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Abstract The atmospheric storminess as inferred from

geostrophic wind energy and ocean wave heights have

increased in boreal winter over the past half century in the

high-latitudes of the northern hemisphere (especially the

northeast North Atlantic), and have decreased in more

southerly northern latitudes. This study shows that these

trend patterns contain a detectable response to anthropo-

genic and natural forcing combined. The effect of external

influence is found to be strongest in the winter hemisphere,

that is, in the northern hemisphere in January–March and in

the southern hemisphere in July–September. However, the

simulated response to anthropogenic and natural forcing

combined, which was obtained directly from climate

models in the case of geostrophic wind energy and indi-

rectly via an empirical downscaling procedure in the case

of ocean wave heights, is significantly weaker than the

magnitude of the observed changes in these parameters.
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1 Introduction

After the hurricane Katrina disaster in 2005 and the tsu-

nami tragedy that struck Asia at the end of 2004, public

awareness of the potential impacts of storm surges and

ocean waves on human society, the environment and eco-

systems has increased. One of the issues of concern is

whether or not external influences on the climate system,

especially human influence, have affected the storm and

ocean wave climate. Although this issue is yet to be

addressed, there is evidence of significant change in

extratropical cyclone activity and ocean wave heights in

the boreal cold seasons of the last half century. For

example, a significant increasing trend in winter (January–

March) strong-cyclone activity over the high-latitude North

Atlantic has been identified in the sea level pressure (SLP)

fields taken from both the ERA40 reanalysis (ERA40

hereafter; Uppala et al. 2005) and the NCEP-NCAR

Reanalysis (Kalnay et al. 1996; Kistler et al. 2001) for the

1958–2001 period. There is also a significant decreasing

trend in strong-cyclone activity over the mid-latitude North

Atlantic over this period (Wang et al. 2006). These chan-

ges are associated with a northward shift of the mean

position of the North Atlantic storm track of about 180 km

(Wang et al. 2006). Consistent with the increase in strong-

cyclone activity, the northeast North Atlantic ocean has

also been found to have roughened in winter during the

1958–1997 period, while significant decreases of ocean

wave heights are identified in the subtropical North

Atlantic (Wang and Swail 2006a; Wang and Swail 2001,

2002; WASA Group 1998; Bacon and Carter 1991).

There have been numerous studies on the detection,

attribution, and quantification of the influence of external

forcing on a range of climate variables, such as surface air

temperature, atmospheric pressure, free atmosphere
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temperature, tropopause height, ocean heat content, sea ice

extent, and precipitation (e.g., Hegerl et al. 1997; Tett et al.

1999; Zwiers and Zhang 2003; Stott 2003; IDAG 2005;

Zhang et al. 2006; Gillett et al. 2003, 2005; Jones et al.

2003; Santer et al. 2003; Barnett et al. 2005; Hegerl et al.

2007; Zhang et al. 2007). However, previous studies have

not addressed the question of whether external factors have

influenced atmospheric storminess and ocean wave heights

in the extra-tropics. This study attempts to do exactly that

by comparing observationally based estimates of changes

in atmospheric storminess and ocean wave heights with

estimates derived from multi-model simulations of climate

change driven with historical external forcing from both

anthropogenic sources (e.g., greenhouse gases and aerosol

forcing) and natural sources such as solar and volcanic

forcing.

This article is structured as follows. The data sets used

and their preparation are described in Sect. 2. The detection

analysis method is described in Sect. 3. The results are

presented and discussed in Sect. 4, followed by some

concluding remarks in Sect. 5.

2 Data sets and preparation procedure

This study analyzes two climate elements, a measure of

atmospheric storminess and ocean wave heights. The

atmospheric and ocean wave height data sets that we use

are described in the following two subsections.

2.1 Atmospheric data and preparation

Many indices have been used to represent atmospheric

storminess, including (but not limited to) cyclone count

statistics (e.g., Pettersen 1956; Whitaker and Horn 1984),

eddy variance/covariance statistics (e.g., Blackmon 1976;

Hoskins and Hodges 2002), and geostrophic wind speeds

(e.g., Matulla et al. 2008; Alexandersson et al. 1998,

2000). In this study, we also use an index that represents

the geostrophic wind energy, namely the squared seasonal

mean SLP gradient, to provide a measure of atmospheric

storminess. We analyze time series of anomalies of the

squared SLP gradient, Gt (here t denotes years) expressed

relative to the 1961–1990 mean, to determine whether or

not external influence on change in atmospheric stormi-

ness is detectable. The technical details of how the

atmospheric storminess index Gt is derived are described

in Appendix A.

For comparison with previous detection studies on SLP

(Gillett et al. 2003, 2005), we also analyze time series of

seasonal mean SLP anomalies expressed relative to the

1961–90 mean, Pt, which represent variability in the mean

SLP field.

We use observationally based proxies derived from

ERA40 for the 1958–2001 period (Uppala et al. 2005) and

also use HadSLP2 (Allan and Ansell 2006). While the

latter contains gridded SLP observations for the period

1900–2004 (available online at http://hadobs.metoffice.

com/gmslp/hadslp2/index.html), we focus most of our

effort on the most recent 50 years (1955–2004), which

have significantly better spatial coverage than the earlier

part of the record.

In order to detect the influence of historical external

forcing in the observations, climate model based estimates

of the response to external forcing and of natural internal

climate variability are required. Thus, we also use simula-

tions of SLP from the nine coupled ocean-atmosphere

models listed in Tables 1 and 2. These simulations were

obtained from the multi-model data archive at PCMDI

(https://esg.llnl.gov:8443/index.jsp). An ensemble of sim-

ulations of the twentieth-century with historical external

forcing is available for each of these models, with the

individual ensemble sizes ranging from 3 to 7. In total, we

use 41 such simulations (Table 1). Note that the twentieth-

century simulations generally finished in 1999 or 2000. As

in Gillett et al. (2005), we have extended these simulations

to 2004 using output for 2000–2004 from integrations using

the so-called SRES A1B, A2 or B1 emission scenario

(Nakicenovic and Swart 2000), so that the model simula-

tions can be compared to observations up to 2004 (see

Table 1). The SRES emission scenarios are used exten-

sively in the IPCC (2001, 2007) reports. There should not be

significant differences among different scenarios for the

period 2000–2004 (see, for example, Fig. 10.4 in Meehl

et al. 2007). Control integrations from each of these models,

which are listed in Table 2, are also used in this study.

