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Abstract Assessments of the impacts of uncertainties in

parameters on mean climate and climate change in com-

plex climate models have, to date, largely focussed on

perturbations to parameters in the atmosphere component

of the model. Here we expand on a previously published

study which found the global impacts of perturbed ocean

parameters on the rate of transient climate change to be

small compared to perturbed atmosphere parameters. By

separating the climate-change-induced ocean vertical heat

transport in each perturbed member into components

associated with the resolved flow and each parameterisa-

tion scheme, we show that variations in global mean heat

uptake in different perturbed versions are an order of

magnitude smaller than the average heat uptake. The lack

of impact of the perturbations is attributed to (1) the rela-

tively small impact of the perturbation on the direct vertical

heat transport associated with the perturbed process and (2)

a compensation between those direct changes and indirect

changes in heat transport from other processes. Interactions

between processes and changes appear to combine in

complex ways to limit ensemble spread and uncertainty in

the rate of warming. We also investigate regional impacts

of the perturbations that may be important for climate

change predictions. We find variations across the ensemble

that are significant when measured against natural vari-

ability. In terms of the experimental set-up used here

(models without flux adjustments) we conclude that per-

turbed physics ensembles with ocean parameter

perturbations are an important component of any probabi-

listic estimate of future climate change, despite the low

spread in global mean quantities. Hence, careful consi-

deration should be given to assessing uncertainty in ocean

processes in future probabilistic assessments of regional

climate change.

Keywords Climate � Ocean � Parameter � Uncertainty �
Ensemble prediction

1 Introduction

There is considerable uncertainty in projections of both

global and regional climate change from different climate

models, which complicates the formulation of mitigation

approaches and local adaptation policies (Meehl et al.

2007). This uncertainty comes from a variety of sources:

uncertainty in the future climate forcings, uncertainty in

the initial climate state (that is from natural variability)

and uncertainties related to the numerical model used to

make the projections. This latter source of uncertainty

may be further divided into uncertainty relating to the

model design (which we loosely term structural uncer-

tainty) and uncertainty relating to the value of parameters

contained in the physics parameterisations (parameter

uncertainty).

Climate models have a finite resolution and cannot

explicitly resolve all the important dynamical and physical
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processes, so parameterisation schemes are required to

incorporate unresolved processes. Climate models will

always require parameterisation schemes, as they will

always have a finite resolution. Thus, there will also always

be some uncertainty associated with the parameters

involved in these parameterisations. Collins et al. (2007,

henceforth C&07) presented the global mean results from

the first ensemble created to investigate the effects of

parameter uncertainty in the ocean component of a fully

3-dimensional complex atmosphere-ocean general circu-

lation model. They were just able to detect variations in the

global rate of transient warming caused by perturbations

made to the ocean parameters. The impacts were less than

anticipated and were caused in part by changes in atmo-

spheric properties.

The purpose of this article is twofold; to investigate the

reason for the small global mean impacts and to look for

local impacts that might be important for regional climate

predictions. As a precursor to determining the reason for

the results of C&07, the perturbed physics ensemble will be

described in additional detail and their global results will

be put in the context of other work. The mechanisms by

which the physics perturbations influence (or not) the

ocean heat balance and uptake will be investigated to help

explain the relatively small global impacts seen by C&07.

The final goal of much of the work looking at perturbed

parameter ensembles is to produce a probabilistic climate

forecasting system, and the final section of this work

investigates the regional impacts of ocean parameter

uncertainty to determine whether perturbed ocean physics

needs to be included in these systems.

2 Creation and description of the perturbed ocean

physics ensemble

The preliminary step in creating the perturbed physics

ensemble was to determine the desired parameters and their

ranges, which was done in consultation with experts in

ocean modelling. This work uses the third version of the

Hadley Centre’s coupled atmosphere-ocean general circu-

lation model (HadCM3, Gordon et al. 2000). The

parameters chosen were expected to be specific to Had-

CM3, so the experts consulted were primarily those

involved in the development and implementation of the

ocean physics parameterisations in that model. Over 35

experts were involved in the consultation process, which

identified the uncertainty range for 16 different ocean

parameters. A prioritisation of the different parameter

perturbations was also established based on experience

from prior sensitivity and tuning experiments. The com-

plete results of this exercise are included in the appendix to

aid future work using perturbing ocean parameters.

A relatively large amount of computer resources were

allocated to create the experimental perturbed physics

ensemble: a significant portion of the UK Met Office’s

access to the ECMWF machine [which was the 11th fastest

supercomputer in the world at the time of allocation,

(Top500.org 2004)]. These resources allowed for approxi-

mately 5,000 years of model integration with HadCM3. A

trade-off was therefore required between ensemble size and

spin-up time for each member. Collins et al. (2006) used

flux-adjustments to partially reduce the spin-up time for

their simulations with atmosphere perturbations. However,

flux-adjustments are known to affect the simulation of the

ocean state (Marotzke and Stone 1995) so they were not

used in this initial study. Parameter perturbations can take

thousands of years to fully affect the deep ocean (Stouffer

and Manabe 2003); however having multiple spin-ups on

these timescales would have severely limited the number of

parameters perturbed. As a compromise, a spin-up period

of 500 years for each perturbation was used, which is of the

order of magnitude of many coupled model spin-ups

(Randall et al. 2007). The deep ocean will still not have

reached equilibrium after this spin-up time, yet it allowed a

total of 7 experiments, rather the 3 permitted by a

1,000 year spin-up. Although a lack of equilibrium is far

from desirable, it is not thought to impact the main results

shown in this paper. Impacts of residual drift on precise

details of the results cannot, however, be completely

discounted.

The expert consultation found three parameters to be a

high priority, so the ensemble consists of a maximum,

minimum and an intermediate value for each of these

parameters (Table 1). For two of the three parameters, the

standard HadCM3 setting falls near the centre of the range,

so is used as the intermediate value. This is not the case for

the pair of mixed layer parameters, where the standard

settings form the upper bound. Each ensemble member was

initiated from the analysed temperature and salinity

observations of Levitus and Boyer (1994), the sea ice

observations of Rayner et al. (2003), a state of no motion

and preindustrial levels of CO2. After 500 years, they were

deemed to have reached a quasi-stable state (this is true for

the surface climate, but there is still some climate drift in

the deep ocean, see Fig. 1 of C&07). An idealised climate

change experiment was performed from this state, con-

sisting of an 80-year simulation in which CO2 levels

increased by 1% per annum and a simultaneous 80-year

control run with constant CO2 levels.

