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Abstract An ensemble of regional climate modelling

simulations from the European framework project PRU-

DENCE are compared across European sub-regions with

observed daily precipitation from the European Climate

Assessment dataset by characterising precipitation in

terms of probability density functions (PDFs). Models

that robustly describe the observations for the control

period (1961–1990) in given regions as well as across

regions are identified, based on the overlap of normalised

PDFs, and then validated, using a method based on

bootstrapping with replacement. We also compare the

difference between the scenario period (2071–2100) and

the control period precipitation using all available mod-

els. By using a metric quantifying the deviation over the

entire PDF, we find a clearly marked increase in the

contribution to the total precipitation from the more

intensive events and a clearly marked decrease for days

with light precipitation in the scenario period. This

change is tested to be robust and found in all models and

in all sub-regions. We find a detectable increase that

scales with increased warming, making the increase in

the PDF difference a relative indicator of climate change

level. Furthermore, the crossover point separating

decreasing from increasing contributions to the norma-

lised precipitation spectrum when climate changes does

not show any significant change which is in accordance

with expectations assuming a simple analytical fit to the

precipitation spectrum.

Keywords Regional climate change � Extreme events �
Precipitation � Probability distributions �
Bootstrapping with replacement � Crossing-point statistics

1 Introduction

As climate changes under human influence, a need has

arisen for tools to estimate the nature and amplitude of

future changes in precipitation. Sun et al. (2006) analysed

daily precipitation data from 14 AGCMs that used the

SRES A2 scenario (Nakićenović et al. 2000) to evaluate

potential future changes and found a global shift toward

more intense and extreme precipitation during the late

twenty-first century. Dessai et al. (2005) estimated uncer-

tainties in regional climate projections applying skill scores

to seasonal precipitation data and found that the differences

in emission scenarios dominates the precipitation uncer-

tainty at the 95th percentile.

In the European framework project PRUDENCE, AG-

CMs are used to provide low resolution boundary

conditions for a region inside which a detailed regional

climate model (RCM) is run (Christensen et al. 2007). The

models are validated using current climate and then used

for making climate projections. Here, we use daily pre-

cipitation output from an ensemble of RCMs to assess

future precipitation projections. We present ways to reli-

ably determine the ability to simulate daily precipitation

statistics based on a comparison with observed precipita-

tion, before using the models to assess future changes. This

is done using a method based on statistical metrics

specially produced for the task. The nature of the metrics

F. Boberg (&) � P. Berg � P. Thejll � J. H. Christensen

Danish Climate Centre, Danish Meteorological Institute,

Lyngbyvej 100, 2100 Copenhagen Ø, Denmark

e-mail: fbo@dmi.dk

W. J. Gutowski

Department of Geological and Atmospheric Sciences,

Iowa State University, Ames, IA 50011, USA

123

Clim Dyn (2009) 32:1097–1106

DOI 10.1007/s00382-008-0446-y



used to intercompare models and reality takes into account

the properties of precipitation statistics. In particular, the

metrics focus on the spectrum of precipitation amount

versus daily intensity.

A model matching the observations for the full spectra

of precipitation values indicates that the model is likely

also to capture the full range under climate change,

including the tail of the distribution where the statistics

often are not well-sampled. Furthermore, precipitation

statistics vary from region to region based on the type of

climate. Perkins et al. (2007) suggest using a metric

where probability density functions (PDFs) are con-

structed to generate a ‘match metric’ based on the

overlap of normalised PDFs (model and observational

precipitation, respectively). A perfect overlap results in a

skill score of one while the score is closer to zero for

poor overlaps.

Note that the approach of using PDFs as our method of

comparison is focused on the models’ ability to optimally

describe the full precipitation distribution. Although the PDF

technique implicitly includes moments like the average and

standard deviation, it does not directly describe their possible

differences versus observations. Furthermore, the tail of the

PDFs has only a small influence on the skill score due to a

relatively small contribution from extreme events.