The ERA40 SLP data are available on a 2.5�-by-2.5� lat-

long grid, while the HadSLP2 data are only available on a

5�-by-5� lat-long grid and the multi-model SLP data were

archived on different grids for different models. All of

these data were interpolated onto the same 5�-by-5� lat-

long grid, with the first gridpoint centered at (2.5�E,

87.5�S), and the last, at (357.5�E, 87.5�N).

Our detection analysis will focus on Gt and Pt change in

each of the four seasons, separately: winter (JFM), spring

(AMJ), summer (JAS), and fall (OND). We choose this

definition of the seasons for convenience and because the

resulting JFM data series is one year longer than the DJF

data series. It is shown later in Sect. 4 that this definition

does not notably affect the results of our detection analysis.

For each gridpoint we analyze, we obtain observed Gt

and Pt time series from the ERA40 and HadSLP2 datasets,

and also obtain corresponding time series from each of the

climate model simulations. Linear trends are estimated

from each time series for each season, over the periods

1958–2001 and 1955–2004, using the least squares method

190 X. L. Wang et al.: Detection of external influence on trends of atmospheric storminess

123

http://hadobs.metoffice.com/gmslp/hadslp2/index.html
http://hadobs.metoffice.com/gmslp/hadslp2/index.html
https://esg.llnl.gov:8443/index.jsp


(this method is used throughout this paper). These two

overlapping periods are chosen because the ERA40 covers

only the period 1958–2001 while HadSLP2 and the climate

model simulations cover the longer period 1955–2004. Our

detection analyses, which will compare the observed and

simulated trend patterns, will be based on 1958–2001 when

using ERA40, and 1955–2004 when using HadSLP2.

The linear trend patterns in Gt over the common period

1958–2001 are shown in Fig. 1. The corresponding 1955–

2004 trends (not shown) are similar, though generally

somewhat smaller. The multi-model simulated trend pat-

terns in Gt (and Pt, not shown) resemble their observed

counterparts in the boreal cold seasons, although the

magnitude of the observed trend in the North Atlantic

storm track region is substantially under-estimated (see

Fig. 1c, e or d, f). The observed and simulated trend pat-

terns are also similar in the southern hemisphere in the

austral cold seasons (not shown).

Importantly, the storminess trends inferred from the

geostrophic wind energy index Gt are consistent with the

findings of previous studies using other types of storminess

indices such as indices that are based on applying objective

cyclone detection and tracking algorithms to 6-hourly

SLP fields (Wang et al. 2006; Gulev et al. 2001). This

Table 1 The nine coupled ocean–atmosphere models used in this study and the number of twentieth century runs conducted with each of these

models (the period of simulation given in parentheses)

Model Number of runs Forcing Scenario simulations used to extend the data to 2004

A2 A1B B1

ECHO-G Run 1–3 (1900–2000) GSN Run 1–3 for 2001–2004

ECHO-G Run 4–5 (1900–2000) GSN Run 1–2 for 2001–2004

GFDL-CM2.0 Run 1 (1900–2000) GSNO Run 1 for 2001–2004

GFDL-CM2.0 Run2 (1900–2000) GSNO Rrun 1 for 2001–2004

GFDL-CM2.0 Run 3 (1900–2000) GSNO Run 1 for 2001–2004

GFDL-CM2.1 Run 1 (1900–2000) GSNO Run 1 for 2001–2004

GFDL-CM2.1 Run 2 (1900–2000) GSNO Run 1 for 2001–2004

GFDL-CM2.1 Run 3 (1900–2000) GSNO Run 1 for 2001–2004

GISS-EH Run 1–3 (1900–1999) GSNO Run 1–3 for 2000–2004

GISS-ER Run 1 (1900–2003) GSNO Run 1 for 2004

GISS-ER Run 2–6 (1900–2003) GSNO Run 1–5 for 2004

GISS-ER Run 7 (1900–2003) GSNO Run 1 for 2004

MIROC3.2(medres) Run 1–3 (1900–2000) GSNO Run 1–3 for 2001–2004

MRI CGCM2.3.2 Run 1–5 (1900–2000) GSN Run 1–5 for 2001–2004

NCAR CCSM3 Run 1–5 (1900–1999) GSNO Run 1–5 for 2000–2004

NCAR CCSM3 Run 6, 7, 9 (1900–1999) GSNO Run 1–3 for 2000–2004

NCAR PCM Run 1–4 (1900–1999) GSNO Run 1–4 for 2000–2004

The letters G, S, N and O denote Greenhouse gases, Sulphate aerosols, Natural and stratospheric Ozone forcing, respectively

Table 2 The control integrations (runs) used in this study

Model Number of years available (used)

ECHO-G 340 (1–300 in 6 segments of 50-year or 1–308 in 7 segments of 44-year)

GFDL-CM2.0 500 (1–500 in 10 segments of 50-year or 1–484 in 11 segments of 44-year)

GFDL-CM2.1 500 (1–500 in 10 segments of 50-year or 1–484 in 11 segments of 44-year)

GISS-EH 400 (1–400 in 8 segments of 50-year or 1–396 in 9 segments of 44-year)

GISS-ER 500 (1–500 in 10 segments of 50-year or 1–484 in 11 segments of 44-year)

MIROC3.2(medres) 500 (1–500 in 10 segments of 50-year or 1–484 in 11 segments of 44-year)

MRI-CGCM2.3.2 350 (1–350 in 7 segments of 50-year or 1–308 in 7 segments of 44-year)

NCAR CCSM3 230 (1–200 in 4 segments of 50-year or 1–220 in 5 segments of 44-year)

NCAR CCSM3 500 (1–500 in 10 segments of 50-year or 1–484 in 11 segments of 44-year)

NCAR PCM 589 (1–550 in 11 segments of 50-year or 1–572 in 13 segments of 44-year)

Total 86 non-overlapping 50-year segments or 96 non-overlapping 44-year segments
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consistency suggests that the index Gt represents the trend

component of the atmospheric storminess adequately. It

should therefore be suitable for a detection analysis on

change in atmospheric storminess.

2.2 Ocean wave height data and preparation

It is also of great interest to determine whether or not

external influence on ocean wave heights is detectable,

which is another goal of this study. Here, we focus on

significant wave height (SWH). Thus, we also need both

SWH observations and simulations of SWH response to

historical external forcing.

There exist two global wave reanalyses: ERA40 (Uppala

et al. 2005; Caires et al. 2004a) and AES40 (Cox and

Swail 2001). Having inter-compared and validated these

reanalyses against independent NOAA/NDBC buoy and

TOPEX/Poseidon altimeter observations, Caires et al.

(2004b) concluded that most of the large-scale features of

observed wave height variability are equally present in

these wave datasets. Thus, in this study, we use the original

ERA40 SWH data as a proxy for actual SWH observations.