While this study may be considered an initial sensitivity

study to perturbed parameters in HadCM3, it would be

detrimental to include members with too-unrealistic cli-

mates within the ensemble. As HadCM3 has been

somewhat optimised during its development to provide, by

some measures, the ‘‘best’’ simulation for the STD setup,
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any parameter perturbation may be expected to degrade its

climate simulation (although improvements in some fields

are possible—see Table 2 later). It would be possible to

combine multiple perturbations in an attempt to avoid

degradation either using parameter estimation (Hargreaves

et al. 2004) or knowledge from previous experiments

(Webb et al. 2006). Unfortunately the validation of

numerical models and their climate properties is a com-

plicated task. There is no simple, objective way of

determining the difference between a ‘‘good’’ model and a

Table 1 Ocean model parameters used in the perturbed physics ensemble experiments and key quantities that determine the rate of global

warming (adapted from Collins et al. 2007)

Isopycnal

diffusivity

(m2 s-1)

Background vertical

diffusivity profile

(910-5 m2 s-1)

Mixed-layer parameters TCR

r = 0.04

(K)

k
r = 0.02

(Wm2 K-1)

j
r = 0.02

(Wm2 K-1)Fraction Depth (m)

STD 1,000 1–15 0.7 100 2.07 1.17 0.63

LowISO 200 1–15 0.7 100 2.17 1.14 0.57

HighISO 2,000 1–15 0.7 100 2.07 1.19 0.61

LowLAM 1,000 1–15 0.3 100 2.16 1.16 0.57

MedLAM 1,000 1–15 0.5 50 2.11 1.14 0.69

LowVDIFF 1,000 0.5–4 0.7 100 2.28 1.07 0.55

HighVDIFF 1,000 2–50 0.7 100 1.82 1.31 0.74

Atmosphere physics (range) 1.56–2.61 0.85–1.75 0.57–0.76

The first column indicates the experiment name. The along-isopycnal diffusion coefficient takes a constant value everywhere in HadCM3 and is

indicated in the second column. The background vertical diffusivity (third column) has a vertical profile with the first number in the column

indicating the surface value and the second the value at the bottom of the ocean (see Table A of Gordon et al. 2000). The HadCM3 mixed-layer

scheme is based on Kraus and Turner (1967). It has two interdependent parameters: a wind-mixing fraction (fourth column) and a decay depth

(fifth column). The wind-mixing fraction scales the wind-mixing energy, which is calculated by the model at 10 m to give a surface value. The

decay depth parameter determines the amount of wind-mixing energy that penetrates from the surface by controlling the rate of exponent decay.

All these parameters are known to control processes responsible for vertical heat transport in ocean models. The sixth column gives the TCR, the

20-year averaged global mean temperature change at the time of CO2 doubling in the 1% per year CO2 increase experiment. The seventh column

gives the effective atmospheric feedback parameter and the eighth column the ocean heat uptake parameter (see Collins et al. (2007) for

information on how these are calculated). For the last three columns, the standard deviation in the calculation expected from natural variability

(computed from all the control experiments) is shown. The values in some columns are shown to 2 decimal places to highlight small differences
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Fig. 1 The average global

mean depth profiles of the

control simulations of the seven

ensemble members. All of the

profiles are presented as

anomalies from the ensemble

mean profile. The panels show

the potential temperature,

salinity and potential density

from left to right
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‘‘bad’’ model. Quantitative methods have been suggested

(e.g. the climate prediction index of Murphy et al. 2004 or

the Taylor-diagram of Taylor 2001 yet these still require

expert judgement in setting the root-mean-squared-error

thresholds, below which a model is acceptable.

The Intergovernmental Panel on Climate Change

(IPCC) included projections from a variety of climate

models in their fourth assessment report (AR4). Using a

simple measure (the area-averaged root-mean-squared

error of the modelled climate from observed datasets), the

surface properties of each perturbed-physics ensemble

member falls within the range from the climate models

included in AR4 for at least one dataset (Table 2). The

surface air temperature of High VDIFF is outside the AR4

range when comparing to the CRU 5�95� dataset, but

within the AR4 range when using the Legates and Willmott

(1990) 0.5�90.5� dataset. (Despite this, the High VDIFF

ensemble member has an area-averaged root-mean-squared

error in precipitation less than that of the standard model.)

Based on this comparison, we choose to examine every

ensemble member in the following analysis.

3 Previous findings

Quantifying the uncertainty in climate predictions has been

an emergent field in the past decade. There have been a

variety of approaches taken, which can be categorized by

their different use of limited computing resources. Some

authors have chosen to use simplified (and therefore

computationally inexpensive) models to comprehensively

investigate the uncertainty contained in parameters such as

climate sensitivity (which are emergent properties of more

complex models). For example, both Wigley and Raper

(2001) and Forest et al. (2002) show that uncertainties in

the rate of ocean heat uptake have less impact on the

predicted global mean temperature than climate sensitivity

and forcing uncertainties.

By using more sophisticated sampling methods, the

computational expense of comprehensively sampling

parameter space can be reduced. Hargreaves et al. (2004)

sample with an ensemble Kalman filter, which allows

them to incorporate a 3D ocean model into their study.

They predict a transient climate response (TCR, defined

Table 2 A comparison of the preindustrial climates to observations for a variety of variables