The analysis approach described here will be subse-

quently used on RCM data from the ENSEMBLES project

(Hewitt 2005). In this study we are aiming at quantifying

the error over the entire PDF, using only one out of several

metrics that will subsequently be used for ranking indi-

vidual ENSEMBLES RCM parameters.

Robustness of the optimal metrics must be estimated so

that we can state the quality of our answers. Here we use a

Monte Carlo method based on bootstrapping with

replacement to evaluate the robustness of the skill scores.

Using the results from the robustness test, we then consider

the technique of the crossing-point statistics (Gutowski

et al. 2007) in order to address the implications under

climate change conditions. Gutowski et al. (2007) exam-

ined changes in normalised precipitation intensity spectra

for several regions in the United States under global

warming as produced by two RCMs. They found a single

percentile separating decreasing from increasing contribu-

tions to the normalised spectrum and that it occurred

around the 70th percentile of cumulative precipitation,

irrespective of the governing precipitation processes or

which model produced the simulation. They further sug-

gested that this should be a robust behaviour when the

intensity spectra adhere to a gamma distribution. Here we

seek to demonstrate that this result also applies for Europe,

and is a robust result not depending on model formulation.

Our working hypothesis is as climate changes, the cross-

over point separating increasing from decreasing

contributions to the normalised spectrum can be a basis for

relating precipitation changes with a temperature change.

The structure of this paper is as follows. Section 2

presents the model data and the observations used in this

study. In Sect. 3, we present the results of assessing model

quality from a match with observations. In Sect. 4, we use

these highest scoring models to determine any possible

scenario changes in precipitation distribution. The paper

ends with a discussion in Sect. 5 and conclusions in

Sect. 6.

2 Data

Two different data sets are analysed in this study. The first

data set consists of daily precipitation from ten PRU-

DENCE RCMs driven by the GCM model HadAM3H

(Pope et al. 2000; Buonomo et al. 2007), including control

(1961–1990) and scenario (2071–2100) runs for each

(Christensen and Christensen 2007). Control runs are

forced by observed SSTs and observed greenhouse gases.

All of the simulations we use here have 50 km horizontal

resolution, and where future scenarios are discussed we

refer to the SRES A2 scenario (Nakićenović et al. 2000).

The different models used in this study and their parent

institutes are listed in the leftmost column of Table 1.

The second data set in this study is based on measure-

ments monitored by the European Climate Assessment

(ECA) project (http://eca.knmi.nl/). ECA was initiated to

combine, present and analyse daily series of meteorological

measurements (Klein Tank et al. 2002). In this study, we

examine climate change by analysing series of daily

observations of precipitation at ECA stations within nine

European sub-regions with varying climatology (see

Fig. 1). Stations with fewer than 3,000 daily measurements

during the period 1961–1990 were arbitrarily excluded from

further analysis due to poor sampling. This left a data set

containing observations from 455 stations used in this

study. Note that the distribution of stations is inhomoge-

neous within some sub-regions and sparse for some regions.

Because we want to compare the model data to obser-

vations, PDFs are constructed for both data sets. Dry days

are defined as days with precipitation less than 1 mm and

these days are removed from the two precipitation data

sets. Observations of weak intensity precipitation are not

always reliable and low intensity precipitation does not

contribute significantly to the total amount of precipitation

(Dai 2001). Furthermore, low rainfall has a small societally

impact through flash floods, etc. Then PDFs are calculated

from the daily land data for each region and model through

three steps. First the data are put into bins of 1 mm day-1

width starting at 1 mm day-1. Secondly each bin’s fre-

quency of events is multiplied by the bin average to get the
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precipitation amount. Finally the binned data are norma-

lised by dividing each bin value with the total wet day

precipitation amount for the 30 year period for the partic-

ular region and model run in question. The same procedure

is carried out for the observational data to enable a direct

comparison with the PRUDENCE RCM control runs.

