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Abstract Reconstructing the temporal and spatial climate

development on a seasonal basis during the last few cen-

turies, including the ‘Little Ice Age’, may help us better

understand modern-day interplay between natural and

anthropogenic climate variability. The conventional view

of the climate development during the last millennium has

been that it followed a sequence of a Medieval Warm

Period, a cool ‘Little Ice Age’ and a warming during the

later part of the 19th century and in particular during the

late 20th/early 21st centuries. However, recent research has

challenged this rather simple sequence of climate deve-

lopment. Up to the present, it has been considered most

likely that the ‘Little Ice Age’ glacial expansion in western

Scandinavia was due to lower summer temperatures. Data

presented here, however, indicate that the main cause of the

early 18th century glacial advance in western Scandinavia

was mild and humid winters associated with increased

precipitation and high snowfall on the glaciers.

Keywords ‘‘Little Ice Age,’’ Scandinavian glaciers �
Summer temperature � Winter precipitation �
North Atlantic oscillation � Sea ice extent

1 Introduction

In order to place the recent, apparently anomalous, climate

changes in a longer time scale, improved understanding of

century to decadal scale natural climate variability on

different spatial and temporal scales is of great importance

(Wanner et al. 2000; Jones and Mann 2004; Luterbacher

et al. 2004; Casty et al. 2005; Moberg et al. 2005a; Xoplaki

et al. 2005; Osborn and Briffa 2006). The conventional

view of the climate development during the last millen-

nium has been that it followed the sequence of a warm

Medieval Period, a cool ‘Little Ice Age’ (LIA) and a

warming since the mid-19th century, interrupted by cooling

1940–1975, and continuing thereafter (Lamb 1963, 1965,

1977; Grove and Switsur 1994; Moberg et al. 2005a; IPCC

2007). Research over the last decades has, however, chal-

lenged this sequence of climate development in the recent

past (Hughes and Diaz 1994; Bradley 2000; Crowley and

Lowery 2000). Numerous studies have demonstrated

cooler climate and advancing glaciers during the ‘Little Ice

Age’ (e.g. Grove 1988, 2004). The ‘Little Ice Age’ term

was introduced by Matthes (1939) due to glacial readvance

in Sierra Nevada, California, subsequent to the early/mid

Holocene Hypsithermal. The term has generally referred to

the latest of a series of ‘neoglaciations’ (Porter and Denton

1967). More recently, however, the usage of the term has

caused confusion (Matthews and Briffa 2005), depending

on whether it is referred to the LIA ‘glacierization’ or

‘climate’, particularly summer temperature. In the Euro-

pean Alps, historic evidence shows that LIA glacial

A. Nesje (&)

Department of Earth Science, University of Bergen,
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advances peaked around AD 1350, 1600 and 1850–1860

(Holzhauser et al. 2005). In Scandinavia, on the other hand,

most glaciers experienced their maximum LIA position

during the mid-18th century (Grove 2004). In Scandinavia,

glaciers apparently started the pre-LIA advance during the

14th–16th centuries with a rapid growth in the later part of

the 17th and early 18th centuries (Grove 2001), whereas

the rapid glacier retreat initiated in the 1930s is commonly

considered to terminate the LIA ‘glacierization’ (Oerle-

mans 2005). Northern Hemisphere and Norwegian

temperature records indicate that a LIA ‘climate’ lasted

from *1460 to 1920, however, interrupted by milder

periods (Mann and Jones 2003; Nordli et al. 2003).

Northern Hemisphere mean annual temperature records for

the last millennium (Mann et al. 1999; Crowley and

Lowery 2000; Osborn and Briffa 2006) do not show a

marked LIA cooling, but rather a gradual temperature

decline during the first half of the last millennium.

There were also significant regional temperature varia-

tions during the LIA. Several temperature data sets

obtained from different archives and proxies (e.g. tree

rings, corals, varved sediments, ice cores, glaciers, histor-

ical records) show that in the Northern Hemisphere some

regions were warm whereas others were cold during the

same 30–50 year periods (Jansen et al. 2007: pp. 467–468).