These data were aggregated onto the same 5�-by-5� lat-

long grid as is used to represent Gt and Pt (see Sect. 2.1).

Since SWH data are not directly available from the

output of global climate models, estimates of the SWH

Fig. 1 The linear trend patterns of the geostrophic wind energy index

Gt (unit: (hPa)2/5�) as derived from ERA40, HadSLP2, and the multi-

model/ensemble mean simulations of Gt for the period 1958–2001.

Solid contours and yellow-red shadings indicate upward/positive

trends, and dashed ones and green-blue shadings downward/negative

trends (unit: (hPa)2/5� per century). The contourline interval is 10

units (note that contour lines are drawn every other shading level).

The percentage of grid-boxes that were found to have a significant

trend is given in the parentheses above
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response to historical external forcing must be obtained

empirically. We therefore used a statistical model to rep-

resent the observed relationship between atmospheric

circulation and SWH, and applied this statistical model to

climate model output in order to estimate variation and

change in SWH that is induced by natural and anthropo-

genic forcing combined. Since the SLP-SWH relationships

are weaker in the boreal warm seasons (Wang and Swail

2006b), we will focus only on the boreal winter and fall in

this study. We will analyze both seasonal means and

extremes of SWH in these seasons. The statistical models

used for estimating seasonal mean and extreme SWH

variates are described in following two subsections.

2.2.1 Seasonal mean SWH

Following Wang and Swail (2006a, b), we use the

regression equation

Havg; t ¼ aþ bGt þ cPt þ et ð1Þ

to represent the observed relationship between seasonal

mean SWH (Havg, t) and the atmospheric circulation vari-

ates (Gt and Pt). Here, et denotes a white noise process. The

parameters a, b, and c are estimated using the seasonal

quantities (Havg, t, Gt, and Pt) that are derived from the

ERA40 wave and SLP data for the period 1958–2001

(excluding a period of erroneous wave data from January

1992 to May 1993; Caires et al. 2004b). These estimates are

denoted as â; b̂; and ĉ; respectively (x̂ denotes an estimate of

x throughout this paper). Both the predictor and predictand

series were detrended before estimating these parameters in

order to focus the regression on the relationship between

non-systematic changes. Note that the predictor trend

components were not removed when the fitted regression

was subsequently used to obtain the predictand values.

This statistical model exploits the significant SLP-SWH

relation that exists in most of the world oceans north of

30�N (Wang and Swail 2006b). We perform our detection

analysis only in the areas where the SLP-SWH relationship

is significant, which include most of the oceans in the

30�N–70�N band, as shown in Fig. 2. In these selected

areas, the relationship Ĥavg; t ¼ âþ b̂Gt þ ĉPt reasonably

well reproduces the observed trend patterns in Havg,t,

especially in winter, although it significantly under-repre-

sents the magnitude of change (see Fig. 2a, c or b, d). Thus,

we think that it is reasonable to use this SLP-SWH rela-

tionship to estimate changes in Havg,t for use in a detection

analysis. Detection studies rely on the assumption that

climate models, or in this case the combination of climate

models and statistical downscaling simulate the correct

pattern of response to external forcing, but they do not

require that these patterns have the correct amplitude (e.g.,

Hegerl et al. 2007).

Fig. 2 The 1958–2001 linear trend patterns of the seasonal mean

SWH as derived from the original ERA40 seasonal mean SWH (Havg),

the ERA40 and HadSLP2 hindcasts and the multi-model/ensemble

mean simulations of Havg (i.e., ĤavgÞ: Yellow-red shadings and solid
contours indicate upward/positive trends, and green-blue shadings and

dashed contours downward/negative trends (unit: cm/year). Note that

the contour scale for the simulated trends (g, h) is different from the

one for the observed trends, as indicated by the contour scale bars. The

percentage of grid-boxes that were found to have a significant trend is

given in the parentheses above
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Having fit the statistical model, we feed the climate

model simulated Gt and Pt into this relationship to estimate

climate model simulated SWH variation Havg,t for each

season at each wave gridpoint in the selected areas for each

of the forced and control simulations used in this study.

These estimates are also referred to as the simulated Havg,t.

For comparison with the original ERA40 Havg, t values, we

also feed the ERA40 Gt and Pt values into this relationship,

obtaining statistical hindcasts Ĥavg; t; which are referred to

as the ERA40 Havg,t hindcasts hereafter. Further, in order to

have proxy SWH ‘‘observations’’ that are somewhat inde-

pendent of the model used for ERA40, we also feed the

HadSLP2 Gt and Pt values into this relationship, obtaining

the HadSLP2 Havg, t hindcasts for the 1955–2004 period.

For our detection analysis, we estimate the linear trends

in each of the Havg, t or constructed Ĥavg; t time series, again

over the periods 1958–2001 and 1955–2004. The

‘‘observed’’ and multi-model simulated trend patterns for

1958–2001 are shown in Fig. 2. The corresponding 1955–

2004 trend patterns (not shown) are similar to those shown

in Fig. 2e–h, but with slightly smaller trend.

In general, the trend patterns in hindcast Havg are rea-

sonably well represented in the empirically downscaled

climate model output, although the magnitude of trend is

significantly under-estimated (see Fig. 2c–h). The trend

pattern in the original ERA40 Havg in the North Atlantic is

also well simulated, especially in winter (see Fig. 2a, g).

However, the climate models significantly under-estimate

the magnitude and areal extent of the observed Havg

increase in the North Pacific (see Fig. 2a, b, g–h). Such

under-estimation is not unexpected given that the multi-

model simulated changes in the Pt and Gt fields are also

smaller than observed. In addition, some variance is pre-

sumably lost in the process of converting the atmospheric

circulation change to a change in Havg using the regression

relationship.

2.2.2 Seasonal extreme SWH

Seasonal maxima of SWH can also be derived from the

original ERA40 6-hourly wave data, but as with seasonal

mean SWH, comparable information is not directly avail-

able from climate models. Thus in this case also, we

proceed to estimate extreme SWH quantities by means of a

statistical downscaling approach following Wang and

Swail (2006a, b). This approach uses the non-stationary

Generalized Extreme Value model, GEV(lt, r, n), where

the location parameter lt depends on atmospheric variates

Gt and Pt via the relationship

lt ¼ lo þ c1Gt þ c2Pt þ �t; ð2Þ

while the scale parameter r and shape parameter n are

constant over time. Here �t denotes a white noise process.