3 Metric analysis

Figure 2 compares binned normalised precipitation distri-

butions for the ten PRUDENCE models driven by the same

GCM, for all nine sub-regions, with ECA precipitation data

for the period 1961–1990. Note that the plots are truncated

at bin 110 mm day-1 for the sake of clarity. With this

truncation at 110 mm day-1, a total of about 0.01% of the

daily values is omitted and a total of approximately 0.23%

of the precipitation amount is omitted.

The models’ poorest performance versus the observed

precipitation distribution occurs for the low-latitude region

2 (IP). Low performance also occurs for the region 7 (MD).

The relatively few days with observed light precipitation is

not modelled well for region IP and to some extent also

regions MD and AL. These three regions are, according to

the relatively small slope of the observational PDFs com-

pared to the other regions’ PDFs, characterised by long

periods of drought or only light precipitation interspersed

with heavy showers.

As seen in Fig. 2, extreme precipitation is, as expec-

ted, more difficult to simulate. One reason for this is due

to the 50 km horizontal resolution of the RCMs that

smooth any single-point extremes occurring in the

observational data. A conversion to gridded data for the

observations would decrease its extreme precipitation.

The comparison between model data and observations

presented here is mainly a demonstration case to the

upcoming study using ENSEMBLES RCM data vali-

dated using a gridded dataset of observed precipitation

(Haylock et al. 2008).

Also given in Fig. 2 are the 95th percentiles of accu-

mulated precipitation, both for observations and model

simulations. The model percentiles for the low-latitude

regions IP, AL, and MD have a relatively large scatter

compared to the other regions. For regions IP and FR no

Table 1 Results of robustness analysis for wet days for ten different RCMs all driven by the HadAM3H GCM

Institute/model BI IP FR ME SC AL MD EA EUx

DMI/HIRHAM_D 0.14

ETH/CHRM 19.64

GKSS/CLM 4.31 11.01 76.80 4.34 19.78 2.90 27.37 89.94

HC/HadRM 23.18 88.84 16.95 24.07 72.34 69.10 0.75 8.01 10.06

ICTP/RegCM 17.06 6.06 71.59 91.99

KNMI/RACMO 15.79 0.15 7.88 21.45

METNO/HIRHAM_M 1.70 0.05 0.07

MPI/REMO 10.63

SMHI/RCAO 6.51

UCM/PROMES 1.04 0.14 6.48 71.88

About 10,000 Monte Carlo bootstrap trials were performed for each region and the percentage of occurrences of first place ranking, measured by

the PDF overlap metric, is recorded in columns two through ten. For comparison, the models with the highest original skill score are indicated in

italics for each region

Fig. 1 Geographical position of ECA compiled precipitation stations

(marked by times symbol) and extent of eight predefined European

PRUDENCE sub-regions marked by solid lines (Christensen and

Christensen 2007). These regions are British Isles (BI), Iberian

Peninsula (IP), France (FR), Mid-Europe (ME), Scandinavia (SC), the

Alps (AL), the Mediterranean (MD), and Eastern Europe (EA). A

ninth region (dashed lines), defined as the maximum area included in

all the ten PRUDENCE models, termed ‘EUx’ will also be used in

this work. This region covers latitudes 41.0�N–59.5�N and longitudes

10.5�W–30.0�E. Note that region SC is not covered well by models

RegCM and PROMES while the IP and MD regions are not well

covered by the HIRHAM_M model
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model percentile is able to match the observed percentile

due to dissimilar PDFs.

To determine each model’s precipitation skill we com-

pare each PRUDENCE model against observed

precipitation using the skill score metric of the degree of

overlap of normalised precipitation intensity PDFs (Perkins

et al. 2007). The PDF overlap as a function of sub-region

for all ten models is shown in Fig. 3. We see that the

RegCM, HadRM and CLM models have high scores for

most regions and that the lowest scores occur for region IP.

Furthermore, the spread in skill score for the ten models is

relatively small for region BI.

