, standard deviations, and

trends are largely consistent between RegCM3 and NARR

(Fig. 3), with coldest temperatures and greatest interannual

variability occurring in the northern interior of the domain.

In NARR, the coldest mean T05 values of less than -20�C

occur in North Dakota and Minnesota, while the warmest

values of greater than 10�C occur in southern Florida and

southern Texas. T05 temperatures are generally too warm

in the northern Great Plains and too cold in the Northeast,

Southwest and Mountain West (Fig. 4). In the Midwest

(Northeast), RegCM3-simulated values are too warm (too

cold) by as much as 5�C.

In the central United States, RegCM3 produces too little

interannual variation in the cold tail of the daily tempera-

ture distribution, with biases in the standard deviation of

T05 ranging from -0.5 to -1�C (Fig. 3). Similarly, Reg-

CM3-simulated T05 temperatures are also too variable by

up to 1�C in the eastern and western portions of the U.S.

RegCM3 captures the spatial pattern of T05 trends, with

strong positive trends of up to 0.15�C/year stretching from

the Pacific Northwest south and eastward to the Great

Plains, along with strong positive trends from the Great

Lakes region to New England (Fig. 3). Although RegCM3

captures the spatial distribution of trends, it tends to

underestimate the strongest trends (by as much as -0.2�C/

year in the midsection of the country), and misses slight

negative trends of -0.05 to-0.1�C/year across the Desert

Southwest (Fig. 3).

3.3 T95, 1983-2002

Maximum T95 values of 42�C in NARR occur in the

southern Great Plains, in southern Arizona, and in the

interior of California. RegCM3 captures the general pattern

of T95 means, with highest T95 values occurring across the

southern Great Plains and Desert Southwest, where T95

values range from 40 to 45�C in Reg25 and Reg55. Both

resolutions display a warm bias of up to 7�C across the

Southeast and Midwest, and a cold bias in the Central

Valley of California (Figs. 5, 6). The area of warm T95

bias over the south and central U.S. is reduced in Reg25

relative to Reg55, as is the magnitude of the bias (from 7 to

5�C) (Fig. 6).

Both Reg55 and Reg25 capture maxima in T95 inter-

annual variability across the eastern Great Plains and

western Midwest (Fig. 5), but substantially overestimate

the magnitude and spatial extent of that area of maximum

variability. This overestimation is most pronounced in

Reg55 across the eastern Midwest, and in Reg25 across

southern Texas and the northern Great Plains (Fig. 6). The

largest Reg25 variability biases correspond to areas that are

designated as crop in the RegCM3 land cover boundary

condition (not shown).

Reg25 captures the basic pattern of positive trends in

T95 across the western U.S., Great Plains, and East Coast

(up to 0.1�C/year), and negative trends across Minnesota,

North Dakota, and the Midwest (maximum negative trends

of -0.2�C/year) (Fig. 5). However, Reg25 overestimates

the negative trends across the Midwest by as much as 50%,

and extends the area of negative T95 trends too far south

and east. Although Reg55 captures the slight negative

trends of -0.05 to 0.1�C/year across Minnesota and North

Fig. 4 Biases in annual 5th percentile minimum temperatures, 1983–

2002. a, c, e Differences in 20-year mean, standard deviation, and

linear trend between Reg55 and NARR. b, d, f Differences in 20-year

mean, standard deviation, and linear trend between Reg25 and

NARR. Differences are calculated as RegCM3–NARR at each

gridpoint
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Dakota, it shows strong positive trends in T95 of up to

0.3�C/year across the central and eastern portion of the

country. These trends are not found in either NARR or

Reg25. This bias toward strongly positive T95 trends in

Reg55 corresponds to the areas of greatest bias in T95

means and T95 standard deviations (Fig. 6).