Variable Obs. STD Low

ISO

High

ISO

Med

LAM

Low

LAM

Low

VDIFF

High

VDIFF

AR4

Range

1.5 m temp. (�C) CRU 2.55 2.32 2.78 2.72 2.77 2.46 3.03 1.61–2.82

1.5 m temp. (�C) Legates/Willmot 3.71 3.53 3.85 3.78 3.80 3.61 4.03 3.07–4.45

Precip. (mm/day) CMAP 1.60 1.62 1.60 1.49 1.50 1.68 1.50 1.10–1.86

Precip. (mm/day) Legates/Willmot 1.76 1.79 1.75 1.69 1.69 1.84 1.66 1.41–2.04

Surf. Press. (Pa) HadSLP2 435 436 436 437 435 440 430

OLR (Wm-2) ERBE 13.4 13.1 13.7 13.6 13.6 13.4 13.7

TOA Flux (Wm-2) ERBE 12.4 12.5 12.4 12.1 12.1 13.0 11.4

SST (�C) Levitus 2.03 1.86 2.20 2.16 2.19 1.94 2.41

SST (�C) HadISST 3.05 2.93 3.18 3.15 3.17 3.00 2.34

SSS (psu) Levitus 2.21 2.33 2.13 2.27 2.27 2.44 2.07

Ocean h (�C) Levitus 1.22 1.37 1.18 1.17 1.18 1.19 2.05

Ocean Sal. (psu) Levitus 0.47 0.49 0.45 0.49 0.49 0.51 0.43

ACC (Sv) 123–135 218 235 208 228 227 220 218 34–336

MOC (Sv) 15–20 19 18 18 18 19 17 25 5–36

10 year Var. of MOC (Sv) 0.8 0.5 0.5 0.5 0.4 0.5 0.7

Interannual var. of GM SAT (�C) 0.12 0.14 0.14 0.13 0.17 0.15 0.14 0.12

The values shown are the global root-mean-squared error of the 80-year mean of the control simulation compared to an observed data source. The

AR4 range for the Antarctic circumpolar current (ACC) and the meridional overturning circulation (MOC) are taken from Russell et al. (2006).

The CRU dataset is documented by Jones et al. (1999); the Legates/Willmot dataset by Legates and Willmott (1990); CMAP by Xie and Arkin

(1996); HadSLP2 by Allan and Ansell (2006); ERBE by Barkstrom (1984); Levitus by Levitus and Boyer (1994); HadISST by Rayner et al.

(2003). The ACC observations were made by Whitworth and Petersen (1985) and Cunningham et al. (2003). The MOC observations are

presented in Schmitz (1996) and Bryden et al. (2005). The interannual variability of the global mean surface temperature is computed from the

GISST dataset of Hansen et al. (1999)

If a value is shown in italics, it is the average value of the variable in the control simulation (in these cases observed values are shown rather than

a data source)

Bold font means that the difference between the ensemble member’s root-mean-squared error and STD’s is greater than 10% of STD’s root-

mean-squared error. All the root-mean-squared errors are area or volume averaged as appropriate
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as the global mean temperature at the time of CO2 dou-

bling in a 1% per annum increasing CO2 scenario by

Cubasch et al. 2001) of 1.6 ± 0.04�C. This spread in

TCR is markedly lower than suggested by the spread of

models included the IPCC reports, however they produce

a large spread in Atlantic meridional overturning circu-

lation (Hargreaves et al. 2004). Inclusion of a more

complex atmosphere model is expected to dramatically

enhance the spread of their prediction, as the results from

Wigley and Raper (2001), Forest et al. (2002) and C&07

indicate.

A complex 3D atmosphere model can be used, but a

much less exhaustive sampling of parameter space must

be used to compensate for the additional computational

expense of running the model (e.g. Murphy et al. 2004,

Stainforth et al. 2005). Subsequent studies have used

a sub-sample of these results and incorporated a com-

plex ocean model as a step towards creating transient

regional predictions (Collins et al. 2006 and Harris et al.

2006).

C&07 described global mean results from the seven-

member perturbed ocean parameter ensemble described in

the previous section. Table 1 shows the TCR, climate

sensitivity (k) and ocean heat uptake efficiency (j) pre-

sented in C&07 for each ensemble member. Table 1 also

shows the results for a perturbed atmosphere parameter

ensemble (Collins et al. 2006). It can be seen that impact

of ocean perturbations on the climate sensitivity is less

than the impact of the atmosphere perturbations, which is

to be expected as the climate sensitivity is dominated by

atmospheric and surface processes. However, the atmo-

sphere perturbations cause a similar range in ocean heat

uptake efficiency (defined by Gregory and Mitchell

(1997) to have equivalent units as the climate sensitivity)

as the ocean perturbations: implying that the ocean per-

turbations have only a limited impact on the ocean heat

uptake.

C&07 make no attempt to explain, in detail, the limited

impact of ocean parameter perturbations, instead they just

speculate on possible causes. Previous sensitivity studies

for the individual parameters have shown some significant

impacts on climate change in other models (e.g. Dalan

et al. 2005a and Gnanadesikan et al. 2005). However, few

sensitivity studies which aim to stay within the realistic

bounds of the parameter have been performed, and none of

those use HadCM3. HadCM3 consists of a 2.5� 9 3.75�,

19 sigma level atmosphere model, a sophisticated land-

surface scheme, a zero-layer sea ice model as well as the

ocean model (Gordon et al. 2000). The ocean component is

a 1.25� 9 1.25� gridpoint model with 20 fixed depth levels

and a rigid lid. This model has previously been used

interpret observed ocean heat uptake (Gregory et al. 2006

and Barnett et al. 2005).

4 Why is the ocean heat uptake relatively insensitive

to ocean parameter perturbations?

The surprising result of C&07 was that variations in the

rate of ocean heat uptake in the perturbed ocean parameter

ensemble (as measured by the ocean heat uptake effi-

ciency) cause similar spread in TCR as variations in the

climate sensitivity. In fact, an ensemble sampling purely

atmosphere parameter uncertainty produces a similar range

of variations in ocean heat uptake efficiency. This section

aims to understand and explain the lack of influence of

ocean parameter perturbations on the global mean ocean

heat uptake found by C&07 in the HadCM3 ensemble. The

global mean temperature, salinity and potential density

profiles will be presented, but the majority of the analysis

will focus on the heat transfer diagnosed from different

physical processes.

The rate of potential temperature change from each

parameterisation at each grid point in the ocean can be

stored during a HadCM3 integration. These heating rates

can be used to calculate a global mean vertical heat flux

between model levels,

F Zð Þ ¼ qcp

Z Z

�H

dh
dt

dz

� �
Globe

ð1Þ

where q is the average density of sea water (taken to be

1,026 kgm-3), cp is the specific heat capacity of water at a

constant pressure (3,988 Jkg-1�C-1), dh=dt is the diagnosed

heating rate (computed at each time and subsequently

averaged),
R Z

�H dz is the vertical integral from the bottom of

the ocean up to level z and\[Globe is the horizontal average

over the whole globe. These diagnostics were introduced by

Gregory (2000) and used to investigate the heat budget of

HadCM2; the previous generation of the model.