Most of the reconstructed climate changes have been

linked to external forcing factors (e.g. solar activity, vol-

canic eruptions) in combination with internal ocean–

atmosphere interactions (Crowley 2000; IPCC 2007). The

inconsistency between the glacial and climate records over

the last millennium has led some commentators to consider

that the LIA term is ‘inappropriate’, ‘should be used cau-

tiously’, ‘should be allowed to disappear from use’, or

‘should be avoided because of limited utility’ (Matthews

and Briffa 2005 and references therein).

2 The ‘Little Ice Age’ glacial expansion in western

Norway

The most detailed and historically reliable data on the LIA

glaciation in Scandinavia comes from the Jostedalsbreen

area in western Norway (Grove 2004) (Fig. 1). There

contemporaneous historic evidence (Foss 1750) demon-

strates that Nigardsbreen, an eastern outlet glacier from

Jostedalsbreen (46�390N, 8�370E), advanced 2,800 m

between AD 1710 and 1735 (Fig. 2, upper panel), giving a

mean annual advance rate of *110 m (Nesje and Dahl

2003). Between AD 1735 and the historically documented

‘Little Ice Age’ maximum in AD 1748, the glacier

advanced 150 m. Thus, between 1710 and 1748 the glacier

advanced 2,950 m (mean annual advance of *80 m). In

2005, a pine (Pinus sylvestris) stump with approximately

40 annual rings, partly buried in till (in situ) and bearing

clear signs of having been overrun by the Nigardsbreen

glacier (the subaerial end was splintered), was found at the

western end of Lake Nigardsbrevatnet close to the present

glacier front. The tree stump was dated at 175 ± 25

radiocarbon years BP (Poz-15936). Age calibration with

the CALIB program (Rev5.0.2) (Reimer et al. 2004) yiel-

ded several possible age ranges (1 sigma: AD 1668–1682,

AD 1736–1782, AD 1797–1804, AD 1935–1951; 2 sigma:

AD 1661–1694, AD 1727–1813, AD 1839–1842, AD

1853–1859, AD 1862–1867, AD 1918–1952). Based on the

historic evidence, the most likely calibrated age ranges are

AD 1668–1682 and AD 1661–1694 with 1 and 2 sigma,

respectively (Fig. 2, upper panel). The date gives the

approximate age range for when the tree was killed by the

advancing Nigardsbreen.

Similar historic evidence comes from Brenndalsbreen at

the western part of Jostedalsbreen. Around AD 1650 local

farmers said that they saw the glacier as ‘a white cow in the

skyline’, meaning that the glacier front was located at the

edge of the steep mountain cliff above the present, regen-

erated glacier. Over a 50-year period during the late 17th/

early 18th centuries the glacier advanced ca. 4.5 km,

yielding a mean advance rate of *90 m yr–1 (e.g. Nesje

1994).

The lichenometrically and historically dated terminal

moraines in the Nigardsbreen glacier foreland (Andersen

and Sollid 1971; Bickerton and Matthews 1992) demon-

strate the rate of retreat after the 1748 LIA maximum

(Fig. 2, lower panel). Annual frontal measurements of

Nigardsbreen started in AD 1907. No annual frontal mea-

surements were, however, carried out between AD 1964

Fig. 1 Location images. Left image: J Jostedalsbreen, T Trøndelag,

F Femundsmarka, L London, N The Netherlands, S Stockholm,

Å Ålfotbreen. Right image: B Brenndalsbreen, Bø Bødalsbreen,

N Nigardsbreen. Image: NASA World Wind
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and 1972, but the retreat in this period was photogra-

mmetrically determined to be 515 m (Østrem et al. 1977).

The volume of a glacier changes because of variations

in mass input (accumulation mainly from atmospheric

precipitation) and mass losses (ablation mainly from

melting and evaporation) (Dyurgerov and Meier 2000;

Lowell 2000). The frontal response to a change in the mass

balance is a few years delayed. The frontal time lag at

Nigardsbreen has been estimated to 20–25 years (Nesje

and Dahl 2003). The question then arises whether the late

17th/early 18th century glacier advances in western

Norway were mainly caused by lower summer tempera-

tures and/or higher winter precipitation.

