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Abstract Large ensembles of coupled atmosphere–ocean
general circulation model (AOGCM) simulations are
required to explore modelling uncertainty and make
probabilistic predictions of future transient climate
change at regional scales. These are not yet computa-
tionally feasible so we have developed a technique to
emulate the response of such an ensemble by scaling
equilibrium patterns of climate change derived from
much cheaper ‘‘slab’’ model ensembles in which the
atmospheric component of an AOGCM is coupled to a
mixed-layer ocean. Climate feedback parameters are
diagnosed for each member of a slab model ensemble
and used to drive an energy balance model (EBM) to
predict the time-dependent response of global surface
temperature expected for different combinations of
uncertain AOGCM parameters affecting atmospheric,
land and sea-ice processes. The EBM projections are
then used to scale normalised patterns of change derived
for each slab member, and hence emulate the response of
the relevant atmospheric model version when coupled to
a dynamic ocean, in response to a 1% per annum in-
crease in CO2. The emulated responses are validated by
comparison with predictions from a 17 member ensem-
ble of AOGCM simulations, constructed from variants
of HadCM3 using the same parameter combinations as
17 members of the slab model ensemble. Cross-valida-
tion permits estimation of the spatial and temporal
dependence of emulation error, and also allows estima-
tion of a correction field to correct discrepancies be-
tween the scaled equilibrium patterns and the transient
response, reducing the emulation error. Emulated tran-
sient responses and their associated errors are obtained
from the slab ensemble for 129 pseudo-HadCM3

versions containing multiple atmospheric parameter
perturbations. These are combined to produce regional
frequency distributions for the transient response of
annual surface temperature change and boreal winter
precipitation change. The technique can be extended to
any surface climate variable demonstrating a scaleable,
approximately linear response to forcing.

1 Introduction

In order to provide an objective basis for estimates of
uncertainty in projections of future climate change, it is
necessary to use results from ensembles of simulations of
comprehensive global climate models. Historically a
small ensemble of models developed at different centres
has been available, with uncertainties in the response
quantified either using simple diagnostics such as the
standard deviation (Cubasch et al. 2001) or, more re-
cently, from techniques for the estimation of probabilities
(Furrer et al. 2006; Tebaldi et al. 2005). Another recent
development has been the advent of larger ensembles
designed to sample modelling uncertainties in a system-
atic manner. Ideally, such ensembles would sample both
alternative options for structural elements of the model
(for example grid resolution and the basic physical
assumptions used in its parameterisations of sub grid-
scale processes), and also alternative values for poorly-
constrained parameters contained within the parame-
terisation schemes. Early examples have consisted of
perturbed physics ensembles with a more limited aim of
varying uncertain parameters within a single model
framework, given a fixed set of structural options (Mur-
phy et al. 2004; Stainforth et al. 2005; Annan et al. 2005).

In Murphy et al. (2004), 29 key parameters of the
atmospheric model HadAM3 (Pope et al. 2000) were
varied, one at a time, to produce an ensemble of 53
members. The atmospheric model was coupled to a

G. R. Harris (&) Æ D. M. H. Sexton Æ B. B. B. Booth
M. Collins Æ J. M. Murphy Æ M. J. Webb
Hadley Centre for Climate Prediction and Research,
Met Office, FitzRoy Road, Exeter EX1 3PB, UK
E-mail: glen.harris@metoffice.gov.uk

Climate Dynamics (2006) 27: 357–375
DOI 10.1007/s00382-006-0142-8



mixed-layer ‘‘slab’’ ocean (Williams et al. 2001) (here-
after referred to as a ‘‘slab model‘’), and used to study
the equilibrium response to a doubling of CO2. Murphy
et al. (2004) diagnosed climate sensitivity s (the equi-
librium change in global mean surface temperature) for
their ensemble members, and then used linear statistical
methods to infer s for four million combinations of
multiple parameter values sampled from uniform prior
distributions to arrive at a prior predictive distribution
(Collins et al. 2006) for s. Murphy et al. (2004) also
developed a likelihood measure, based on the ability of
each model version to simulate present-day climate
observations, and this too was inferred for all parameter
combinations using linear statistical methods. The prior
predictive distribution was then weighted by likelihood
to derive a posterior probability distribution function
(pdf) for climate sensitivity, conditional upon the as-
sumed distributions and ranges for uncertain parame-
ters, assumptions in the selection of observational
constraints and their conversion to estimated values of
likelihood, linearity assumptions in the emulation of
unsampled regions of parameter space, and the neglect
of structural uncertainties and dynamical ocean feed-
backs.