4.1 Global mean vertical heat budgets in the baseline

control climates

The ocean parameter perturbations alter the simulation of

the climate state throughout the depth of the ocean. This

can be seen in Fig. 1, which shows changes in global mean

ocean profiles. Each ensemble member’s potential tem-

perature, salinity and potential density are expressed as

anomalies from the ensemble mean profiles. The vertical

coordinate is linear in model level, rather than depth, to

emphasise the upper ocean changes. The STD model ver-

sion happens to be very similar to the ensemble mean, so

the differences shown can also be considered as the impact

of each parameter change.

All of the parameter perturbations change the surface

density. A perturbed diffusivity (either isopycnal or back-

ground vertical) causes competing changes in salinity and
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temperature, yet the change in salinity always dominates

the change in surface density. The reduction in surface

density with the mixed-layer perturbations derives from

both cooling and salinification of the surface, rather than

opposing changes. This was to be expected as the mixed-

layer scheme (Kraus and Turner 1967) acts only on

potential density of the water column, rather than potential

temperature and salinity separately. Both the mixed-layer

perturbations appear to reduce the global efficiency of

surface mixing, as the surface lightens whilst the density

below 100 m increases (at the base of the mixed layer).

This represents a steepening in the global mean pycnocline

consistent with a shallower mixed layer.

The total salt content of the ocean is approximately

constant. Therefore, if a parameter perturbation causes an

increase in salinity at one location, then there must be a

compensating reduction elsewhere. The impact on tem-

perature need not be compensatory as heat can be supplied

or removed at the surface. Vertical diffusivity strongly

influences the ocean temperature below 300 m. The tem-

perature effect of the vertical diffusion perturbations

reduces above this level, because the vertical diffusion

plays a relatively minor role in the heat budget near the

surface. Low VDIFF shows smaller changes in the deep

ocean than High VDIFF, because the STD setting of ver-

tical diffusivity means that there is already little influence

of vertical diffusion at these depths. These impacts are

consistent with results of Dalan et al. (2005b), who per-

turbed the vertical diffusivity in an earth system model of

intermediate complexity (EMIC).

Perturbations to the isopycnal diffusivity bring about

persistent change in the potential density down to 1,500 m

(after which they are much smaller). Superficially this is

surprising, as isopycnal diffusion only occurs along lines of

constant density by definition. However, separate diffusion

of salt and temperature along isopycnals can lead to

resultant water masses with different densities. Near the

surface these density changes are dominated by salinity,

but temperature anomalies play a greater role at depth.

Increased isopycnal diffusion leads to a warmer surface, at

the expense of the ocean interior, implying that the net

impact of isopycnal diffusivity is a cooling of the interior

of the ocean (as found by Gregory 2000 and Huang et al.

2003b). This can be investigated more exactly by using the

diagnostics defined in Eq. 1, which are shown in Fig. 2.

In the ensemble mean (Fig. 2, top left panel) both ver-

tical diffusion and advection cause a downward heat flux at

all depths. The concept of a global mean advective heat

flux is discussed in more detail in Gregory (2000), but can

be thought of as the effect of water being advected

downwards being warmer than water in the return flow. In

equilibrium, this downward heat flux must be balanced by

an upward heat flux from other processes; namely

isopycnal diffusion, convection, mixed layer physics and

the thickness diffusion of Gent and McWilliams (1990),

henceforth termed the GM flux. These six processes com-

bine to characterise the heat budget below the surface

layer. Other processes such as the penetration of solar

radiation and the surface heat fluxes will affect the surface

layers and they are included as ‘‘Other’’ in Fig. 2. Their

impact below 50 m is negligible in comparison with the

other vertical heat fluxes.

A very similar heat balance also exists in the STD

model’s baseline climate, as the anomalies between it and

the ensemble mean (shown in the top right) are much less

than the other ensemble members. This general heat balance

is similar to that seen by Gregory (2000) in the previous

generation of the Hadley Centre model (HadCM2), but with

some variation in the specific depths at which processes

dominate. This heat balance is also consistent with the

results of Dalan et al. (2005b), whose intermediate-com-

plexity model does not have an equivalent mixed layer.

Isopycnal diffusion causes an upward flux of heat

(against the global mean vertical temperature gradient)

because of sloping isopycnals in high latitudes, where the

salinity dominates the density calculation. The GM flux is

the largest upward vertical heat flux below 100 m in the

ensemble global mean and is also caused by the sloping

isopycnals in high latitudes. The convective parameterisa-

tion operates infrequently and at limited locations, so has a

small effect on the global-mean heat balance, although it

causes large heat transfers locally. The mixed layer

parameterisation acts to bring heat up to the surface in the

global mean. At times when the sea surface is warmer than

the air above (e.g. winter, night), the ocean will lose heat

from the sea surface to the atmosphere. This surface heat

loss causes the surface water to become denser and sink, to

be replaced by warmer water from deeper within the mixed

layer. None of the ensemble members have reached a

complete equilibrium throughout the ocean, as can be seen

by the existence of a ‘‘total imbalance’’ in each member.

The imbalance is most notable in the vertical diffusivity

perturbations and would lead to an enhancement of the

temperature anomalies shown at depth in Fig. 1.

The six lower panels in Fig. 2 show each ensemble

member’s heat balance. It can be clearly seen that the

perturbations to each parameter change the vertical heat

flux from that parameterisation. As would be expected near

equilibrium, the heat flux change from the perturbed pro-

cess is balanced by changes from other processes. Most of

these compensation mechanisms can be explained using

simple oceanographic models. For example, the shallower

mixed layer indicated in Fig. 1 means that there is less

upward heat flux in the region of its original base, and more

at its new base. A shallower mixed layer would also mean a

sharper thermocline, and so there would be a higher
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advective heat flux generated by moving the same amount

of water across this stronger gradient. The shoaling of the

mixed layer also leads to cooler water at its old base

(Fig. 1), which creates greater vertical gradients along the

isopycnals, and thus an increase in the upwards isopycnal

heat flux. The vertical diffusivity perturbations cannot be

explained simply with a global mean analysis, partly

because compensating processes change depth and mag-

nitude between the HighVDIFF and LowVDIFF runs.