3 Early 18th century summer temperatures

Tree-ring width series from Trøndelag and western Norway

(Thun 2002) and July–August temperatures reconstructed

from tree rings in Femundsmarka, eastern Norway (Kalela-

Brundin 1999) indicate a consistent rise in temperature

during the first quarter of the 18th century. The second

quarter of the 18th century does not, however, show a

consistent rise in the records from Trøndelag and western

Norway (Fig. 3). The tree-ring record from western Nor-

way shows a slightly falling trend in the late 17th century.

A possible explanation for this falling trend is that the tree-

ring material from this period is from buildings of

unknown/different origin and/or different age structure of

the trees. July–August temperatures in southern Troms and

Vesterålen in northern Norway reconstructed from tree

rings do not show particularly cold summers during the

first part of the 18th century (Kirchhefer 2001). Similarly,

tree-ring based reconstructions of April–September tem-

peratures for Northern Europe show relatively mild

summers during the first half of the 18th century (Briffa

et al. 2002). Reconstructed July mean temperature anoma-

lies going back [ 7,000 years based on tree rings in

Fig. 2 Upper panel historically

reported and measured frontal

variations of Nigardsbreen.

Based on Østrem et al. (1977)

with later updates by NVE

(Andreassen et al. 2005). The

Nigardsbreen glacier record is

also based on historically and

lichenometrically dated

marginal moraines by Andersen

and Sollid (1971). Lower panel
The glacier foreland of

Nigardsbreen (Adapted from

Andersen and Sollid 1971)
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Finnish and Swedish Lapland indicates that summers in the

18th century were not particularly cool in northern Scan-

dinavia either (Grudd et al. 2002; Helama et al. 2002). In

addition, summer temperatures reconstructed from tree-

ring width and maximum density in tree-rings from Lap-

land, northern Scandinavia do not indicate particularly cold

conditions during the first part of the 18th century

(Schweingruber et al. 1988). In central Sweden as well,

tree-ring data indicate mild summers during the first part of

the 18th century (Gunnarson and Linderholm 2002).

Seasonal temperature anomalies in Europe (Luterbacher

et al. 2004; Xoplaki et al. 2005) indicate that the summers

(JJA) in the last half of the 17th century and first part of the

18th century showed a falling trend (Fig. 4, upper panel).

After *1730 the mean summer temperatures over Europe

experienced a significantly rising trend. The Central Eng-

land temperature (CET) series (Manley 1953, 1974; Parker

et al. 1992; Parker and Horton 2005) shows that the early

18th century was characterised by relatively high summer

temperatures, however, with cold summers in 1725 and

Fig. 3 Tree-ring width and

summer temperature (�C)

records from three different

regions in southern Norway

(Kalela-Brundin 1999; Thun

2002)
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1740 (Fig. 4, middle panel). Cold summer temperatures

(AMJJA) in western Norway, three in sequence 1739–

1741, are reconstructed by Nordli et al. (2003) and his-

torically documented by Pontoppidan (1752). An

instrumental temperature record, starting in AD 1706 from

De Bilt, The Netherlands (http://climexp.knmi.nl), does not

show that the early 18th century summers (JJA) were

particularly cold, except for the year 1725 (Fig. 4, lower

panel). Finally, the Northern Hemisphere temperature

reconstruction by Osborn and Briffa (2006) indicates a

warming trend in the early 18h century.

4 Early 18th century winter climate

Mean winter (DJF) temperatures over Europe showed

a markedly rising trend between the 1680s and 1730s

(Luterbacher et al. 2004, Fig. 4, upper panel). CET winter

Fig. 4 Upper panel seasonal

and annual temperature

anomalies (�C) in Europe (30-

year running means) (Adapted

from Luterbacher et al. 2004

and Xoplaki et al. 2005). Middle
panel a Central England mean

summer (JJA) temperature (�C)

record for the period 1659–1750

(Manley 1953, 1974; Parker

et al. 1992; Parker and Horton

2005). Lower panel mean

summer (JJA) temperature (�C)

record from De Bilt, The

Netherlands (data provided by

the Dutch Meteorological

Institute: http://climexp.

knmi.nl/getindices.cgi?