The time varying GEV distribution can be used in two

different ways. First, by specifying a fixed size of extreme

event, it is possible to estimate how the risk of that event

varies as Gt and Pt vary. Alternatively, a fixed risk could be

specified, such as a 1-in-20 year risk of occurrence, and the

magnitude of threshold that is exceeded with that fixed risk

can be estimated by finding the appropriate quantile of the

GEV distribution. Since the location parameter in our

statistical model depends upon Gt and Pt, that threshold

then becomes a function of Gt and Pt as well. We take the

latter approach in this study.

The seasonal maximal SWH and seasonal atmospheric

quantities Gt and Pt derived from the ERA40 wave and

Fig. 3 The same as in Fig. 2 but for the linear trend (in cm/year)

patterns of seasonal 20-year return values of SWH. Note that the

contour scale for the simulated trends (e, f) is different from the one

for the observed trends, as indicated by the contour scale bars
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SLP data are used to estimate the parameters lo, c1, c2, r,

and n via the method of maximum likelihood. The above

GEV model is fitted for each wave gridpoint analyzed and

for each season, separately. The fitted model, GEVðl̂t ¼
l̂o þ ĉ1Gt þ ĉ2Pt; r̂; n̂Þ; is then used to estimate a series of

20-year return values of SWH, H20y, t, that vary with the

atmospheric circulation parameters Gt and Pt. More spe-

cifically, we use the ERA40 Gt and Pt values in the fitted

model to obtain ERA40 hindcasts of H20y, t, and use the

HadSLP2 Gt and Pt values to obtain HadSLP2 hindcasts of

H20y, t. In order to estimate the H20y, t response to historical

external forcing, we use climate model simulated Gt and Pt

values in the fitted GEV model, obtaining the corre-

sponding downscaled H20y, t values. This is done for each

of the 41 twentieth-century simulations (Table 1), and also

for each of the control simulations (Table 2). Linear trend

patterns are subsequently estimated from all of the con-

structed return value time series and used in our detection

analysis.

In general, the trend patterns in the seasonal 20-year

return values of SWH (H20y) in both hindcasts are rea-

sonably well reproduced by the climate models combined

with the statistical downscaling, especially in the North

Atlantic (compare Fig. 3a–d with e, f). The trend patterns

in H20y are also similar to those of the corresponding Havg

trend patterns (see Figs. 2 and 3), which is not surprising

given that both are functions of linear combinations of Gt

and Pt.

3 Detection analysis

Climate variability refers to variations in the mean state

and other statistics (such as the standard deviation, the

intensity of extremes, etc.) of the climate on all spatial and

temporal scales beyond that of individual weather events

(Solomon et al. 2007). Variability is referred to as internal

variability if it arises from natural internal processes within

the climate system, and as external variability if it is due to

external forcing (anthropogenic, or natural such as changes

in solar radiation and volcanism). Climate change may be

due to internal climate system processes and/or external

forcings on the climate system. The objective of climate

change detection analysis is to understand how climate

changes that result from anthropogenic and natural external

forcings may be distinguished from changes and variability

that result from internal climate system processes. The

spatial and temporal scales used to analyze climate change

are carefully chosen so as to focus on the spatio-temporal

scale of the response, filter out as much internal variability

as possible and enable the separation of the responses to

different forcings (Hegerl et al. 2007). In this study, we

compare the pattern of observed trends with a multi-model

estimate of the trend that is expected to arise from external

forcing to determine whether or not external influence is

detectable in the pattern of observed trends. We do this by

means of the optimal detection approach (Allen and Stott

2003; Hegerl et al. 1997; Hasselmann 1993).

Let Yo denote an estimate of the observed linear trend

pattern, and let Ym be the multi-model mean linear trend

pattern (i.e., the average of the linear trends in the individual

simulations that make up the combined ensemble of 41

simulations from the 9 climate models used in this study;

see Table 1). The observed trend Yo consists of a response

to historical external forcing and internal variability g with

variance-covariance matrix Cg. Similarly, Ym consists of the

simulated response to the historical external forcing and

some internal variability f with variance-covariance matrix

Cf. Note that Cf is small because Ym is a multi-model mean

trend pattern and thus much of the internal variability that

affects trends in individual simulations has been averaged

out. The objective here is to compare the response to forcing

in the observations (Yo - g) with the simulated response

(Ym - f). This is accomplished by means of the optimal

detection approach, i.e., by fitting with optimization the

simulated pattern of trends to the observed pattern of trends

as follows:

Yo ¼ bðYm � fÞ þ g: ð3Þ

Here, optimization means to maximize signal-to-noise ratio

by rotating the coordinate space (Hasselmann 1993).

Because the data required to estimate Cg and Cf are limi-

ted, and because models do not simulate internal

variability well on all scales, the analysis is typically per-

formed in a dimension reduced space spanned by some

number of leading EOFs (see Table 3; in this study we

consider EOF truncations between 2 and 10). The regres-

sion coefficient b is estimated by means of the total least

squares (TLS) algorithm (Allen and Stott 2003). [Note that

the ordinary least squares algorithm is not quite suitable

here because it assumes no error term in the explanatory

variable, while both the response variable Yo and the

explanatory variable Ym in model (3) contain a noise term,

g or f.]

Optimal detection analysis requires knowledge of the

internal climate variability. Two independent estimates of

the internal variability variance-covariance matrix Cg are

required in this study: Ĉg1
and Ĉg2

: These estimates are

obtained by pooling control simulation variability with the

inter-integration variability found in ensembles of twenti-

eth-century simulations. Details are given in Appendix B.

Ĉg1
is used in the optimization, while Ĉg2

is used in esti-

mating the scaling factor b and to obtain a confidence

interval for b̂: Once the regression model has been fitted,

the residuals ĝ ¼ Yo � Ŷo ¼ Yo � b̂ðYm � f̂Þ can be calcu-

lated , so that their variance can be compared with the
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Table 3 The estimated scaling factor b, its 5–95% uncertainty range (bl, bu), and the result of the related residual consistency test for each of the

listed detection variables as derived from the ERA40 or HadSLP2 dataset

Season Observations Variable Domain b̂ b̂l b̂u #EOFs Internal variability Detected?