4.2 Ocean heat uptake under increasing CO2

The primary role of the ocean in transient climate change is

its large potential for heat uptake. It was shown by C&07

that the ocean heat uptake efficiency (a global mean

diagnostic devised by Gregory and Mitchell 1997) varies

across the perturbed ocean parameter ensemble, but that

these changes are similar in magnitude to an ensemble

without ocean parameter perturbations. C&07 also noted

that the variations in ocean heat uptake efficiency account

for only half of the variation in transient climate response

seen in the ensemble. Evidence was presented above which

shows the parameter perturbations alter the baseline verti-

cal energy budget of the ocean. Therefore, one could

expect the parameter perturbations to alter the ocean heat

uptake under climate change, yet C&07 show the variations

are relatively unimportant. In this section, we compare two

possible explanations for C&07’s result; firstly that
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Fig. 2 The global mean profile

of the vertical heat flux from

different ocean physical

processes. The top right panel
shows the ensemble mean

profile, top right shows the

difference between the STD and

ensemble mean, whilst the other

panels show the deviations of

single ensemble members from

the ensemble-mean profile. The

grey line indicates the transition

between the seasonally-affected

surface waters and the ocean

interior (as determined by

Gregory 2000)
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parameter perturbations may only weakly influence the

ocean heat uptake of a parameterisation scheme, and sec-

ondly that there may be compensatory changes that reduce

the direct impact of a parameter perturbation.

Figure 3 shows the global mean depth profiles of

anomalies in the climate change signal in potential tem-

perature (left), salinity (middle) and potential density

(right): the deviation of each member from the ensemble

mean climate change signal is plotted. Where there are

positive deviations at one depth and negative deviations at

another depth, we may say that there is some compensation

of changes with depth. Examples of such depth compen-

sation should occur in the salinity profile, because the total

salt content of the ocean remains approximately constant

on centennial time scales. However, there is also depth

compensation in the potential temperature profiles. This is

most obvious in the case of the HighVDIFF perturbation,

but all ensemble members show some kind of depth

compensation with either positive anomalies overlying

negative anomalies, or vice-versa. Depth compensation

reduces the variations in total ocean heat uptake seen in the

ensemble. (In the extreme case of exact compensation, the

total ocean heat uptake would be constant, but this does not

occur here, as shown by C&07.)

The change in global mean downward heat fluxes for the

different perturbations from the different physical pro-

cesses is presented in Fig. 4 (calculated using Eq. 1). The

top left hand panel of Fig. 4 show the STD model’s climate

change signal in these fluxes. The symbols indicate an

anomaly that is statistically distinguishable from internal

variability, as determined from 20 year segments of the

combined ensemble control runs (significance testing was

not possible in Fig. 2 as the required diagnostics from the

millennia-long HadCM3 control are not available).

During transient climate change, the mixed layer

scheme is responsible for most of the additional down-

wards heat transfer in the top 160 m of the ocean.

Advection then dominates until 350 m. The isopycnal

diffusion dominates the vertical heat transfer below 350 m

until 1,500 m. The additional heat content from an increase

in CO2 is minimal below this depth. This is a similar order

of dominance as found by Gregory (2000) in the previous,

lower-resolution version of the model, however the tran-

sitions occur at different heights. The EMIC used by Huang

et al. (2003a, b) and Dalan et al. (2005a, b) has much less

resolution near the surface and no mixed-layer scheme.

Therefore, the partitioning seen in their studies differs from

that shown here.

One possible explanation for the small range of ocean

heat uptake in C&07 is that the ocean model is insensitive

to the parameter perturbations that were applied. This

appears not to be the case, as even the weakest perturbation

causes a maximum change of that parameterisation’s flux

(shown in Fig. 2) that is at least one-third of STD’s climate

change signal at that depth.

The climate change signal in global mean downward

heat fluxes for each individual ensemble member are

shown as the other panels in Fig. 4. They are shown as

anomalies from the STD-member climate change signal.

(In this case there are some significant differences between
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Fig. 3 The global mean depth

profiles of the climate change

signal. They are shown as

deviations from the ensemble

mean change. The panels show

the potential temperature,

salinity and potential density

from left to right

332 C. M. Brierley et al.: The impact of perturbations to ocean-model parameters

123



the behaviour of the STD model and the ensemble mean.)

We discuss the changes in the individual members with

respect to the STD to emphasise the exact role of the

parameter perturbations.

It is worth noting here that, in contrast to the case of the

quasi-equilibrium control experiments, the vertical heat

transports have not equilibrated and the ocean would

continue to warm if the CO2 forcing were to be held fixed

from this point in the experiments. Hence we would not,

a priori, expect the kind of compensation of heat transports

that is evident in Fig. 2 where the experiments are

approaching a quasi-equilibrium state. It would be quite

possible to see changes in a single heat transport process

which, when others remain unperturbed, would result in a

different rate of total heat uptake and transient climate

change.

Figure 4 shows that there are significant compensating

changes in the vertical heat fluxes, despite the above rea-

soning. It can be seen that the perturbed process is never

affected by the parameter perturbation in isolation: there

are always significant changes from unperturbed processes.

Our findings show a degree of similarity to the results of

previous studies, although they are somewhat difficult to

interpret. Huang et al. (2003a) found that the ocean heat

uptake is insensitive to perturbations in the isopycnal dif-

fusivity, because of compensation from other oceanic

processes. These results support that conclusion. Dalan

et al. (2005a) found that perturbations to the vertical
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Fig. 4 The variations in the

changes of the global mean

vertical heat transfers at the

time of CO2 doubling. The STD

member signal is shown in the

top left panel; top-right shows

the difference between the

ensemble mean and the STD.

The ensemble members are

shown as deviations from the

STD. A symbol indicates that

the deviation is significantly

different from that expected by

natural variability at the 5%

level
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diffusivity cause significant variations in the ocean heat

uptake. LowVDIFF is the only member of this ensemble

that shows no significant changes in the total vertical heat

flux (no black crosses, just a black line in Fig. 4). Yet the

increased vertical diffusivity (HighVDIFF) shows the

largest changes of any ensemble member.

The mixed layer perturbations both show only small

changes in the mixed layer heat flux, but variations in other

processes create significant changes in the total vertical

heat flux. These variations probably arise from the impact

of the parameter perturbation on the baseline state, rather

than any transient processes. The isopycnal perturbations

are noteworthy in that both HighISO and LowISO have

significantly higher total vertical heat flux below 800 m.