KNMIData/labrijn+Tdebilt

+i+someone@somewhere)

A. Nesje et al.: The ‘Little Ice Age’ glacial expansion in western Scandinavia 793

123

http://climexp.knmi.nl
http://climexp.knmi.nl/getindices.cgi?KNMIData/labrijn+Tdebilt+i+someone@somewhere
http://climexp.knmi.nl/getindices.cgi?KNMIData/labrijn+Tdebilt+i+someone@somewhere
http://climexp.knmi.nl/getindices.cgi?KNMIData/labrijn+Tdebilt+i+someone@somewhere
http://climexp.knmi.nl/getindices.cgi?KNMIData/labrijn+Tdebilt+i+someone@somewhere


temperatures showed a generally rising trend in the first half

of the 18th century, however, with cold winters in 1709,

1716 and 1740 (Fig. 5, upper panel). The instrumental

temperature record, starting in AD 1706, from De Bilt, The

Netherlands (http://climexp.knmi.nl) shows that the winters

(DJF) during the early 18th century were generally relatively

mild, except for the winters 1709, 1716, and 1740 (Fig. 5,

middle panel). Reconstructions of the winter climate in the

Baltic region (Koslowski and Glaser 1999; Tarand and

Nordli 2001) shows a positive trend toward milder winters

during the first half of the 18th century, the mild winters

peaking around the 1730–1740s (Fig. 5, lower panel).

Similar mild winters is seen in a reconstruction of late

winter/early spring temperatures based on ice break-up of

Lake Mälaren near Stockholm in Sweden (Moberg et al.

2005b). A winter–spring thermal index for Iceland, based on

analysis of historical documents, also indicates generally

mild winters between AD 1600 and 1740 (Ogilvie 1992).

Fig. 5 Upper panel Central

England winter (DJF) and

January mean temperature (�C)

records 1659–1750 (Manley

1953, 1974; Parker et al. 1992;

Parker and Horton 2005).

Middle panel mean winter

(DJF) temperature (�C) record

from De Bilt, The Netherlands

(data provided by the Dutch

Meteorological Institute,

KNMI). Lower panel Winter

climate reconstructions in the

Baltic region AD 1510–1990

(Koslowski and Glaser 1999;

Tarand and Nordli 2001)
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5 Sea-ice extent in the North Atlantic

Available historic sea-ice records from the North Atlantic

(Koch 1945; Sigtryggsson 1972; Ogilvie and Jónsdóttir

1996; Vinje 1998) show that the first half of the 18th

century was characterised by less extensive sea ice around

Iceland and in the Barents Sea than in the mid 17th and late

18th centuries (Fig. 6). Forty years (1958–1997) of data

were used by Deser et al. (2000) to document Arctic sea-

ice variability. The dominant mode of winter (JFM) sea-ice

variability exhibits out-of-phase fluctuations between the

western and eastern North Atlantic and the time series has a

Fig. 6 Historic sea-ice records

from the North Atlantic region

(Koch 1945; Sigtryggsson 1972;

Ogilvie and Jónsdóttir 1996;

Vinje 1998)
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high winter-to-winter-autocorrelation. The time series is

dominated by decadal-scale variations and a long-term

trend of decreasing ice cover east of Greenland. The

dominant pattern of winter sea ice variability was associ-

ated with large-scale changes in surface air temperature

and sea-level pressure that closely resemble the North

Atlantic Oscillation (NAO).

6 The North Atlantic Oscillation

The NAO is one of the major modes of climate variability

in the North Atlantic region (e.g. Walker and Bliss 1932;

van Loon and Rogers 1978; Kushnir and Wallace 1989;

Kushnir 1994; Hurrell 1995; Hurrell and van Loon 1997;

Hurrel et al. 2003). The winter (DJFM) temperature and

precipitation in Bergen (1861–2006) is highly correlated

(r = 0.66, Fig. 7, upper panel). This relationship holds also

for the whole region of western Norway with the mountain

range included (r = 0.66, period 1901–2000). A compari-

son between the NAO index and winter precipitation

between AD 1864 and 1995 in Bergen in western Norway

shows that these are highly correlated (r = 0.77) (Hurrell

1995). Variations in the NAO index are also reflected in the

mass balance records of Scandinavian glaciers (Nesje et al.