The European sub-regions are chosen in order to be

consistent with previous analyses (e.g. Christensen and

Christensen 2007). One example where the choice of

region might not be physically justified is the SC region,

where the precipitation in western Norway is much more

extreme than that in the rest of the region. The effect of

dividing the region into two smaller regions depending on

the skewness of the frequency PDF, i.e. separating the parts

of Norway with extreme precipitation, was explored but the

ranking of the models was not affected by this (Boberg

et al. 2007). The European region was also divided into a

Northern and a Southern region, with the same result

(Boberg et al. 2007). This suggests that the results are not

dependent on the choice of regions. This is an encouraging

sign of robustness in the overall method. Seeking an

optimal subdivision is not pursued here, though we note

that the models that do best in the SC region (and in the

subdivisions thereof described above) also do well in the

AL region (see Fig. 3) which has similar orography to

western Norway—i.e. it is a region with a similar mecha-

nism for driving precipitation—and this is at least a

consistency check of the finding.

The robustness of the single model skill scores shown in

Fig. 3 is evaluated by a Monte Carlo method based on

bootstrapping with replacement (Efron and Tibshirani

1993). From the observations we have a number of time

series for each region, and by making random selections of

these time series we can evaluate how sensitive the skill

score is to changes in the sampling of observations. The

selections are here repeated 10,000 times for a good sta-

tistical description of the variations in the skill scores for

the different models, and we can determine the robustness

of the ranking of the individual models. We can thus assess

whether or not one model can score significantly higher

than the others.

In Table 1 we show the percentage distributions of

models’ probabilities of ranking the highest, across all

regions, for 10,000 Monte Carlo bootstrap trials. The val-

ues given in bold refers to the models having the highest

skill score for each region in Fig. 3. Once again we see that

the models CLM, HadRM and RegCM score well. We also

note that the best performing models from Fig. 3 are

clearly high ranked for all regions. The results, therefore,

are fairly robust.

4 Crossing-point statistics

We use the method of Gutowski et al. (2007) to study

changes in precipitation over long time scales. Daily pre-

cipitation PDFs for the HIRHAM_D experiment for all

land grid points are shown in Fig. 4 for both the control run

and the scenario run. We show here only the result for the

HIRHAM_D model (of the Danish Meteorological Insti-

tute) since all models give similarly shaped curves as

indicated by Table 2. Similar to the results by Gutowski

et al. (2007) and Sun et al. (2007), the plot in Fig. 4

indicates that days with moderate precipitation (less than

about 10 mm) will contribute less to the total precipitation

in the future scenario while days with higher (more than

about 10 mm) precipitation will have a larger contribution.

The crossover point xc for this transition is found by sub-

tracting the control precipitation from the scenario

precipitation (see Fig. 5) and determining where the curve

goes from negative to positive values. The related transi-

tion percentile, Pxc
; is calculated as the accumulated

precipitation for the control run from 1 to xc mm day-1

divided by the total precipitation.
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Fig. 3 Results of comparing ten PRUDENCE models, all driven by

the HadAM3H GCM, for precipitation against ECA precipitation

data, using daily values for the period 1961–1990. Plotted is the

common PDF area as a function of sub-region (cf. Fig. 1) for all ten

models. The highest skill score for each region is BI 96.6%, IP 82.3%,

FR 95.3%, ME 96.6%, SC 97.7%, AL 93.6%, MD 92.3%, EA 94.9%,

and EUx 97.5%

Fig. 2 Comparison between ECA compiled precipitation observa-

tions (black) with precipitation data from ten PRUDENCE RCM

models (grey) for the period 1961–1990. The panels show distribu-

tions for the nine sub-regions. Arrows mark the 95th percentile of

accumulated observed precipitation. The vertical lines in the top part

of each panel represent the 95th percentile of accumulated precip-

itation for the various models covering the sub-region in question

b
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The error bars, ri, in Fig. 5 are calculated by propaga-

tion of errors assuming independence between PDF bin

values for the control and scenario runs:

ri

Di

� �2

¼ E2
C þ E2

S

¼ M

NC;i UC
þ M

NS;i US
:

ð1Þ

The left hand side of Eq. 1 is the squared relative error of

the normalised precipitation change (scenario minus con-

trol run), where Di is the normalised precipitation change

plotted in Fig. 5. EC
2 and ES

2 are the squared relative errors

of the normalised precipitation for each run, assuming

Poisson statistics, corrected for spatial correlation. M is the

number of land grid points for the region in question, Ni is

the number of values in bin i and U is the number of

uncorrelated areas in the region in question. U is found by

calculating the autocorrelation between all land grid points.