Whilst this is dominated by an increase in isopycnal dif-

fusion in HighISO, in LowISO the higher flux is created by

corresponding changes in the GM flux (which was per-

turbed as well as the diapycnal diffusivity in Dalan et al.

2005a, b).

The impacts of the vertical diffusivity perturbations

exemplify the complex interconnections between processes

in the ocean model. LowVDIFF shows a significant

reduction in the vertical heat flux from vertical diffusion,

which is compensated for by advection and GM flux at

different levels. However, HighVDIFF has an increase in

heat flux from vertical diffusion that is reinforced and

amplified by those two same processes. These two

ensemble members determine the range of ocean heat

uptake efficiency (j, Gregory and Mitchell 1997) seen by

C&07 and presented in Table 1, yet the total rate of heat

flux in LowVDIFF is not statistically distinguishable from

the STD member. This is possible as the ocean heat uptake

efficiency is defined as the change in heat flux divided by

the TCR, and there are significant differences between the

TCR of LowVDIFF and STD.

4.3 Summary of global mean heat uptake findings

This section set out to explain the relative insensitivity of

the ocean heat uptake efficiency to ocean parameter per-

turbations. There is no single overarching explanation

identified by the analysis presented above. It is clear that

the parameter perturbations definitely have the expected

direct impacts on the climate-change-induced vertical heat

fluxes calculated by the parameterisations. However, these

direct impacts are relatively small on the global scale (for

example the mixed layer perturbations change the mixed

layer heat flux by only 10% of the total rate of heat uptake

at the depth of their greatest impact). More interestingly

though the direct impacts are also modified by ocean

interactions that cause changes in vertical heat fluxes from

unperturbed processes. There appears to always be some

compensation between the processes leading to a reduction

of the changes in heat flux, and hence ocean heat uptake. It

is likely that the majority of the changes in the ocean heat

uptake occur from changes in the baseline climates caused

by the parameter perturbations (agreeing with the finding

of Dalan et al. 2005a). We have presented a global mean

analysis, but as no single explanation arises, a regional

analysis for each ensemble member would need to be

undertaken to determine the exact mechanism for the

insensitivity to that parameter perturbation.

It is clear from Fig. 2 that the deep ocean is not fully

equilibrated by the beginning of the increasing CO2

experiment in the experiments with vertical diffusivity

perturbations. The impact of the residual climate drift in

these simulations is hard to estimate quantitatively. The

definition of the climate change signal as the contempo-

raneous difference between the two model runs acts to

remove some of the impact of climate drift. The method

assumes that the residual climate drift and the climate

change signal are completely independent. The only

possible method to truly remove any effects of climate

drift from the simulation would be to integrate the base-

line simulations longer, which unfortunately was not

feasible. HighVDIFF has both a largest anomalous signal

and largest drift. The member with the next largest drift,

LowVDIFF actually has no significant anomalies in its

climate signal, rather than amplified anomalies. One could

take this as evidence that the amount of residual climate

drift does not impact the perturbed response to the

imposed forcing.

5 Does ocean parameter uncertainty impact regional

climate change predictions?

The main purpose for creating the perturbed ocean

parameter ensemble analysed here was to begin investi-

gating the importance of ocean parameter uncertainty in

probabilistic predictions of climate change. C&07, and the

analysis presented above, show that ocean parameter

uncertainty is not as important as atmosphere parameter

uncertainty in determining global mean properties. How-

ever, many locations will not experience global-mean

climate change. This latter half of the paper investigates the

extent to which a probabilistic regional climate forecasting

system needs to incorporate ocean parameter uncertainty to

correctly sample uncertainties in regional climate changes.

In addition, we also examine the Atlantic meridional

overturning circulation; a feature of the climate system that

has received much attention recently with both observa-

tions and modelling studies (e.g. Bryden et al. 2005,

Gregory et al. 2005). It is expected to be especially

responsive to ocean parameter perturbations (Hargreaves

et al. 2004), so is investigated in Sect. 5.4.
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5.1 Regional structure in the baseline surface

simulation

The spatial patterns of baseline, pre-industrial climates

will be discussed before looking at the spread in the

climate change signals. The reasons for this are twofold;

firstly a portion of variations in the climate change signal

will be a consequence of these changes and secondly it

should be easier to explain variations in the steady-state

changes than the transient behaviour. Figure 5 compares

the spatial patterns of the time-average surface air tem-

perature (SAT, calculated at a height of 1.5 m) in the

baseline climate across the ensemble. The top left panel

shows the ensemble mean pattern and the other panels

show the deviation from the mean pattern for each

member. The deviations are only shown if they are sig-

nificantly different from modelled internal variability at

the 5% level when compared to a multi-millennia control

simulation of HadCM3 (henceforth, these deviations will

be termed ‘‘detectable’’).
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Fig. 5 The average surface air

temperature in the control

simulations. The top left panel
shows the ensemble mean

pattern, whilst the other panels

show the deviations from that

pattern (where the differences

are detectable from internal

variability at the 5% level). On

these deviation panels, green
indicates a detectable change

that has a magnitude of less than

0.25�C. The global mean

temperature is shown in

parentheses next to name of the

ensemble member
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The STD simulation is very similar to the ensemble

mean, with few significant SAT differences greater than

0.5�C. This partially reflects the experimental design

which, in the case of perturbations to the isopycnal diffu-

sion and vertical diffusivity, places the STD model near the

centre of the distribution of parameters. It means that it is

appropriate to consider variations in the perturbed mem-

bers from the ensemble mean to also be representative of

variations about the STD version of the model. The biases

in modelled climate for the STD model are described in

Gordon et al. (2000) and a comparison of each ensemble

member to observations is shown in Table 2.

Each parameter perturbation causes detectable varia-

tions in the SAT climatology. These variations are not

confined to the ocean, but also occur over the land for

every parameter. As seen with the vertical profiles pre-

sented earlier, the two pairs of diffusivity perturbations

cause the largest climate impacts. The surface patterns for

these two pairs of parameters are approximately anti-

symmetric (spatial correlations of -0.81 for the isopycnal

diffusivity pair and -0.85 for the vertical diffusivity pair).

All four diffusivity perturbations appear to have their

maximum impacts in the high latitudes and in the gyre flow

on the Eastern side of the basin.