2000; Reichert et al. 2001; Six et al. 2001; Nesje 2005), the

highest correlation is with winter and net mass balance on

the maritime Ålfotbreen in western Norway (r = 0.75 and

0.66, respectively, observation period 1963–2006) (Fig. 7,

middle panel). A period of generally high winter precipi-

tation (strongly positive NAO index) between 1988/1989

and 1994/1995 yielded both high winter balance and

positive net mass balance on glaciers in western Norway.

This resulted in the largest glacier advances in western

Norway during the 20th century, and possibly since the

early 18th century (Nesje 2005). Reichert et al. (2001)

inferred that precipitation is the dominant factor (1.6 times

higher than the impact of temperature) for the relationship

(r = 0.60) between net mass balance on Nigardsbreen and

the NAO index (observation period AD 1962–2000). The

winter (DJFM) atmospheric temperature in Bergen (wes-

tern Norway) shows a high correlation (r *0.8) with the

CET series. The 95 and 99% confidence levels are at 0.27

and 0.35 correlation. This means that the CET, going back

to AD 1659, can be used to test whether the significant

early 18th century glacier advance in western Norway may

have been caused by summer temperature and/or winter

precipitation. The cold winters in the late 17th and early

18th centuries when the Dutch canals were frozen (e.g.

Grove 1988, 2004) are evident in the CET and De Bilt

temperature records (see Fig. 5). The standardised [(x –

mean)/st.dev.] CET DJFM temperatures show strong

coherency (r = 0.72) with the winter (DJFM) NAO index

by Jones et al. (1997) with later updates (Osborn 2006)

(Fig. 7, lower panel). A climate index was produced to test

whether a combination of cold summers and mild winters

(normally associated with high precipitation) may explain

the late 17th/early 18th glacial expansion in western Nor-

way (Fig. 8, upper panel). The climate index was generated

by combining standardised records of JJA and DJF tem-

peratures from the CET series. The standardisation

procedure was to subtract the annual values from the mean

value and divide by the standard deviation [(x – mean)/

st.dev.]. The standardised values were given equal weight

and summarised. Cold summers/mild and wet winters

indicate periods favourable for glacier growth (index above

the horizontal line in Fig. 8, upper panel), whereas warm

summers/cold and dry winters indicate periods with glacier

contraction (index below the horizontal line). The climate

index indicates a period favourable for increasing glacier

expansion during the late 17th century and three periods

favourable for glacial growth during the first half of the

18th century. In addition, periods favourable for glacier

growth, as indicated by the climate index produced from

the CET record, in the 1770s, 1810s, 1840s, 1850s, 1890s,

1910s, 1920s, and 1990s are represented by marginal

moraine formation, based on lichenometric and historic

evidence, a few years delayed in the Jostedalsbreen area

(Bickerton and Matthews 1993; Nesje 2005).

7 Discussion

A number of abrupt and widespread climatic variations are

recorded around the world during the Holocene (Mayewski

et al. 2004). It has been suggested that these changes in the

North Atlantic region had a *1,500 (1,470 ± 500)-year

periodicity (Bond et al. 1997; Campbell et al. 1998). Several

Northern Hemisphere temperature reconstructions indicate

an irregular temperature decline from AD 1000 to the early

19th century with a subsequent warming trend, especially

during the 20th and early 21st centuries (Jansen et al. 2007).

Annual to decadal-scale temperature variability were most

likely related to variations in solar irradiance and volcanic

eruptions (Lean et al. 1995; Mann et al. 1998; Briffa 2000;

Crowley 2000). The climatic variations during the LIA

caused world-wide growth of glaciers, but the evidence

from Scandinavia and the European Alps is best docu-

mented (Grove 2004; Holzhauser et al. 2005).