One of the limitations of the approach in Murphy
et al. (2004) is that the physics perturbations were ap-
plied singly, neglecting non-linear interactions between
different parameter combinations (although a simple
estimate of the related uncertainty was included in the
resulting pdfs). Using the same climate model, Stain-
forth et al. (2005) created an ensemble sampling multiple
perturbations of a reduced parameter set, finding evi-
dence of significant non-linear effects. Here we present
results based on a new ensemble in which all 29 of the
parameters of Murphy et al. (2004) are simultaneously
perturbed. Parameter combinations were chosen by
using the results of Murphy et al. (2004) to predict a set
of parameter combinations which would span a wide
range of climate sensitivities, possess reasonable skill in
simulating present-day climate, and maximise the cov-
erage of parameter space. Using this design strategy
(described more fully in Webb et al. 2006), a 129 mem-
ber ensemble was created, consisting of one version
using the ‘‘standard’’ parameter settings of Pope et al.
(2000) and 128 versions containing multiple parameter
perturbations applied to the parameterisations of
atmospheric, surface and sea-ice processes. Although
members of this ensemble were selected by using a linear
statistical method to predict values of sensitivity and
model skill at a large sample of points in parameter
space (Murphy et al. 2004), the range of climate changes
actually simulated by the ensemble members will incor-
porate the effects of non-linear interactions between
model parameters. Note also that this set of model
versions does not represent an unbiased sample relative
to some expert choice of the prior distribution of either
model parameter values or climate sensitivity, so distri-
butions of climate change derived from it should be re-
garded as sample-dependent frequency distributions,

rather than probability distributions consistent with a
particular prior.

Use of a slab model permits this ensemble to examine
only the equilibrium climate response to a given change
in forcing. However, a key goal for climate research is to
predict pdfs of transient climate change for plausible
scenarios of future climate forcing. In particular, pdfs of
transient changes at regional scales are required by the
impacts community for risk assessment (Pittock et al.
2001). Only by coupling atmospheric general circulation
models to full dynamical ocean models (hereafter
AOGCMs) can this be achieved. We have therefore se-
lected a subset of 16 parameter combinations, plus the
unperturbed standard model version, from the 129
member slab ensemble to create a first perturbed physics
ensemble of AOGCMs, consisting of variants of the
HadCM3 model (Gordon et al. 2000; Johns et al. 2003).

The setup and production of this ensemble is de-
scribed in detail by Collins et al. (2006). Description and
choices for all parameter combinations are given in
Table 1 in Collins et al. (2006). Flux adjustments (cali-
brated separately for each ensemble member) are ap-
plied to limit systematic biases in sea surface
temperature (SST) and salinity, resulting in stable con-
trol simulations despite significant perturbation of the
atmospheric model, and successfully preventing the
development of regional SST biases in most parts of the
world. However, all ensemble members suffer from a
weakening of the thermohaline circulation, leading to
cold SST biases in the North Atlantic in the control
simulations. The applied forcing scenario in the climate
change simulations is a 1% per annum increase in CO2

concentration for 150 years (i.e. to four times pre-
industrial concentrations).

Atmosphere–ocean general circulation model experi-
ments are much more expensive than slab model
experiments, thereby limiting us to 17 members. In order
to provide robust regional pdfs for transient climate
change, we need larger ensembles. This paper describes a
technique to augment the 17 member AOGCM ensem-
ble by scaling patterns of climate change obtained
from the 129 member slab ensemble. In this way we can
‘‘emulate’’ the transient regional response for a larger
fraction of parameter space in a cost-effective way.
Emulation here refers to the use of a statistical model to
predict the outputs of a climate model, which one could
in principle run (Currin et al. 1991). Emulators are built
from a sample of simulations and provide an efficient
means of predicting the response of a complex model,
and the error in emulated response, for any point in
input parameter space.