All grid points with a correlation above e-1 relative to the

grid point in question are defined as belonging to the same

correlated area. U is then given by the total number of land

points in the specific region divided by the average size of

the correlated area. This is done for the control run and

scenario run separately. For the HIRHAM_D model,

M = 4,150 and U is 29.6 and 27.0 for the control and

scenario periods, respectively, and we see in Fig. 5 that the

amplitude of the precipitation change is significant.

As indicated by the error bars in the insert, the norma-

lised precipitation PDF change for the full land region in

Fig. 5 is no longer significantly different from zero at

64 mm day-1 (99.7 percentile). The analysis given in

Figs. 4 and 5 were performed for all ten RCMs with their

full individual land regions, and the characteristic values

for all these models are summarised in Table 2. The main

effect of considering the full land region instead of only the

maximum land region common to all models is that the

error bars are roughly 20% smaller. This error reduction in

turn is found to increase xmax by about 10% and Pmax by

about 0.5 percentage points.

The overall shape as well as the amplitude of the curves

are found to show strong similarities for all PRUDENCE

RCMs (cf. Table 2). The crossover point xc is similar for

all models with the possible exception of the HadRM

model with xc shifted towards lighter precipitation. The

crossing percentile is roughly 60% in most models, which

agrees better with the theory presented in Gutowski et al.

(2007) than the model results they analysed. This may be
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Fig. 4 Binned normalised precipitations for the full HIRHAM_D

land region covering 4,150 grid points. Square symbols refer to the

1961–1990 control run and pluses represent the 2071–2100 scenario

run. The arrow marks the crossover point xc at 10.4 mm day-1

separating increasing from decreasing contributions to the normalized

spectrum

Table 2 Characterising parameters for the scenario minus control

difference for the ten RCMs (cf. Fig. 5 for the HIRHAM_D model)

using their full individual land region

Institute/model A- A+ xc Pxc
xmax Pmax xe Nmax

DMI/HIRHAM_D -0.72 0.22 10.4 69.2 64 99.7 25 3.2

ETH/CHRM -0.66 0.13 10.8 61.0 73 99.2 27 4.5

GKSS/CLM -0.82 0.17 11.5 60.0 85 99.4 26 4.8

HC/HadRM -0.95 0.14 8.4 47.8 90 99.4 23 4.9

ICTP/RegCM -0.86 0.15 12.0 59.7 87 99.3 21 4.8

KNMI/RACMO -0.65 0.14 12.7 64.1 74 99.6 27 3.6

METNO/

HIRHAM_M

-0.90 0.16 10.5 58.6 86 98.8 30 7.5

MPI/REMO -1.05 0.19 11.2 64.2 75 99.5 24 4.2

SMHI/RCAO -0.61 0.12 10.9 62.5 64 99.8 26 2.2

UCM/PROMES -0.84 0.16 11.7 58.8 81 98.9 18 5.4

The parameters from left to right are maximum negative amplitude,

A- (%); maximum positive amplitude, A+ (%); crossing-point value,

xc (mm day-1); crossing-point percentile, Pxc
(%); largest significant

PDF change, xmax (mm day-1); largest significant percentile, Pmax

(%); extreme precipitation threshold, xe (mm day-1); and average

number of events above the largest significant PDF change per year,

Nmax
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Fig. 5 Binned normalised precipitation change (scenario minus

control run) for the full HIRHAM_D land region. The error bars
are calculated using Eq. 1. The curve’s crossover point xc is

10.4 mm day-1 with a corresponding crossover percentile Pxc
of

69.2%. The percentile value Pmax of 99.7% relates to the largest

significant PDF change xmax of 64 mm day-1 as shown by the inset
(see Table 2)
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due in part to the longer sampling periods used here

(30 years) versus the 9-year periods they analysed. Inves-

tigating the crossover points for the individual sub-regions

gave values in the interval 9–13 mm day-1 for all models

and for all sub-regions except IP, AL, and MD. Here the

values were in the range 14–28 mm day-1 (Boberg et al.