In this paper, it is pointed out that there is only a weak

relationship between low summer temperatures in northern

Europe and the early 18th century glacial advance in

western Norway, whereas the relationship with relatively

mild winter temperatures (and hence winter precipitation)

is relatively strong. None of the temperature records in

Fig. 4 and the most recent tree-ring based summer
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temperature reconstructions from the Nordic countries

indicate that the early 18th century summers were suffi-

ciently cold to explain the rapid early 18th century glacier

advance documented in western Scandinavia. Instead, the

records indicate either a general summer temperature rise

or not particularly cold summers during the first part of the

18th century. A similar trend is seen in northern Fenno-

scandian pine chronologies in the first part of the 18th

century (Briffa et al. 1988, 1992; Eronen et al. 1999) and in

a Northern Hemisphere (14 chronologies) tree-ring based

temperature reconstruction (Esper et al. 2002). A seasonal

precipitation reconstruction for European land areas for the

period 1500–1900 (Pauling et al. 2005) indicates a period

of high winter (DJF) precipitation during the first part of

the 18th century. Similarly, European winter temperature

records indicate a significant rise in winter temperatures

Fig. 7 Upper panel
standardised [(x – mean)/

st.dev.] DJFM temperature and

precipitation in Bergen 1861–

2006 (Data: met.no). Middle
panel time series (1963–2006)

of winter mass balance (Bw) and

net mass balance (Bn) on

Ålfotbreen 1963–2005 (Data:

NVE; Andreassen et al. 2005)

plotted against the NAO

(DJFM) index by Jones et al.

(1997) with later updates by

Osborn (2006). The correlation

between the winter balance on

Ålfotbreen and the NAO index

is 0.75. Lower panel The NAO

index (DJFM) by Jones et al.

(1997) with later updates

(Osborn 2006) plotted against

the standardised Central

England mean December–

March temperatures (Manley

1953, 1974; Parker et al. 1992;

Parker and Horton 2005)
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(indicating mild and humid winters and thus a positive

NAO-index weather mode) in NW Europe in the first half

of the 18th century. A similar pattern is also indicated by a

reconstruction of winter (DJF) temperature from three

European sites (Central England, Holland and Zürich) for

the period AD 1684–1783 (Ingram et al. 1978), recon-

structed winter temperatures at De Bilt, Holland, historical

records of canal freezing (van den Dool et al. 1978), and a

reconstruction of the NAO index back to AD 1429 (Glueck

and Stockton 2001) and AD 1500 (Luterbacher et al. 2002).

The NAO index of Luterbacher et al. (2002) indicates a

positive trend in the NAO index between the mid 1690s

and the 1730s (Fig. 8, lower panel). A reconstruction of

winter temperature in Tallinn, Estonia, also indicates an

increasing winter temperature trend in the southern Baltic

region during the first half of the 18th century (Koslowski

and Glaser 1999; Tarand and Nordli 2001). This is further

supported by an increase in the number of historically

reported incidents of major physical hazards related to the

autumn, winter, and spring seasons (e.g. snow avalanches

and river floods), especially between AD 1650 and 1750,

leading to tax reduction for farms in the vicinity to glaciers

in western Norway (Grove and Battagel 1983; Grove 1988,

2004; Nesje 1994). A modern ‘analogue’ for such a rapid

glacial advance due to increased snow fall and positive

glacier mass balance occurred in the early 1990s (Fig. 7,

middle panel), when short outlet glaciers at the western

side of Jostedalsbreen advanced *250 m over a 10-year

period (Nesje 2005).

8 Conclusions

Available instrumental and proxy records from NW Europe

indicate that summer temperatures alone were not suffi-

ciently low to explain a mean annual glacial advance rate

in the order of *100 ± 20 m over several decades during

the late 17th/early 18th century in western Scandinavia.

The evidence presented here indicates that the rapid glacier

advance that has been historically documented in the early

18th century in western Norway is best explained by

increased winter precipitation and thus high snowfall on

the glaciers due to prevailing mild and humid winters, most

likely as a result of a prevailing positive NAO weather

mode during the later part of the 17th century and the first

half of the 18th century.

Fig. 8 Upper panel a climate

index produced by combining

standardised summer (JJA) and

winter (DJF) temperatures from

the CET series (Manley 1953,

1974; Parker et al. 1992; Parker

and Horton 2005). An index

above the horizontal line
indicates periods favourable for

glacier growth [cold summers/

mild winters normally

associated with high

precipitation (positive NAO

index)]. Negative index values

indicate periods favourable for

glacier retreat [warm summers/

cold winters normally

associated with low

precipitation (negative NAO

index)]. Lower panel The NAO

index reconstruction AD 1650–

1750 (adapted from Luterbacher

et al. 2002)
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