The 17 sets of parameter combinations for our
AOGCM ensemble have been chosen to be identical to
17 members of the slab ensemble. We can then validate
predictions of the transient response obtained by scaling
patterns of climate change from slab ensemble members
with predictions simulated by corresponding AOGCM
versions with identical physical parameterisations in
the atmospheric component. Cross validation allows
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quantification of uncertainty associated with the scaling
method, and therefore forms an essential component of
the emulation technique.

Below we describe in detail how scaling equilibrium
patterns of climate change from an ensemble of slab
model simulations can be used to emulate the transient
response of an equivalent ensemble of AOGCM simu-
lations. We emulate patterns of change for annual sur-
face temperature for a 1% per annum increase in CO2,
validating the technique using the AOGCM ensemble
described by Collins et al. (2006). The technique can be
applied however to any forcing scenario, and to any
surface climate variable that has a strong response to
radiative forcing, and whose dependence on global sur-
face temperature anomaly is approximately linear. A
good test of the technique is to predict future transient
regional precipitation changes, and some results of do-
ing so are also presented.

2 Pattern scaling

Pattern scaling was proposed by Santer et al. (1990) as a
way of inferring transient regional responses of surface
temperature to increases in greenhouse gas forcing from
equilibrium simulations with slab models. Such ‘‘clas-
sical’’ pattern scaling assumes the transient response for
a climate variable of interest equals the normalized
spatial pattern s(x) obtained from a slab model, scaled
linearly by the mean global surface temperature change
DT(t):

DF ðx; tÞ ¼ DT ðtÞsðxÞ ð1Þ

DF(x,t) is the emulated temporal and spatial anomaly in
the specified climate field compared to control clima-
tology, and x refers to the vector of model surface grid-
points. The spatial pattern of change is defined by

sslabðxÞ ¼
F slab
2�CO2

ðxÞ � F slab
1�CO2

ðxÞ

T slab
2�CO2

ðxÞ � T slab
1�CO2

ðxÞ
D E ; ð2Þ

where angle brackets Æ æ denote area-weighted global
mean quantities, and all slab model quantities in Eq. 2
are temporally averaged (20 years in this paper).

This approach was necessary since AOGCM’s had
yet to be developed. Following their advent, pattern
scaling was then used as an efficient technique for
inferring the transient response of an AOGCM to dif-
ferent forcing scenarios (Mitchell et al. 1999; Hunting-
ford and Cox 2000; Mitchell 2003). This was achieved by
identifying a single spatial pattern which, when scaled by
the global temperature response, maximises the ex-
plained variance of temporally and spatially varying
changes found during the full period of a transient
simulation. The optimum spatial pattern, obtained by
minimising the mean square error between the AOGCM
and the scaled response, is given by

sgcmðxÞ ¼
PN

i¼1 DF gcmðx; tiÞDT gcmðtiÞPN
i¼1 DT gcmðtiÞ½ �2

ð3Þ

where DTgcm (ti)=ÆDTgcm (x,ti) æ, and anomalies in the
surface field F are defined with respect to some temporal
mean over a control climate simulation, i.e.:
DF gcmðx; tiÞ ¼ F ðx; tiÞ � F ctlðxÞ: The optimum spatial
pattern can then be used to emulate the expected re-
sponse to alternative forcing scenarios. Mitchell et al.
(1999) found that decadal averaging reduced contami-
nation of the response pattern by internal variability. In
this paper we use 20 year averages centred on each
decade (ti=t0+10i) to further increase the signal-to-
noise ratio. These optimal patterns perform best when
emulating the regional temperature response, especially
if one uses patterns derived from a strong radiative
forcing scenario (with high signal-to-noise ratio) to
predict the response for a scenario with weaker forcing
(Mitchell 2003). Pattern scaling for precipitation chan-
ges is less successful, but is useful for seasons and regions
where the signal in the forced precipitation anomaly is
larger than internal variability (Mitchell et al. 1999).