3.4 Aggregate precipitation variables, 1983–2002

NARR displays broadly consistent spatial patterns in mean

SAP, NRD, and PEA (Fig. 7). The highest mean values

generally occur in the high elevations of the Mountain

West, in the southeastern and southcentral U.S., and in the

Northeast, with peak values in the Northeast most promi-

nent for NRD and SAP (Fig. 7). Wet biases in the RegCM3

simulation of PEA occur over most of the domain, with the

exception of the Gulf Coast region in Reg55 and the central

Plains and Appalachian Mountains in Reg25 (Figs. 7, 8).

RegCM3 also overestimates SAP and NRD in the North-

east, northern Great Plains, and especially in the higher

elevations of the Mountain West. Conversely, RegCM3

underestimates both SAP and NRD in the southeastern and

southcentral U.S., which, coupled with its relatively accu-

rate simulation of the average event magnitude (PEA),

suggests that biases in annual rainfall (SAP) over these

regions are likely caused by an insufficient number of

Fig. 5 As in Fig. 3, but for

annual 95th percentile

maximum temperatures

Fig. 6 As in Fig. 4, but for annual 95th percentile maximum

temperatures
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rainfall events rather than insufficient rainfall during indi-

vidual rainfall events.

Regions with high mean SAP, NRD, and PEA in NARR

(Fig. 7) also tend to have high interannual variability in

those variables (Fig. 9). The highest variability in SAP and

PEA occurs along the Pacific coast, in the higher elevations

of the Rocky Mountains, and in the southeastern and

southcentral U.S. (Fig. 9). NRD variability is high

throughout the western and southeastern U.S. (Fig. 9).

Spatial patterns in interannual variability are broadly con-

sistent between NARR, Reg55, and Reg25, with the

exception of an overestimation of variability in Reg25

along the Gulf Coast for all three variables (Fig. 9).

Negative trends in SAP, NRD, and PEA are evident in the

western U.S. in NARR, and are especially pronounced in the

Southwest (Fig. 10). Negative trends in the number of rain

days in the Southeast are accompanied by somewhat weaker

negative trends in SAP. As a result, PEA shows positive

trends throughout much of the eastern U.S. (Fig. 10). Posi-

tive trends in SAP, NRD, and PEA also occur over the

northern Great Plains and upper Midwest (Fig. 10). RegCM3

correctly identifies the general spatial distribution of these

trends, although Reg55 overestimates the spatial extent of

negative NRD trends in the West and the strength of negative

NRD trends in the Southeast (where Reg55 also overesti-

mates the strength of negative SAP trends) (Fig. 10).

3.5 P95, 1983-2002

NARR shows two areas of peak P95 values (Fig. 7). The

first spans Louisiana, western Mississippi, southern

Arkansas, and eastern Oklahoma, where maximum values

reach 35–40 mm/day. The second spans the high elevations

of the Pacific coast, where P95 values range from 50 to

60 mm/day. Minimum values are found in the Mountain

West and southwestern U.S.

RegCM3 captures this spatial pattern of heavy precipi-

tation across the conterminous United States, with highest

P95 values occurring in the Southeast, the Gulf Coast, and

throughout the high elevations of the Mountain West

(Fig. 7). In Reg55, the area of maximum P95 values is

expanded and shifted northward relative to that seen in

NARR, while in Reg25, the area of maximum P95 values is

concentrated along the Gulf Coast. Both Reg55 and Reg25

Fig. 7 20-year means of annual

precipitation variables, 1983–

2002. a, b, c 95th percentile

annual precipitation event (P95)

for NARR, Reg55, and Reg25,

respectively. d, e, f Sum of

annual precipitation (SAP) for

NARR, Reg55, and Reg25,

respectively. g, h, i Annual

number of days with rain greater

than 1 mm/day (NRD) for

NARR, Reg55, and Reg25,

respectively. j, k, l Annual

average rainfall per rain day

(PEA) for NARR, Reg55, and

Reg25, respectively
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capture the intense precipitation along the Cascade and

Sierra Nevada mountain ranges, with Reg25 more accu-

rately resolving the P95 peaks on either side of California’s

Central Valley.