GL (31) 4.22 0.62 11.68 6 (2–6) OK Yes

Gt NH (14) 7.05 2.16 27.45 3 (2–5) OK Yes, b[ 1

NA (102) 4.58 1.51 10.19 6 (2–10) OK Yes, b[ 1

GL (31) 0.65 -0.82 2.20 6 (4) OK No

HadSLP2 Pt NH (14) 3.31 -0.55 10.93 3 (5–6) Under-estimated No

NA (102) 5.07 1.83 11.46 6 (2–9) OK Yes, b[ 1

NH (175) 4.24 0.63 11.77 7 (2–8) Under-estimated Yes

Ĥavg NA (102) 5.03 1.47 12.79 5 (2–10) OK Yes, b[ 1

NH (175) 3.45 0.15 9.24 7 (4–10) Under-estimated Yes

Ĥ20y NA (102) 4.86 1.58 11.33 5 (2–10) OK Yes, b[ 1

GL (31) 12.38 -99.64 3.94 6 (2, 4) Under-estimated No

JFM Gt NH (14) 12.00 -280.7 4.08 3 (2, 4) Under-estimated No

NA (102) 10.58 3.89 100.1 6 (2, 6–10) Under-estimated Yes, b[ 1

GL (31) 3.27 1.47 5.60 6 (2–10) Under-estimated Yes, b[ 1

Pt NH (14) 9.83 3.53 72.55 3 (2–3, 5–10) Under-estimated Yes, b[ 1

NA (102) 6.99 3.16 16.48 6 (2–10) OK Yes, b[ 1

ERA40 NH (175) 10.86 4.57 55.22 7 (2, 6–10) Under-estimated Yes, b[ 1

Ĥavg NA (102) 6.57 2.77 15.96 5 (2–10) Under-estimated Yes, b[ 1

NH (175) 8.21 3.62 23.25 7 (2–10) Under-estimated Yes, b[ 1

Ĥ20y NA (102) 7.09 3.11 17.52 5 (2–10) Under-estimated Yes, b[ 1

NH (175) 22.13 11.02 172.77 7 (6–7) Under-estimated Yes, b[ 1

Havg NA (102) 8.02 4.16 17.34 5 (2–10) Under-estimated Yes, b[ 1

GL (32) 0.26 -2.16 2.75 6 OK No

Gt NH (15) 0.23 -3.77 4.43 3 OK No

NA (114) 0.49 -2.63 3.87 6 Over-estimated No

GL (32) 0.69 -0.66 2.10 6 Over-estimated No

HadSLP2 Pt NH (15) 0.36 -1.77 2.28 3 Over-estimated No

NA (114) 0.87 -2.33 4.58 6 Over-estimated No

NH (179) 1.21 -0.98 3.73 7 OK No

Ĥavg NA (114) 0.68 -2.33 4.01 5 Over-estimated No

NH (179) 1.05 -1.13 3.50 7 OK No

Ĥ20y NA (114) 0.48 -2.74 3.97 5 Over-estimated No

GL (32) 0.62 -2.27 3.79 6 OK No

OND Gt NH (15) 1.26 -6.96 17.24 3 (7–8) OK No

NA (114) 2.04 -3.67 13.82 6 OK No

GL (32) 1.51 -0.17 3.40 6 (7–10) Under-estimated No

Pt NH (15) 1.31 -1.43 4.59 3 OK No

NA (114) 2.39 -2.52 12.27 6 OK No

ERA40 NH (179) 2.70 0.22 6.13 7 (6–9) OK Yes

Ĥavg NA (114) 3.37 -1.26 14.82 5 OK No

NH (179) 2.70 0.16 6.35 7 (7–9) OK Yes

Ĥ20y NA (114) 3.51 -0.53 12.18 5 (10) OK No

NH (179) 33.43 16.28 1704.9 7 (6–10) Under-estimated Yes, b[ 1

Havg NA (114) 31.29 15.25 1034.7 5 (2–3, 5–9) Under-estimated Yes, b[ 1

GL (32) -2.69 -4.64 -1.09 6 Under-estimated No

HadSLP2 Gt NH (15) -0.48 -2.10 1.09 3 Over-estimated No

SH (11) -28.78 -8.20 27.96 3 Under-estimated No

GL (32) 0.53 -0.54 1.63 6 Under-estimated No
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corresponding simulated internal variability using a stan-

dard residual consistency test (Allen and Stott 2003).

Inconsistency could occur either because (1) the climate

models estimated the forced signal correctly, but under- or

over-estimated internal variability; (2) the climate models

did not respond correctly to forcing, but did simulate

internal variability correctly; or (3) a combination of (1)

and (2).

The main results of the above optimal detection analysis

can be interpreted as follows: The external influence is

detected if the scaling factor b in (3) is estimated to be

significantly greater than zero, but not detected if b̂ is not

significantly different from zero or negative. An estimate b̂
that is significantly greater than zero and consistent with

unity indicates that the observed and simulated responses

are considered to be comparable with each other, in which

case it may be possible to attribute the observed trends to

the historical external forcing if other plausible explana-

tions (causes) can be ruled out.

This optimal detection approach was applied to deter-

mine whether or not external influence on the observed

trends in the following variables is detectable: (1) the

geostrophic wind energy index Gt, (2) the mean pressure

field Pt, (3) seasonal mean SWH Havg, and (4) the 20-year

return value of seasonal extreme SWH H20y. For each of

the four variables, at least two sets of observationally

based datasets were available, derived from either ERA40

or HadSLP2, as described earlier in Sect. 2. The detection

analysis is carried out for each of these sets of proxy

observations in the following detection domains:

(a) global (GL: 60�S–80�N), (b) northern hemisphere

(NH: 0�N–80�N), (c) North Atlantic (NA: the ocean

domain in 20�N–75�N) or (d) southern hemisphere

(SH:0�S–60�S).

For GL, NH and SH, the analysis is performed on a

20�-by-60� lat-long grid, using grid-box-area weighted

averages of the values at the 48 5�-by-5� gridpoints in each

20�-by-60� grid-box [the longitudes of the 20�-by-60� grid-

box-centers (grid-points) are 30�E, 90�E,..., 240�E, 300�E,

while the latitudes are 70�S, 50�S,..., 50�N, 70�N]. For the

North Atlantic (NA: 20�N–75�N), we carried out the

detection analysis on the 5�-by-5� grid over the ocean only

(gridpoints over land are excluded). For the analyses on

SWH statistics, the detection domain only covers the

selected ocean areas in 30�N–70�N (see Sect. 2.3 and

Figs. 2, 3).

In order to exclude gridpoints with frequent missing

observations from our detection analysis, we use the

missing data information obtained from HadSLP2.0, the

un-interpolated HadSLP2 product (Allan and Ansell 2006).

Table 3 continued

Season Observations Variable Domain b̂ b̂l b̂u #EOFs Internal variability Detected?