Our goal is to emulate the transient response of a
large number of perturbed AOGCM versions from the
equilibrium response of the corresponding slab model
versions. In this case use of the slab pattern scaling of
Eq. 1 would seem necessary, rather than the more
accurate approach of Eq. 3. However, for our 17-
member AOGCM ensemble we can obtain both optimal
and slab patterns. The difference between these provides
a correction field cj(x) that reduces discrepancies be-
tween the transient response, and emulated estimates of
it obtained directly from the scaled slab pattern. These
arise due to the effects of ocean dynamics not accounted
for with the slab model. For the j=1,...,17 members of
the AOGCM ensemble, Eq. 1 is rewritten

DFjðx; tiÞ ¼ DTjðtiÞ sslabj ðxÞ þ cjðxÞ
h i

; ð4Þ

where cj (x)=sj
gcm(x) � sj

slab(x).

Figure 1 compares sj
slab(x), cj(x), and their absolute

ratio for one member of the ensemble. The slab pattern
demonstrates the well-known enhancement in warming
over land relative to the oceans (Huntingford and Cox
2000), and the amplification of warming at high lati-
tudes, especially in the Arctic. Over much of the globe
cj(x) is considerably smaller than sj

slab(x). For example,
the correction field is less than 0.2 times the slab pattern
over 74% of the globe, and the mean value of the
absolute ratio is 0.15. This confirms the assumption in
Santer et al. (1990) that the slab pattern explains much
of the variation in regional response. Locally, the largest
values of cj(x) relative to sj

slab(x) are located over the
oceans, in regions where slab model patterns fail to
capture a dynamical oceanic response to greenhouse gas
forcing. For example, in the North Atlantic, and in parts
of the southern oceans, the slab model temperatures are
too warm. These are regions where significant mixing of
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shallow and deep water occurs (e.g., compression of the
Antarctic Circumpolar Current in the Drake Passage,
and thermohaline mixing in the North Atlantic). The
AOGCM possesses a more effective heat sink in these
regions than the mixed-layer ocean, due to dynamical
coupling between the surface layers and the deep ocean.

In the tropical East Pacific, the mixed-layer ocean
predicts insufficient warming. This likely due to the slab
model not representing sub-surface ocean thermocline
dynamics and changes in cold water upwelling which
lead to a local enhanced warming of this part of
the Pacific in the AOGCM simulations. Associated
with this, the correction field shows a positive signal,

implying insufficient warming over the Amazon in the
slab model.

As well as assessing the validity of scaling slab pat-
terns as a technique for emulating the transient response,
information from the 17 correction fields can be used to
improve the emulated transient response patterns in-
ferred from the other 112 members of the slab model
ensemble. Both the slab patterns and corresponding
correction fields vary as physics parameters are per-
turbed, and we would ideally search for statistical rela-
tionships between the parameter perturbations and the
correction fields to interpolate between the cj(x) for all
members. This is not feasible with just 17 simulations
over a 29-parameter phase space. We therefore average
the correction fields obtained from each of the 17
members of the AOGCM ensemble and assume that the
correction is constant across parameter space. The
ensemble-mean correction field is given by

cmeanðxÞ ¼
1

M

XM
j¼1

cjðxÞ: ð5Þ

This is plotted in Fig. 2 for annual surface temperature
change, and is broadly similar in structure to the cor-
rection field in Fig. 1 derived for just one member.

For one AOGCM ensemble member, Fig. 3 plots the
RMS error between scaled pattern predictions and
simulated changes of annual global surface temperature.
Three pattern scalings are tested here: (1) slab pattern,
(2) optimal pattern, (3) slab plus ensemble mean cor-
rection field. Also plotted here is the RMS value of the
simulated surface temperature anomaly, a measure of
the expected error for an emulation technique with zero
skill. The RMS error for the slab pattern scaling rises
from an initial value of 0.23�C (an estimate of the model
20-year internal variability for global surface tempera-
ture) to 1.1�C by 140 years (4 · CO2), which can be
compared with the RMS anomaly of 5.7�C for the same
period. The variance explained by the slab pattern
scaling is 96% by the end of the emulation period in
Fig. 3, while for all members of the ensemble, at least