2007).

Table 2 shows that the largest significant PDF change is

in the range 64–90 mm day-1 at an average percentile well

above 99%. Note that when comparing the error bars in the

insert of Fig. 5 with the variance of the PDF change, we

see that the error estimates are conservative (i.e. larger than

the given variance of the curve) leading to an underesti-

mation of xmax and Pmax.

Also given in Table 2 is the threshold for extreme

events, adopting the definition by Liebmann et al. (2001)

as days with precipitation exceeding 4% of the mean

annual total precipitation for the region in question. This

definition accounts for spatially varying climatologies and

the 4% threshold is chosen to ensure that extreme events

occur relatively rarely. We see that the largest significant

PDF change for the full PRUDENCE model regions is

clearly above the threshold for extreme precipitation. The

rightmost column of Table 2 gives the average number of

days Nmax per year with precipitation exceeding xmax, after

correction for the number of uncorrelated areas within the

individual full land regions. Nmax is in the range 2–7 events

per year, making it another measure of extreme

precipitation.

By dividing the 30-year long scenario period into three

10-year periods we investigate how xc changes with time

relative to the control run (cf. Fig. 5). Plotted in Fig. 6 are

the precipitation distribution changes for all nine sub-

regions. We use the optimal models given in Table 1 for

the nine sub-regions separately, but the results are similar

using the other models (not shown). The error bars in

Fig. 6 are calculated using Eq. 1, where M is between 124

and 1,608 depending on the size of the sub-region and U is

between 1.8 and 12.3 depending on the size and extent of

the sub-region in question. No region shows any clear

temporal change in xc which is in accordance with scenario

precipitation theory where this consistent change can be

described by a gamma distribution having a single transi-

tion point between precipitation rates that contribute more/

less to the total precipitation (Gutowski et al. 2007).

Notable is that the amplitude of the difference between the

10-year scenario periods and the control run is increasing

with time. As the mean temperature over most of the

European domain is slowly increasing within the 30 year

time slice 2071–2100, this is an indication that changes in

the precipitation intensities are approximately linearly

linked with the degree of warming. Moreover, this

dependency is in general strong enough to overcome

natural variability. Exceptions to this general behaviour are

seen for the AL and EA sub-regions where no clear tem-

poral change is seen.

For the six regions and models with a distinct PDF

change profile in Fig. 6 similar to the one given in Fig. 5,

we calculate xmax and xe (cf. Table 2). The values are BI:

37 (41) mm day-1, FR: 38 (30) mm day-1, ME: 38

(37) mm day-1, SC: 52 (32) mm day-1, EA: 46

(31) mm day-1, and EUx: 65 (25) mm day-1. With the

exception for region BI, the PDF changes described in

Fig. 5 and Table 2 are also valid for extreme precipitation

for individual sub-regions, using the definition by Lieb-

mann et al. (2001).

5 Discussion

Extreme precipitation has important effects on society and,

therefore, is it of great interest to determine the extreme

precipitation levels with significant scenario change. In this

study we used bin sizes of 1 mm day-1 when calculating

the PDFs. According to Eq. 1, the error in PDF change will

decrease when the number of values in a particular bin

increases. By making the bin errors smaller, thereby

increasing the largest significant PDF change xmax, we

make an attempt to find the maximum precipitation for

which the found precipitation change is significant. We,

therefore, calculated PDFs using bin sizes of 1, 2, 3, 5 and

8 mm day-1, respectively, for the HIRHAM_D model.