AMJ Pt NH (15) -0.42 -1.66 0.79 3 OK No

SH (11) 1.56 0.23 3.04 3 (2–6) Under-estimated Yes

GL (32) 6.52 1.83 24.08 6 (5–8) Under-estimated Yes, b[ 1

ERA40 Gt NH (15) 0.47 -1.87 2.95 3 Under-estimated No

SH (11) 17.60 -44.92 5.75 3 (6–10) Under-estimated No

GL (32) 1.35 0.08 2.73 6 (4, 6–7, 9) Under-estimated Yes

Pt NH (15) -1.68 -2.84 -0.61 3 Under-estimated No

SH (11) 3.37 1.69 5.50 3 (2–6, 8–9) Under-estimated Yes

GL (33) 3.57 1.71 6.05 6 (2–10) Under-estimated Yes, b[ 1

HadSLP2 Gt NH (16) -1.61 -17.20 5.62 3 OK No

SH (11) 5.95 3.34 10.38 3 (2–10) Under-estimated Yes, b[ 1

GL (33) -0.69 -2.29 0.83 6 OK No

JAS Pt NH (16) -0.89 -4.13 1.97 3 Over-estimated No

SH (11) -0.77 -2.62 0.95 3 OK No

GL (33) 7.82 4.19 16.00 6 (3, 5–10) Under-estimated Yes, b[ 1

ERA40 Gt NH (16) -2.03 -23.41 5.28 3 Over-estimated No

SH (11) 6.24 2.31 16.44 3 (2–3, 5–6) Under-estimated Yes, b[ 1

GL (33) 6.44 1.96 21.34 6 (6) Under-estimated Yes, b[ 1

Pt NH (16) 0.47 -2.87 4.07 3 OK No

SH (11) -3.15 -12.24 1.12 3 (9–10) Under-estimated No

The numbers in the Domain column are the number of gridboxes retained in the domain for the analysis. The ‘‘#EOFs’’ column shows the

number of retained leading EOFs corresponding to these estimates; and the numbers in parentheses, if given, mean that a detection would be

possible (i.e., b̂l [ 0) if any number of leading EOFs in this range were retained
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For any year, a missing value is assigned to all 20�-by-60�
grid-boxes that have missing data at 50% or more of their

48 5�-by-5� gridpoints; and a linear trend is estimated only

when there are at least 30 years of valid data for a 20�-by-

60� gridbox during the period of 1955–2004. The excluded

grid-boxes are not shaded in Fig. 1. Note that the same

retained grid-boxes are analyzed regardless of whether

HadSLP2 or ERA40 is analyzed. The same missing data

mask was also applied to the model simulations, so that the

observed and simulated quantities are analyzed on the same

grid.

The results of our detection analysis are presented and

discussed in the next section. Since Havg, t is a linear

combination of Gt and Pt, and H20y, t is a monotonic

function of a linear combination of Gt and Pt, detection

results for Havg, t and H20y, t are not independent of

detection results for Gt and Pt. Nevertheless, detection

analyses on Havg, t and H20y, t are useful because they allow

a synthesis of results on Gt and Pt into results concerning

SWHs.

4 Results of detection analysis

First of all, in order to compare with Gillett et al. (2005), a

detection study on the decadal mean DJF SLP fields over

the globe (derived from HadSLP2.0), we also carried out

our detection analysis using the global decadal means of

JFM Pt as derived from HadSLP2. We obtained similar

results, that is, a scaling factor of 1.21 that is significantly

greater than zero but not significantly different from unity

[the estimated 5–95% uncertainty range on b is (0.17,

2.33)], and that also passes the residual consistency check.

Note that these results are not listed in Table 3, which

contains only the results of detection analyses on trends.

This corroborates the finding of Gillett et al. (2005) that

boreal winter ‘‘sea level pressure trends may be attributed

to external influence’’. The difference in the definition of

the boreal winter season (i.e., DJF vs. JFM) between Gillett

et al. (2005) and this study does not affect the detection

conclusion; neither does the slight difference between

using HadSLP2.0 and HadSLP2 (un-interpolated and

interpolated versions).

We now turn to detection analysis on the linear trend

patterns of geostrophic wind energy index Gt, of seasonal

mean SLP anomalies Pt, and of seasonal mean and extreme

SWH. The results, which are summarized in Table 3 and

shown in Figs. 4, 5, 6, indicate that there exist detectable

external influences on the observed trends of atmospheric

storminess and ocean wave heights in boreal winter (JFM)

in the past half century, especially for the North Atlantic

region. These results are discussed in detail in the sub-

sections below.

4.1 Detection results for boreal winter trends

As shown in Fig. 4, in boreal winter, the scaling factor b is

estimated to be significantly greater than zero (i.e., incon-

sistent with zero) for the NA domain in each case, being

consistent across the different variables (Gt, Pt, Havg, and

H20y) and across the different observationally based data

sets (ERA40 or HadSLP2, original or hindcast wave data;

see also Table 3). The detection results are generally also

consistent across a range of EOF truncations (see the

‘‘#EOFs’’ column in Table 3), although scaling factors,

confidence intervals, and the results of residual consistency

test are reported for fixed levels of EOF truncation that

were chosen according to the domain and variable of

interest. The chosen levels of EOF truncation (Table 3)

explain 65–95% of the variance in Ĉg1
:

For the NH domain, the detection results are consistent

across both SWH variates for both observationally based

data sets; but they are not consistent between Gt and Pt, nor

between HadSLP2 and ERA40. For the NH and GL

domains, external influence is detectable in the Gt trends

only when HadSLP2 is used, and in the Pt trends only when

ERA40 is used. As mentioned before, results of detection

on SWH are a synthesis of the detection results on Gt and

Pt. Thus, external influence on SWH could be detected if it

is detected on Gt or Pt or both.

In general, the results of detection on the wave heights

are physically consistent with those of detection on the

geostrophic wind energy field and/or sea level pressure

field. Increases in geostrophic wind energy and/or decrea-

ses in sea level pressure are associated with increases in

ocean wave heights (both seasonal means and seasonal

extremes). The detection results are also consistent with the

relative magnitudes of the responses shown in the left

panels of Figs. 1, 2, 3.