Fig. 1 a Pattern of the equilibrium annual surface temperature
response to doubled CO2 change for one member of the perturbed
physics slab model ensemble. b Correction field that minimises the
MSE between the scaled slab pattern in a and the same perturbed
atmosphere coupled to a dynamic ocean, with a 1% increase in
CO2 for 150 years. c Absolute ratio of the correction field (b) to the
slab pattern (a)

Fig. 2 Ensemble mean correction field for annual surface temper-
ature change for the 17 members of the atmosphere–ocean general
circulation model (AOGCM) ensemble

360 G. R. Harris et al.: Frequency distributions of transient regional climate change



92% of the variance is explained. Scaling the optimum
pattern for surface temperature change gives RMS er-
rors close to the level of model internal variability
throughout the simulation period (Huntingford and Cox
2000). Inclusion of the ensemble mean correction leads
to errors intermediate between the slab pattern and the
optimum pattern. In this case the variance explained in
Fig. 3 is 99% by the end of the emulation period, and
for all members at least 95% of the variance is ex-
plained. These results confirm that for surface temper-
ature, use of the mean correction field reduces the
uncertainty of the scaling predictions.

3 Emulation of the global temperature response

In Fig. 3, spatial patterns were scaled by global tem-
perature anomalies simulated by the AOGCM. For the
full ensemble of slab models, however, corresponding
AOGCM simulations are not available, so the transient
global temperature response needs to be inferred from
the equilibrium response. For this we shall use a two-box
energy balance model (EBM), similar to Huntingford
and Cox (2000), to predict globally averaged land and
ocean surface temperature changes in response to im-
posed radiative forcing anomalies. Depth-dependent
ocean temperatures are assumed to satisfy a heat con-
duction equation, though we modify Huntingford and
Cox to include upwelling and downwelling processes,
following Schlesinger et al. (1997). Thermal advection
between land and ocean is assumed to depend linearly
on the land–ocean temperature difference (although la-
ter we shall assume a constant ratio of land to ocean
warming).

The most important EBM parameters for determin-
ing the temperature response are the land and ocean
climate feedback parameters kl and ko (Hoffert et al.

1980). These are related to climate sensitivity (see below)
and will vary as atmospheric parameters are perturbed.
The EBM climate feedbacks are therefore parameterised
separately for each member of the slab model ensemble.
The ocean parameters in the EBM also need to be
specified. These include effective thermal diffusivity j,
upwelling velocity w, thermal advection coefficient a and
others (Raper et al. 2001). These parameters could in
principle be calibrated separately for each of the 17 slab
model ensemble members for which we possess corre-
sponding AOGCM simulations, but not for the other
112 members. We therefore decided to determine a sin-
gle set of EBM ocean parameters from the 17 member
AOGCM ensemble and assume that they do not vary
with perturbations to the atmospheric model physics
when emulating the transient responses of the full 129
member ensemble. Any error resulting from this
assumption is accounted for in the cross validation of
the technique.

Huntingford and Cox (2000) diagnosed the ratio of
land to ocean warming (defined here as m) in transient
simulations with HadCM3, and demonstrated it to be
relatively constant in time, unlike the diagnosed thermal
advection coefficient a. Adopting m = constant as an
alternative constraint defines DTland(t) = m DTocean(t),
and effectively reduces the EBM to a one-box model.
Both the one-box and two-box EBM formulations shall
be tested here. Figure 4a verifies that m is indeed rela-
tively constant in time for all 17 members of the
AOGCM ensemble, except for the first few decades. At
early times the initial transient response over the oceans
is delayed compared to the land, due to the smaller
thermal inertia of the land surface. The values for the
corresponding slab model versions (mslab) are also shown
in Fig. 4a. The mslab values are always smaller than those
for the corresponding AOGCM version (mgcm), due to
enhanced thermal inertia arising from dynamical cou-
pling between the surface and the deep ocean in the
AOGCM. We find, therefore, that it is possible to
emulate the transient response from the equilibrium re-
sponse more accurately if we scale mslab by the mean ratio
of mgcm/mslab (equal to 1.09 for our ensemble). The EBM
surface boundary condition for ocean temperature
anomaly (Eq. 10 in Huntingford and Cox 2000) then
becomes

�j
@DTo

@z
¼ DQðtÞ

f
� 1þ 1:09

1� f
f

� �
kslabo DTo; ð6Þ

where DQ(t) is the radiative forcing, ko
slab is the ocean

climate feedback parameter and f the fraction of the
Earth’s surface covered by oceans.