Reg55 and Reg25 do overestimate maximum values of

P95 in some areas (Fig. 8). For example, the maximum P95

values over the Southeast are 35–40 mm/day in NARR,

while they are as high as 45 mm/day (in Arkansas and

eastern Oklahoma) in Reg55 and as high as 60 mm/day (in

southern Florida) in Reg25. Biases of 5–15 mm/day occur

across the eastern United States in Reg55, while biases of 15–

30 mm/day occur along the Gulf Coast in Reg25 (Fig. 8).

Biases are generally reduced over the central and eastern

U.S. in Reg25 relative to Reg55. Dry biases in the Mountain

West are also reduced in Reg25, although Reg25 is still too

wet in some low-elevation regions, such as California’s

Central Valley (where biases reach 50–100%). Comparison

with precipitation observations (Fig. 11) reveals that NARR

underestimates the magnitude and spatial extent of maxi-

mum P95 means in the southeastern U.S. Reg55 most

accurately captures this pattern of P95 mean values, with

maximum values of 45-55 mm/day extending from eastern

Texas northward through Oklahoma, eastward through

Kentucky, and southward through Alabama.

The spatial pattern of the interannual standard deviation

of P95 in NARR is broadly consistent with the pattern of

the mean values (Figs. 7, 9). Maximum P95 variability

occurs in the high elevations of California, along with parts

of the southeast and southcentral U.S. Although Reg25 and

Reg55 capture the basic pattern, both overestimate P95

variability in the southeastern and southcentral U.S. As

with the mean precipitation values, Reg55 and Reg25 show

greater agreement with the precipitation observations than

does NARR over many areas of the domain (Fig. 12).

RegCM3 is also able to capture the basic pattern of

trends in the wet tail of the daily precipitation distribution

(Fig. 10). Both Reg55 and Reg25 capture positive trends in

P95 magnitude across the central and eastern regions of the

U.S., and negative trends in P95 magnitude in parts of the

West. RegCM3 simulates areas of strong negative trends in

southern California and southwestern Texas that appear to

correspond with similar features in NARR. RegCM3 also

simulates positive trends along coastal Washington, Ore-

gon, and California, as well as in much of the Midwest.

3.6 RMS errors

Although Reg25 appears to display an enhanced ability to

capture the spatial patterns of means, trends, and interan-

nual variability of daily-scale statistics relative to Reg55,

examination of spatial RMS errors reveals that Reg25 does

not always quantitatively outperform Reg55. Reg25 does

show reduced RMS errors relative to Reg55 in all regions

of the country for T95, while RMS errors for T05 are

similar for both Reg25 and Reg55 (Table 1). However,

RMS errors in precipitation are consistently higher in

Reg25 than in Reg55 for all regions except the Southeast.

In most of these regions, RMS errors in precipitation are

dominated by wet biases that are particularly prominent in

the higher resolution simulation (Fig. 8).

4 Discussion

4.1 Western United States

Areas of the western U.S. are subject to soil moisture

deficits that are strongest during the winter season over the

Fig. 8 Biases in mean annual precipitation variables, 1983–2002. a,

c, e, g Differences in P95, SAP, NRD, and PEA between Reg55 and

NARR. b, d, f, h Differences in P95, SAP, NRD, and PEA between

Reg25 and NARR. Differences are calculated as RegCM3–NARR at

each gridpoint
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highest elevations of Colorado and Wyoming, and of

greatest spatial extent during the summer and fall (Fig. 13).

These same regions also experience deficits in latent heat

flux, with greatest bias occurring during the spring and

summer over the Rocky Mountains and during the fall over

the Desert Southwest (Fig. 14). These negative biases in

soil moisture and latent heat flux occur despite positive

biases in SAP and NRD over much of the western U.S.

(Fig. 8). Although absolute biases in precipitation are lar-

ger for Reg25 than for Reg55, Reg25 displays some

reduction in soil moisture and latent heat flux biases over

these regions.