Nevertheless, the associated 5–95% uncertainty ranges

on b do not include unity in most cases, especially when

ERA40 SLP or waves are used as observations (see Table 3

and Fig. 4). In these cases, the scaling factor is estimated to

be significantly greater than unity, which suggests that the

climate models, or the combination of climate models and

empirical downscaling models, significantly under-esti-

mate the magnitude of the response of atmospheric

storminess or ocean wave heights to the observed changes

in external forcing (assuming the observed trends are not

systematically over-estimated in the HadSLP2 or ERA40

data). Note that the estimated scaling factor is particularly

large when the original ERA40 waves data are used (see

the right most dashed bars in Fig. 4b). This is because the

climate model simulated SWH is derived statistically using

an observed SLP-SWH relationship that has previously

been found to under-estimate the variability and trend

magnitude of ocean wave heights (see Sect. 2.2). Under-
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Fig. 4 The scaling factors (b) in the regressions of the winter (JFM)

trend patterns of Pt (seasonal mean SLP anomalies), Gt (seasonal

anomalies of squared SLP gradients), Havg (seasonal mean SWH), and

H20y (seasonal 20-year return values of SWH), separately, on the

relevant multi-model mean of simulated trend patterns. The period for

calculating the trend is 1955–2004 when the HadSLP2 is used, and

1958–2001 when ERA40 SLP is used. In the dataset labels, ‘‘Had’’

stands for HadSLP2, and ‘‘ERA’’ for ERA40 SLP; the domain of

detection is denoted by two letters: GL for global, NH for the

Northern Hemisphere, and NA for the North Atlantic; and ‘‘org’’ is

used to denote that the original ERA40 wave data (seasonal mean

SWH) is used as the proxy of SWH observations. An ‘‘R’’ just under

the zero-b line denotes that the climate models under-estimate the

internal variability in the trend of the particular variable in the

corresponding observed dataset
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Fig. 5 The same as in Fig. 4 but for the boreal fall (OND) season
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estimation of the observed trend magnitude by climate

models would bias high the estimate of the scaling factor b.

However, the effect of such under-estimation is reduced

when statistical SWH hindcasts are used as observations,

because both ‘‘observed’’ and simulated SWH quantities

were derived from the same statistical SLP-SWH rela-

tionship in such cases. Thus, the scaling factor is somewhat

closer to unity when the ERA40 hindcast SWH quantities

are used as observations (see Fig. 4b). In general, the

estimated b values are still greater than unity in these cases,

which arises from under-estimation of the observed trend

magnitude of seasonal mean SLP anomalies Pt and of

geostrophic wind energy index Gt by the climate models

(especially the latter; see Fig. 4a).

The residual variance was found to be consistent with

the corresponding simulated internal variability for all

cases of detection for the NA domain when HadSLP2 is

used (see Table 3 and Fig. 4a). In contrast, the climate

models, or the combinations of climate models and statis-

tical downscaling, were found to under-estimate the

observed internal variability in almost all cases of detected

influence (except that of Pt in NA) when ERA40 is used

(Table 3). Such under-estimation weakens the robustness

of the detection results.

4.2 Detection results for the transition seasons

External influence is basically not detectable in the boreal

fall season (OND). It was not detected for any of the four

variates (Gt, Pt, Havg, and H20y) when HadSLP2 is used (see

Table 3 and Fig. 5). When ERA40 is used, external influ-

ence was not detected in either Gt or Pt, no matter in which

domain; but it was detected in both Havg and H20y for the

NH domain (and in the original ERA40 Havg trends over

the NA domain only).

Note that the detection results in boreal fall season differ

considerably between the original and hindcast ERA40

wave heights (see Table 3). This is because the observed

SWH trend patterns are less well reproduced by the sta-

tistical SLP-SWH relationship in this season (see Fig. 2).

In the austral fall season (AMJ), external influence was

detected in Pt for the SH domain, no matter whether

HadSLP2 or ERA40 is used (see Table 3 and Fig. 6a). It

was also detected in both Gt and Pt globally, but only when

ERA40 is used. When HadSLP2 is used, external influence

is not detectable in either Gt or Pt, globally or for the NH

domain. Thus, in this season, external influence appears to

be stronger in the SH than in the NH, and also stronger on

Pt than on Gt. It is detectable only in Pt over the southern

hemisphere.

4.3 Detection results for austral winter trends

In austral winter (JAS), as shown in Fig. 6b (see also

Table 3), external influence on the observed Gt trends was

detected globally and for the SH domain, no matter whether

HadSLP2 or ERA40 is used; but it was not detected for the

NH domain. External influence on the observed Pt trends is

much weaker than on the observed Gt trends in this season.

It appears to be detectable only when ERA40 is used (and

only for the GL domain; see Table 3 and Fig. 6b).

In summary, in this season, external influence is mainly

detectable on the geostrophic wind energy field, and is

detectable mainly in the southern hemisphere. External

influence is not detectable in the northern hemisphere in

austral winter.
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Hemisphere (SH) results are given

200 X. L. Wang et al.: Detection of external influence on trends of atmospheric storminess

123



5 Concluding remarks

In this study, work on the detection of external influence on

atmospheric storminess and ocean wave heights is carried

out, based on twentieth-century simulations from multiple

climate models with combined natural and anthropogenic

forcing and statistical downscaling of the corresponding

changes in ocean wave heights for the periods 1955–2004

and 1958–2001. The observational data used in this study

was obtained from ERA40 (SLP, geostrophic wind energy,

and SWHs; Uppala et al. 2005; Caires et al. 2004a) and

HadSLP2 (Allan and Ansell 2006).

It has been shown that the observed trend patterns in

atmospheric storminess are reasonably well reproduced by

the climate models, especially for the North Atlantic in

boreal winter. Observed NH ocean wave height trends are

also reasonably well reproduced when climate model out-

put is statistically downscaled, although the magnitude of

the trends is under-estimated.

In boreal winter, the observed 1955–2004 trend patterns

in atmospheric storminess and ocean wave heights are

characterized by an upward trend in the high-latitudes

(especially the northeast North Atlantic) with a downward

trend in the mid-latitudes, which were found to contain a

detectable response to a given combination of natural and

anthropogenic external forcing.

In general, the results of our detection analysis suggest

that, in the past half century, the external forcing has had a

detectable influence on trends in atmospheric circulation

(including storminess) in the winter hemisphere (i.e.,

northern hemisphere in JFM and southern hemisphere in

JAS), and on trends of NH ocean wave heights in boreal

winter. The signal of external influence is weaker in the

transition seasons, and is hardly detectable in the northern

hemisphere in boreal summer. Climate models generally

simulate smaller changes than observed and also appear to

under-estimate the internal variability, reducing the

robustness of our detection results.

Analyses of triangles of long surface pressure records

(e.g., Matulla et al. 2008; Alexandersson et al. 1998, 2000),

which are generally located in the coastal region of northern

Europe, suggest that there have been earlier, long term

variations in atmospheric storminess that are comparable to

changes seen at these same locations during the past half

century. Whether these earlier changes were associated with

a similar large scale pattern of change as detected here

remains an open question. It would therefore be of great

interest to carry out the detection analysis on storminess

trends over a longer period, such as the entire past century.