We obtain ko
slab from kslabo ¼ DQ2�CO2

=DT slab
o;2�CO2

;
where the forcing DQ2�CO2

arising from doubling CO2 in
the standard model version is assumed independent of
model parameter settings and equal to 3.74 W m�2

(Shine et al. 1990), and DT slab
o;2�CO2

is the equilibrium re-
sponse of ocean surface temperature in the relevant slab
model ensemble member. Figure 4b compares ko

slab to

Fig. 3 Comparison of RMS errors between mean annual global
surface temperature anomalies predicted by the AOGCM and three
possible scaling patterns
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the effective ocean climate feedback parameter ko
gcm(t)

(Murphy 1995) diagnosed from the transient response,
for the 17 model versions for which both slab and
AOGCM experiments were available. After the first few
decades, when simulated variability is large relative to
the warming signal, ko

gcm(t) settles down to values that
evolve only slowly in time, and agree well with the cor-
responding values of ko

slab. The mean value of ko
gcm

(excluding the first 30 years) is plotted against ko
slab in

Fig. 4c, and compared to the line y=x. The correlation
is strong (R=0.97), with the coefficient of regression
equal to 1.03 and its standard error equal to 0.06, con-
firming the assumption inherent in our approach that
feedbacks diagnosed from the slab ensemble accurately
represent the effective climate feedbacks found in the
corresponding AOGCM versions, at least for this
ensemble with 1% per annum CO2 forcing.

We specify the remaining EBM ocean parameters by
using it to emulate the responses of our 17 member
AOGCM ensemble. Downhill simplex techniques (Press
et al. 1992) are used to select optimum values that
minimise the mean square error E2 across the ensemble
between the EBM and AOGCM projections for 20 year
average global surface temperature changes:

E2 ¼ 1

N

XN

i¼1
E2ðtiÞ; ð7Þ

where

E2ðtiÞ ¼
1

M

XM
j¼1

ejðtiÞ
� �2

;

ejðtiÞ ¼ DT ebm
j ðtiÞ � DT gcm

j ðtiÞ:

In Eq. 7 M (=17) is the number of ensemble members
and N (=14) is the number of 20 year periods available,
where these were constructed by averaging years 1–20,
11–30,..., 131–150 of the transient simulations. Figure 5a

plots the error ej(ti) for all 17 AOGCM members,
following minimisation of E2 in Eq. 7 with respect to
two parameters: ocean thermal diffusivity j and
upwelling velocity w. Values of 386 W m�1 K�1 and
3.1 m s�1 are selected respectively for these parameters
by the optimisation. Error remains below 0.25�C for the
majority of EBM projections until the last few decades
when it rises to a maximum of 0.5�C, albeit for one
member only. There is a small cold bias in the EBM
projections for the first two decades, due to the high
initial land-to-ocean warming ratio in the AOGCM that
is not captured by the constant m ratio assumption. The
RMS error E(ti) for the one-box EBM with these values
for j and w is shown in Fig. 5b (blue curve). For com-
parison the RMS error obtained for the two-box version
of the EBM, optimising with respect to j, w and
advection coefficient a, is also shown (red curve). This
confirms that due to the relative constancy of m in
HadCM3, the simpler EBM is better at reproducing
global surface temperature anomalies than the two-box
version, and the m = constant formulation is therefore
used for the remainder of this work.

4 Emulation of the regional temperature response

Here we consider projections of regional surface tem-
perature averaged over the well-known Giorgi and
Francisco (GF) sub-continental-sized regions (Giorgi
and Francisco 2000a, b). The names of these regions are
listed in Fig. 13. Following Giorgi and Francisco
(2000b), the Australian region is split into two at the
30�S parallel, while Antarctica (acronym ANT) is de-
fined here as all land south of 60�S. Furthermore, all
land points are lumped together into a region called ‘All
Land’, with acronym ‘LND’, to give a total of 24 GF
regions for this study. We consider 20 year mean chan-
ges in annual temperature.