In both RegCM3 simulations, warm T95 biases are

found in the Mountain West, particularly at high elevations

(Fig. 6). These T95 biases at high elevations are coincident

with negative biases in soil moisture and latent heat flux,

and with positive biases in precipitation. Warm tempera-

ture biases accompanying deficits in soil moisture and

latent heat flux indicate that more surface heating is being

converted to sensible heat rather than latent heat, resulting

in elevated T95 temperatures during the warm season. The

simultaneous occurrence of excess precipitation with soil

moisture deficits could indicate improper treatment of

runoff and infiltration in RegCM3.

During the winter, the trough which is centered over the

Midwest in NARR is deepened and shifted westward in

RegCM3 (Fig. 15), resulting in winds over the Rocky

Mountains that are too strong out of the Northwest

(Fig. 16). This region of enhanced wintertime northwest-

erly flow divides T05 biases in the western U.S., with cool

biases to the west of the mountains and warm biases to the

east of the mountains (Fig. 4). During the summer, the

corridor of southerly winds seen in NARR over the

southern Plains is shifted westward in Reg55 as a result of

a north and westward shift of anticyclonic circulation off of

the Atlantic coast (Fig. 15). A similar shift is found in

Reg25, although the displacement in the center of circu-

lation is substantially smaller.

Although the absolute differences in precipitation in

mountainous regions are larger in Reg25 than in Reg55, the

spatial structure of precipitation is better resolved in the

higher resolution simulation (Fig. 7). This trade-off

between spatial structure and absolute errors is likely the

result of enhanced orographic forcing in the 25 km

Fig. 9 As in Fig. 7, but for

interannual standard deviations

of annual precipitation variables
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simulation. Wind velocities are generally too strong across

these regions in both simulations (Fig. 16). However,

Reg25 has more highly-resolved topography (and therefore

higher peak elevations) due to its higher horizontal reso-

lution, which could be expected to interact with the strong

winds to cause stronger orographic effects and therefore

enhanced precipitation over topographic peaks (Fig. 7).

4.2 Eastern United States

RegCM3 temperature and precipitation biases in the east-

ern United States are dominated by warm-season dyna-

mics. During the spring and summer seasons, large deficits

in both soil moisture and latent heat flux develop in the

southeastern and southcentral U.S. (Figs. 13, 14, respec-

tively). These are regions that also experience substantial

deficits in annual precipitation in the RegCM3 simulations

(Fig. 8c, d), and are subject to large positive T95 biases

(Fig. 6a, b). These biases are of highest magnitude and

largest spatial extent in the Reg55 simulation.

A partial explanation for these biases is derived from

errors in the RegCM3 circulation patterns. During the

warm season, strong southerly and southeasterly winds

bring moisture from the Gulf of Mexico into the southern

Plains and the Southeast, where this moisture is a crucial

element in the development of the convective thunder-

storms that provide a substantial portion of annual pre-

cipitation to these regions (Fig. 15). However, the

misplacement of anticyclonic circulation off of the Atlantic

coast in RegCM3 alters circulation both at the surface

(Fig. 15) and throughout the lower- and mid-troposphere

(not shown), resulting in insufficient southerly winds over

the Gulf of Mexico (Figs. 15, 16).

For example, in Reg55, circulation over the Gulf of

Mexico is due easterly, precluding sufficient moisture

transport to the southeastern U.S. and southern Great

Plains. The resulting lack of rainfall (Fig. 8c, d, e, and f)

leads to soil moisture deficits over these regions (Fig. 13),

where biases in soil moisture coincide with biases in SAP

and NRD. Without sufficiently moist soils, and with

reduced southerly winds, evapotranspiration over these

areas is also reduced, resulting in negative latent heat flux

biases and strong warm biases in daily maximum temper-

atures (Fig. 6). Conversely, the Reg25 simulation exhibits

Fig. 10 As in Fig. 8, but for

linear trends of annual

precipitation variables
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only a small bias in the placement of anticyclonic circu-

lation off of the Atlantic coast (Fig. 15), with reduced

biases in total precipitation (Fig. 8), surface moisture fields

(Figs. 13, 14), and T95 (Fig. 6).