The imposed perturbations to the mixed layer parame-

ters were not symmetric about the STD model as the two

parameters perturbed have interacting and compensating

effects. Detectable SAT differences from the ensemble

mean/STD are evident in the tropical and subtropical

regions and, in the case of LowLAM, extending to the mid-

latitudes in some regions.

Figure 6 shows the ensemble range in the equilibrium

baseline climate state for four surface variables. The

ensemble range is chosen as a suitable measure of

ensemble spread as the ensemble extends to the extreme

value of the uncertainty range in each parameter, rather

than sampling systematically within the uncertainty range

(c.f. Murphy et al. 2004 and Webb et al. 2006). This will

only give us information about the extent of uncertainty

arising from these ocean model parameters, instead of a

(prior) distribution which, in this case, would not be pos-

sible anyway because of the small ensemble size. This

work is only an initial exploration to gauge the importance

of such ocean model parameter uncertainty, so determining

a maximum bound is sufficient for our purposes.

The ensemble spread in the SAT (Fig. 6a) is largest in

high latitudes. The majority of the Southern, North Atlantic

and Arctic oceans have a spread of greater than 2�C (de-

marked by the black contour), approaching 5�C in places.

There are also distinctive ‘‘tongues’’ in the equatorward

sections of the subtropical gyres, which have a spread of

greater than 1�C. These tongues are possibly caused by

advection of anomalies sourced in high latitudes by the

gyre, causing spread in the local temperature. The sea

surface temperature pattern (Fig. 6c) echoes the surface air

temperature pattern, but without the large spread in the

Arctic and surrounding the coast of Antarctica, because ice

cover provides a cap on the sea surface.

There is less detectable spread in precipitation (Fig. 6b).

The largest spread occurs on the equatorward edge of the

tongues of surface temperature spread. These tongues

occur between areas with very low precipitation and the
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Fig. 6 The ensemble range in

the average of the control

simulation for a selection of

variables. The panels are only

shaded when the ensemble

variance is significantly greater

than the natural variance at the

5% confidence level
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inter-tropical convergence zone (ITCZ) in the ensemble

mean, so steep meridional precipitation gradient occurs in

this region. Slight variations in the location and expanse of

the ITCZ are consistent with the variations in the under-

lying SSTs.

The largest spread in sea-surface salinity (SSS, Fig. 6d)

occurs in the Arctic Ocean, and is associated with spread in

the sea ice volume (not shown, but also indicated by the

large ensemble spread in surface air temperature in the

region). The ensemble spread in SSS in the Southern Ocean

is some of the smallest despite some spread in the sea ice.

This discrepancy occurs as an increase in sea ice in the

Southern Ocean leads primarily to an increase in sea ice

area, whilst the area of the Arctic is constrained by the

topography. Therefore the increase in sea ice in the Arctic

results in an increase in ice depth and more concentrated

local sea ice processes, such as brine rejection. There is

also SSS spread in the regions of tropical convection (e.g.

the maritime continent) related to the ensemble spread in

precipitation, which although small as a percentage is large

in absolute terms.

5.2 The spatial pattern of climate change signal

The ensemble mean climate change signal in surface air

temperature, precipitation, sea surface temperature and sea

surface salinity is shown in Fig. 7. We define the climate

change signal for each ensemble member by taking the

contemporaneous difference between the final 20 years of

the 1% per annum simulation and the control simulation.

This time period is centred on the time of doubled CO2 as

in the definition of the transient climate response (e.g.

Meehl et al. 2007, C&07). The ensemble mean surface

temperature change is similar to that seen in other coupled

models (e.g. Meehl et al. 2007) with polar amplification, an

increased warming over the continents and warming

minima over the Southern Ocean and in the North Atlantic.

The climate change signal in precipitation is consistent

with an enhanced hydrological cycle and is again similar to

that shown in e.g. Meehl et al. (2007).

Figure 8 shows the surface air temperature climate

change signal as anomalies from the ensemble mean pat-

tern (shown in the top left panel). As with the baseline

climate, differences between the ensemble mean surface air

temperature climate change signal and STD are few,

reflecting the experimental design of perturbing about the

standard model setup. The impacts of isopycnal diffusion

perturbations are only barely detectable. The LowLAM

experiment causes significant differences over equatorial

land regions, which are likely related to temperature vari-

ations over tropical oceans that have not passed the strict

significance test. The vertical diffusivity perturbations

cause widespread significant impacts and dominate the

ensemble spread in the climate change signal.

5.3 Spread in the regional climate change signal

The ensemble spread in regional climate change signal is

shown in Fig. 9. There is detectable regional ensemble

spread covering the majority of the globe. The SAT spread
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Fig. 7 The ensemble mean

climate change signal in a

selection of variables
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is largest in the Arctic and around the coast of Antarctica,

but there is also detectable spread throughout the tropics.

Collins et al. (2006) created an ensemble to investigate the

impacts of atmosphere parameter uncertainty on the cli-

mate response. They do not show a figure directly

equivalent to Fig. 9, because the experimental set-up was

slightly different. However, they do show the standard

deviation of SAT in their ensemble (Collins et al. 2006,

Fig. 10). As a simple rule of thumb, the 95% probability

range is approximately ±2 standard deviations for a normal

distribution. This allows us to confirm that the atmosphere

parameter uncertainty is more important than the ocean

parameter uncertainty for the polar latitudes. The majority

of the globe has a standard deviation less than their lowest

level of 0.5�C. Figure 9 shows regions of the tropics that

have an ocean parameter ensemble spread greater than 1�C.

An analysis of variations in the local radiative feedbacks

(following e.g. Cess et al. 1990, Webb et al. 2006) was
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Fig. 8 The deviation in surface

air temperature climate change

signal of an ensemble member

from the ensemble mean. The

global mean surface air

temperature change for each

ensemble member is shown in

the panel title. The values are

only shown where they are

significantly different from

natural
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performed to help explain the causes of some of the

regional spread (figures omitted for brevity). It shows that

the Arctic temperature spread is caused by uncertainty in

the ice-albedo feedback, on top of a large mean signal. The

large SAT spread in the eastern Pacific is co-located with

the large spread in the baseline climate states—the feed-

back analysis shows that there is large uncertainty in the

cloud radiative response in this region. The impact of

ocean-processes on the regional climate change pattern in

the tropics are largely omitted (or highly simplified) in

studies of cloud-feedbacks, as they concentrate on experi-

ments in which either uniform SST changes are applied to

atmosphere models or have simplified mixed-layer oceans.