The corresponding xmax values for these bin sizes are 64,

73, 79, 88 and 100 mm day-1 (cf. Table 2). The relative

increase in xmax for bin sizes above 8 mm day-1 turned out

to be smaller than the relative increase in bin size and,

therefore, not of further interest. The equivalent values for

Pmax and Nmax (cf. Table 2), for HIRHAM_D, when using

PDF bin sizes of 8 mm day-1 are 99.95% and 0.34, values

that characterise very extreme conditions.

The results presented here can now be used in two ways.

First, we can estimate precipitation PDFs for the scenario

period 2071–2100 using models with varying scores for the

control period and then use the robustness of change in the

PDFs to assess future precipitation distribution. Secondly,

we can use the analysing and validation methods described

in this study on the upcoming ENSEMBLES RCM models

(Hewitt 2005) and make similar evaluations for the full

twenty-first century using its model data. Furthermore, the

ENSEMBLES RCM data will be validated using a high-

resolution observational dataset specially produced for the

task (Haylock et al. 2008).

In the present analysis, no attempt has been given to

address seasonal variation in the ability to simulate pre-

cipitation intensities. However, as found by Frei et al.

(2003) there appears to be substantial seasonality in the
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ability to simulate the daily precipitation statistics. In the

same study, no hint toward specific errors of particular

physical parameterisations as regards the simulation of

daily precipitation statistics was identified. In fact, two

models sharing similar parameterisation packages (HIR-

HAM_D and REMO) differed considerably in their

representation of the statistics, while the models with

similar error structure in all statistics (CHRM and REMO),

shared the same dynamical core, but differed in parame-

terisation package. Both results are confirmed by the

present study. This intriguing result suggests that the sim-

ulation of daily precipitation statistics is sensitive to a

variety of model components including the dynamics,

physical parameterisation, and their interplay. An in depth

analysis of this finding is beyond the scope of the present

work.

Our analysis shows that for all sub-regions we find that

the robustness of the crossing-point exists. As the different

regions experience different changes in mean annual pre-

cipitation (Boberg et al. 2007), there is a clear indication

that our finding is suggesting that a detection of such a

signal in observations is indicative of the change being

related to temperature changes.

6 Conclusion

All of the RCMs analysed in this study show distinct

similarities with observations for moderate precipitation

intensities during the control period 1961–1990. The

largest discrepancies were found for days with light pre-

cipitation (below *5 mm day-1) and for days with

extreme precipitation (above *80 mm day-1). With the

exception of region IP, the overlaps for the highest scoring

models were between 92 and 98%. These similarities have

been validated and confirmed using a robustness test. No

single model was found to outperform all other models in

terms of the metrics we have chosen here. However,

models CLM, HadRM, and RegCM were found to score

higher than the others in all regions, except region 7 (MD),

whereas models HIRHAM_D and RCAO were found to

never score high using our metrics. However, note that a

high overlapping skill score between a model and obser-

vations for precipitation PDF does not necessarily mean

that they correlate well for extreme conditions that are too

rare to significantly contribute to the PDFs.

When comparing climate scenarios (2071–2100) rela-

tive to the control run (1961–1990), we have found that a

significant change in the modelled PDFs occurs for both

full land regions and for specific European sub-regions.

When using the full land regions, the change in precipita-

tion PDF is significant for precipitation up to 64–

90 mm day-1, depending on the model analysed. This

level of daily precipitation is clearly above a commonly

used threshold for extreme precipitation. This change in

PDF is distinguished by an increase in the contribution to

the total precipitation from the more intensive events

(above *11 mm day-1) in the scenario period in all sub-

regions. This change is also found to increase with time

during the scenario period for all regions except regions

AL and EA.

The models are also found to agree on being able to

detect projected changes in the intensive tail of the PDF.

Also, it is important to note that this is a robust result that

cuts across all models despite their different ability to

simulate the observed statistics.
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