Differences in the representation of land-atmosphere

interactions in RegCM3 and NARR could also contribute

to the hotter, drier summer conditions simulated by Reg-

CM3 in the southeastern and southcentral U.S. Although

the land cover designations are broadly similar between

RegCM3 and NARR (not shown), RegCM3 and NARR

utilize different land models and different vegetation

parameter values (Mesinger et al. 2006; Pal et al. 2007).

These differences in land surface parameterization could

contribute to the soil moisture differences between Reg-

CM3 and NARR. Variations in soil moisture have been

shown to exert a strong influence on both precipitation

(Koster et al. 2004) and temperature (Seneviratne et al.

2006) variability, including in the Great Plains and along

the Gulf Coast of the U.S. (Koster et al. 2004). Exclusive of

any circulation bias, a deficit in soil moisture could itself

produce hot and dry biases such as those seen in our

simulations. In addition, such soil moisture anomalies

could themselves influence the large-scale circulation (e.g.

Pal and Eltahir 2003).

5 Conclusions

RegCM3 captures the spatial patterns of extreme temper-

ature and precipitation events over the conterminous U.S.

Although the long-term means of the daily-scale statistics

are most accurately represented, RegCM3 generally cap-

tures the spatial pattern of interannual variability and linear

trends, particularly at higher horizontal resolution (Figs. 3,

5, 10). Regions of notable bias include the topographically-

complex western U.S., the Southeast, and the Midwest.

Precipitation biases in areas of complex topography are

associated with overly strong winds, which create errors in

orographically-driven precipitation. Likewise, biases in

simulated temperature and precipitation metrics in the

southeastern and southcentral U.S. are at least partially

driven by biases in circulation and moisture fields. These

dynamical biases are generally larger in the lower-resolu-

tion simulation.

Our work has potentially important implications for the

broader study of climate and climate change. First, our

work suggests that nested high-resolution climate models

can accurately capture the statistics of daily-scale tempera-

ture and precipitation. Changes in the tails of the daily-

scale distribution can have far greater impact than changes

Fig. 11 5-year means of annual

precipitation variables, 1998–

2002. a, b, c, d 95th percentile

annual precipitation event (P95)

for precipitation observations,

NARR, Reg55, and Reg25,

respectively. e, f, g, h Sum of

annual precipitation (SAP) for

precipitation observations,

NARR, Reg55, and Reg25,

respectively. i, j, k, l Annual

number of days with rain greater

than 1 mm/day (NRD) for

precipitation observations,

NARR, Reg55, and Reg25,

respectively. m, n, o, p Annual

average rainfall per rain day

(PEA) for precipitation

observations, NARR, Reg55,

and Reg25, respectively
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in the seasonal-scale mean (e.g. Parry et al. 2007; White

et al. 2006). Quantifying the reliability (and limitations) of

complex climate models in simulating the tails of the

temperature and precipitation distribution is therefore

important as the community moves from evaluating the

sensitivity of long-term, global- and large-scale climate to

evaluating the sensitivity of daily- and local-scale climate

that is critical for accurately assessing the impacts of cli-

mate variability and change on natural and human systems

(e.g. Christensen et al. 2007; Giorgi et al. 2008; Parry et al.

2007).

Second, our work suggests that, for the tails of the daily

temperature and precipitation distributions, the areas of

agreement and disagreement with the observational data

are not always intuitive from analyzing the mean seasonal

temperature and precipitation fields alone. For instance, the

warm T95 bias over the central U.S. in Reg25 (Fig. 5) is

not clear when analyzing mean summer temperature

(Fig. 1), and the cool summer bias over the Southeast in

Reg25 (Fig. 1) does not confer a cool bias in mean T95

magnitude (Fig. 5). Likewise, the Reg25 and Reg55 P95

wet biases over southern Arizona are larger than indicated

by any of the respective seasonal precipitation fields, as is

the Reg55 P95 wet bias over the Sierra Nevada (Fig. 7).