The HadSLP2 does have data for the entire past century,

although the data coverage for the first half of the twentieth

century is not as good as during the latter half of the

century. However, the number of available climate model

simulations is insufficient to confidently estimate the

internal variability on the century time scale.

Alternatively, we carried out the optimal detection

analysis on the observed 1900–49 Gt and Pt trend patterns

(not shown), comparing the HadSLP2 Gt and Pt trend

patterns with the corresponding multi-model mean trend

patterns for this period. Data coverage, however, is limited

during this period. In fact, only 9–11 60� 9 20� gridboxes

satisfy our data coverage criterion (see Sect. 3), with all but

two of these gridboxes located in the NH (mostly between

10�N and 50�N, as well as one gridbox between 50�N and

70�N in the North Atlantic in JAS). Thus, the detection

domain here is NH only. In boreal winter, the observed

1900–1949 Gt trend pattern is characterized by decreases in

the mid-latitudes (north of 40�N) of the North Atlantic.

The detection results for our 1900–1949 analysis are

summarized in Table 4. In contrast to the results for the

latter half of the twentieth century (Table 3), external

influence on the observed Gt and Pt trends over the early

half of the twentieth century is not detectable, regardless of

season and the number of leading EOFs retained. This

maybe because limited data coverage and a weaker signal

have conspired to reduce the signal-to-noise ratio in our

detection analysis. However, it also suggests that external

forcing is less likely to have been an important factor in

surface pressure and atmospheric storminess change during

the first half of the twentieth century.

Table 4 As in Table 3 but for the results of detection analysis on the 1900–1949 trend patterns

Season Observations Variable Domain b̂ b̂l b̂u #EOFs Internal variability Detected?

JFM HadSLP2 Gt NH (8) 34.09 -640.3 640.3 3 Under-estimated No

Pt NH (8) -9.58 -640.3 640.3 3 OK No

OND HadSLP2 Gt NH (9) -1.40 -14.71 5.73 3 OK No

Pt NH (9) 0.39 -4.08 5.26 3 OK No

AMJ HadSLP2 Gt NH (7) -0.89 -640.3 640.3 3 OK No

Pt NH (7) 0.61 -5.94 8.73 3 OK No

JAS HadSLP2 Gt NH (9) 0.52 -640.3 640.3 3 OK No

Pt NH (9) 2.20 -640.3 640.3 3 OK No
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Appendix A Calculation of the atmospheric storminess

index Gt

The atmospheric storminess index Gt is calculated as fol-

lows. First, the squared SLP gradient at gridpoint (i, j) is

computed as

G0
t ði; jÞ¼

P0
t ði; jÞ�P0

t ði�1; jÞ
cosð/jÞ

h i2

þ P0
t ðiþ1; jÞ�P0

t ði; jÞ
cosð/jÞ

h i2

2

þ
P0

t ði; jÞ�P0
t ði; j�1Þ

� �2þ P0
t ði; jþ1Þ�P0

t ði; jÞ
� �2

2

ð4Þ

where P0
t(i, j) denotes the seasonal mean SLP for gridpoint

(i, j) in year t, /j is the latitude of the gridpoint (i, j) and

where it is assumed that the grid spacing, in degrees, is

equal in both latitude and longitude. Then, the 1961–1990

mean field, �G0ði; jÞ; is subsequently calculated for each

season and subtracted to obtain anomalies of squared

seasonal mean SLP gradients:

Gtði; jÞ ¼ G0
t ði; jÞ � �G0ði; jÞ: ð5Þ

The use of the cos(/j) weighting above accounts for the

dependence of the spherical distance between two neigh-

boring gridpoints on the latitude at which both gridpoints

are located (for gridpoints on the equator: /j = 0 and

cos(/j) = 1). This computation is performed for each of

the 5� 9 5� grid boxes analyzed, and for each season and

year. The unit for the resulting squared SLP gradient is

(hPa)2 per 5� spherical distance.

Appendix B Estimation of internal climate variability

The optimal detection analysis requires knowledge of the

internal climate variability. It involves two estimates of the

internal variability in this study: Ĉg1
and Ĉg2

: Both Ĉg1
and

Ĉg2
are climate model based estimates of internal climate

variability; both are obtained by pooling the variability of

the control simulations together with the inter-integration

variability of the twentieth-century simulations (after

removing the ensemble mean field from each integration in

each of the nine ensembles; see Table 1). However, they

are based on two non-overlapping periods of the twentieth-

century simulations and two non-overlapping ensembles of

control simulations.

More specifically, when analyzing the 1955–2004 (or

1958–2001) trends, Ĉg1
is based on the 41 twentieth-cen-

tury simulations for the period 1955–2004 (or 1958–2001),

while Ĉg2
is based on the 41 twentieth-century simulations

for the period 1900–1949 (or 1900–1943). Accordingly,

when analyzing the 1900–1949 trends (see Section 5), Ĉg1

is based on the 41 twentieth-century simulations for the

period 1900–49, while Ĉg2
is based on the 41 twentieth-

century simulations for the period 1955–2004. In the mean

time, each of the available control simulations (Table 2) is

also divided into non-overlapping 50 or 44-year simulation

segments, depending upon whether the detection analysis

was of a 50-year period (1955–2004 or 1900–1949) or a

44-year period (1958–2001). For example, the ECHO-G

340-year control simulation can be divided into six non-

overlapping 50-year simulation segments, corresponding to

years 1–50, 51–100,..., and 251–300, respectively (or seven

non-overlapping 44-year segments corresponding to 1–44,

45–88,..., and 265–308; see Table 2). As a result, a total of

86 50-year control simulation segments (or 96 44-year

segments) were obtained (Table 2). Half of these control

simulation segments are used to obtain Ĉg1
; and the other

half, Ĉg2
: Thus, combining these with information derived

from the 41 twentieth-century simulations, we use a total of

84 (= 86/2 + 41) 50-year simulation segments for the

detection analysis on the 1955–2004 or 1900–1949 trend

pattern. The degree of freedom here is 74 (= 84-9-1),

since nine twentieth-century ensemble-mean trend fields

and one control ensemble-mean field (here we pool all

control simulation segments used into a single large

ensemble because some models have short control simu-

lations) were subtracted from the estimated trend patterns

before they are used in the detection analysis. Similarly, for

the detection analysis on the 1958–2001 trend pattern, a

total of 96 non-overlapping 44-year control simulation

segments are used (see Table 2); thus the degree of free-

dom is 79 (= 96/2 + 41-1-9).
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