This study indicates that some representation of the

impacts of perhaps rather subtle changes in tropical SSTs

under climate change may be important.

Approximately 35% of the globe does not exhibit spread

in the precipitation signal that is detectable above natural

variability (this is uncoloured in Fig. 9). However, regions

over the Southern Ocean and North Atlantic do show some

detectable spread in precipitation response. Interestingly,

these are the regions of the smallest mean surface tem-

perature changes (Fig. 7). There is also detectable spread in

each of the major equatorial convective regions: the mar-

itime continent, West Africa and Amazonia. The largest

percentage spread in the precipitation climate change sig-

nal is over the central Pacific, coincident with the

differences in cloud radiative feedbacks discussed above.

5.4 The slowdown of the Atlantic meridional

overturning circulation

The Atlantic meridional overturning circulation (MOC) has

been the target of a large amount of research into the

impact of parameters. Primarily this research has taken the

form of sensitivity studies (e.g. Dalan et al. 2005a and

Huang et al. 2003a), however there are a couple of per-

turbed parameter studies that investigate the change in the

MOC strength, namely Collins et al. (2006), Hargreaves
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Fig. 9 The ensemble range in

the climate change signal. The

range is only shown if it greater

than that expected from natural

variability

500 520 540 560 580

Year 

0.70 

0.80 

0.90 

1.00 

1.10 

1.20 

h t g n e r t S   
C

 
H

 
T

 
  l a n o i t c a r F 

STD 

LowISO 

HighISO 

MedLAM 

LowLAM 

LowVDIFF 

HighVDIFF 

Fig. 10 The 10 year running-mean reduction in the meridional

overturning circulation seen in each ensemble member. The strength

is shown as fraction of the preindustrial THC strength. The solid black
line shows the ensemble mean linear trend. The grey shaded region
shows ±2 standard deviations of natural decadal variability calculated

from a multi-millenia control simulation of HadCM3
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et al. (2004) and Challenor et al. (2006). Table 2 shows

that the mean MOC strength in the pre-industrial state

varies across the ensemble, but within the range of other

climate models. We find that only the perturbations to the

vertical diffusivity cause statistically significant variations

in the mean MOC strength in the baseline climate. How-

ever, the exact values do not fit the scaling laws of either

Bryan (1987) or Dalan et al. (2005b). Huang et al. (2003a)

find MOC sensitivity to the isopycnal diffusivity; however,

this study can detect no link. The climate drifts in the deep

ocean would impact the exact strength of the MOC, but

will probably not impact the qualitative results.

There is large spread in the SSS climate change signal in

the North Atlantic, therefore we may expect differences in

the reduction of the MOC (no ensemble member has a

complete shutdown). Figure 10 shows the 10-year running

mean of the THC strength throughout the increasing CO2

run, expressed as a fraction of each ensemble member’s

mean MOC strength in the control run. The ensemble mean

linear trend is shown as the solid black line. The MOC has

large decadal natural variability in each ensemble member

(Table 1). The grey shaded area shows ±2 standard devi-

ations of natural variability from the ensemble mean trend,

which would be a 2.5–97.5% confidence interval if the

variability were distributed normally. As none of the

ensemble members fall substantially outside this shaded

area it is not possible to determine whether the variations in

the MOC reduction are caused by perturbations to ocean-

model parameters or natural variability. Whether MOC

reductions should be presented as absolute or fractional

changes is an open question. It would be hard to prove a

statistically significant ensemble spread even if absolute

changes were used.

5.5 Summary of regional impacts assessment

C&07, and the analysis presented above, shows that

perturbing certain ocean parameters in the HadCM3

model causes only relatively small impacts to global

mean climate change. However, we do show here that

there are spatial patterns of changes, associated with

different perturbations, which are locally significant in

some regions (i.e. greater than would be expected in the

basis of natural variability). We conclude that the impact

of uncertainties in ocean parameters should be considered

when making probabilistic climate forecasts, especially

for regions. The details of how this is done might, how-

ever, depend on the experimental design. Using the

approach taken here, of spinning up each perturbed

member until near-equilibrium, introduces surface climate

biases which must be considered in any weighting scheme

for producing probability distribution functions. An

alternative approach (e.g. Murphy et al. 2007) would be

to use flux-adjustments to limit the development of sur-

face biases. While weighting would be still be needed, the

effect may be diminished when surface climates are

constrained to be closer to observations. The spatial

response might conceivably be also diminished with flux

adjustments as the forced anomalies would be developing

on similar baseline climate states.

6 Conclusions and discussion

This work describes an ensemble designed to investigate

the possible impact of uncertainties in physical parameters

in the ocean component of HadCM3 on simulations of

climate change. Collins et al. (2007) presented the initial,

global mean analysis of this ensemble. They found that the

impacts of ocean parameter uncertainty on global mean

climate response were relatively small. Firstly we have

attempted to explain this result, and secondly we have

investigated the potential impacts on the regional detail of

the modelled climate change signal.

While the ocean heat uptake impacts of the parameter

perturbations are in the expected directions, their magni-

tudes are generally small. They are also modified by

interactions with other unperturbed ocean processes, which

tend reduce the impacts further. These interactions require

further study, but it is clear that understanding and mod-

elling them are essential for predictions of ocean heat

uptake. The ocean parameter perturbations cause detect-

able variations in regional climate change signals.

Therefore a methodology that samples ocean parameter

uncertainty is required when creating a probabilistic

regional climate forecast, rather than creating a global-

mean forecast. We also find that there is no detectable

uncertainty in the meridional overturning circulation,

partly because of its large natural variability.

The ensemble used for this investigation does not

exhaustively sample all the uncertain ocean parameters in

HadCM3. There are many other possible parameters that

could be perturbed (see appendix) and these will be

subject to future study. Structural uncertainty (relating to

how the ocean model is created) was considered to be a

large source of uncertainty by the majority of the experts

consulted for this study. An experiment design to easily

and systematically investigate structural uncertainty is not

clear to the authors however. A substantial investment to

design a flexible model platform would probably be

required, although use of current ocean models and a

flexible coupler such as the OASIS coupler (Valcke and

Redler 2006) could provide a preliminary investigation.

Incorporating additional ocean model uncertainties would,

presumably, be expected to increase the spread in climate

projections.
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