Third, our work suggests that relatively subtle errors in

the simulation of atmospheric circulation and surface

energy and moisture fluxes can produce relatively large

errors in the simulations of the statistics of daily-scale

temperature and precipitation. This error cascade is illus-

trated by the case of T95 biases over the southcentral U.S.,

where errors in the atmospheric circulation over the Gulf of

Mexico in Reg55 create large warm biases over the central

U.S. The fact that Reg25 exhibits more accurate atmo-

spheric circulation over the Gulf of Mexico and reduction in

the T95 biases over the central U.S. suggests that higher

resolution could confer more accurate simulation of the tails

Fig. 12 As in Fig. 11, but for interannual standard deviations of annual precipitation variables
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of the daily-scale distribution. In addition, the sensitivity to

regional-scale atmospheric features in these historical

simulations also implies that the statistics of daily-scale

temperature and precipitation could be likewise sensitive to

relatively subtle changes in circulation induced by changes

in radiative forcing of the climate system.

Table 1 Regional root mean squared (RMS) error (compared with NARR fields)

Variable Simulation Region

Northwest Northcentral Northeast Southwest Southcentral Southeast

T95 mean Reg55 4.42 3.84 3.86 3.70 4.95 4.19

Reg25 4.05 2.75 1.83 3.16 3.29 2.29

T05 mean Reg55 2.12 1.42 1.51 2.09 2.90 2.00

Reg25 1.96 1.48 1.49 1.93 2.68 2.64

P95 mean Reg55 9.98 5.73 8.69 7.89 5.85 8.23

Reg25 11.69 8.00 16.91 9.31 4.98 4.83

SAP mean Reg55 105.11 229.63 325.53 368.85 142.96 253.42

Reg25 146.89 307.13 415.52 466.27 235.30 205.22

NRD mean Reg55 18.14 22.82 33.64 40.45 21.10 18.48

Reg25 11.94 26.71 17.38 43.72 27.13 19.77

PEA mean Reg55 1.83 0.93 1.32 1.84 0.83 1.389

Reg25 2.21 1.48 2.58 2.30 1.02 1.02

Fig. 13 Seasonal mean soil

water fraction for the top 10 cm

of soil, 1983–2002. Left column
shows values from NARR.

Center column shows values

from Reg55 minus NARR.

Right column shows values

from Reg25 minus NARR. a, b,

c DJF; d, e, f MAM; g, h, i; JJA;

j, k, l SON
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Fig. 14 As in Fig. 13, but for seasonal latent heat flux

Fig. 15 Seasonal surface zonal and meridional winds and relative humidity, 1983–2002. a, b, c DJF horizontal surface winds and relative

humidity for NARR, Reg55, and Reg25, respectively. d, e, f JJA horizontal surface winds and relative humidity for NARR, Reg55, and Reg25,

respectively
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Although our work offers insight into the ability of a

nested high-resolution climate model to capture the sta-

tistics of daily-scale temperature and precipitation events,

some limitations remain. First, RegCM3 was forced by

reanalysis data, representing the ‘‘best case scenario’’ for

model performance. To fully assess the ability of RCMs

to simulate future changes in extreme climate events,

validation should also be performed for RCMs driven by

GCM output over historical periods for which high-

quality observational data are available. Second, although

we have explored the effect of increased horizontal reso-

lution on the simulation of daily-scale temperature and

precipitation events, the model performance could also be

improved through increases in vertical resolution (e.g.

Todd et al. 2008). Third, we focus here on the simulation

of the statistics of daily-scale temperature and precipita-

tion. The ability to capture these statistics does not nec-

essarily confer the ability to accurately simulate specific

extreme temperature and precipitation events (e.g. Trapp

et al. 2007b).
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