Fig. 4 a Evolution of the ratio of land to ocean surface warming
mgcm(t), for the AOGCM ensemble. Plotted symbols show the
equivalent equilibrium ratio for the slab model ensemble member
with identical physics parameterisations. b Evolution of the ocean
climate feedback parameter for the AOGCM ensemble driven by a

1% per annum increase in CO2. c Mean of the ocean climate
feedback parameter over the last 100 years for each of the
AOGCM ensemble members, plotted against the equivalent
feedback parameter for corresponding members of the slab model
ensemble

362 G. R. Harris et al.: Frequency distributions of transient regional climate change



Errors in emulated values for a specified region k can
be measured by three simple statistics: the ensemble
mean bias, the ensemble mean RMS error, and the
standard deviation of emulation error:

ekðtÞ ¼
1

M

XM
j¼1

ej;kðtÞ; rmsekðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM
j¼1

e2j;kðtÞ

vuut ;

rkðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M � 1

XM
j¼1

ej;kðtÞ � ekðtÞ
� �2

;

vuut
ð8Þ

where

ej;kðtÞ ¼ DF pred
j ðx; tÞ � DF gcm

j ðx; tÞ
D E

k
: ð9Þ

For example, the mean RMS error between scaled pat-
terns and the 17 AOGCM simulations of annual surface
temperature change over all land is shown in Fig. 6. The
four curves here correspond to four different methods of
obtaining emulated anomalies DF j

pred (x,t): (1) slab
pattern scaled by DT ebm, (2) slab pattern scaled by the
‘true’ anomaly DT gcm, (3) slab pattern plus ensemble
mean correction field scaled by DT ebm, (4) slab pattern
plus ensemble mean correction field scaled by DT gcm.
This comparison allows errors due to the scaling
assumptions to be separated from errors in the emula-
tion of globally averaged temperature by the EBM, since
scaling by the AOGCM anomaly DT gcm is equivalent to
using a perfect EBM. However, when we apply pattern
scaling to the full slab ensemble in section 5, case (3) is
used (green line). Several conclusions can be drawn from
Fig. 6. Firstly, emulation errors increase in time, al-
though since the warming also increases with time, the
fractional error relative to the simulated warming re-

mains small. For example, following the first 30 years
(when warming is small) the relative error for case (3)
never exceeds 7%. Secondly, as expected, scaling by
DT ebm rather than DT gcm leads to an increase in RMS
error. The simulated land–sea contrast in warming ex-
ceeds the ratio specified in the EBM during the first two
decades (see Fig. 4c), leading to a small increase in error
for this period. However, the dominant contribution to

Fig. 5 a Differences between the one-box EBM and AOGCM predictions of 20-year mean global surface temperature anomalies under a
1% per annum CO2 increase, for the 17 members of the cross-validation ensemble. b Ensemble average of the RMS error between the one-
box (blue) and two-box (red) EBM versions and AOGCM projections of global surface temperature change

Fig. 6 Comparison of the mean RMS emulation error for annual
land surface temperature for the 17 member AOGCM ensemble
when scaling the slab pattern, or the slab pattern plus ensemble
mean correction field, by either the AOGCM or EBM prediction of
transient global surface temperature anomaly, for a 1% per annum
increase in CO2 concentration
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emulation error during early decades (when the forcing
is small) is provided by internal variability, which affects
both the slab model predictor pattern, the verifying
AOGCM response and (to a lesser degree) the ensemble
mean correction field. Thirdly, inclusion of the ensemble
mean correction field leads to a reduction in prediction
error when compared to scaling the slab patterns.

Figure 7 plots regional emulation error defined by
Eq. 9 for all 17 AOGCM ensemble members, for the
Northern Europe and East Asia GF regions. The emu-
lated anomaly here is given by

DF pred
j ðx; tÞ ¼ DT ebm

j ðtÞ sslabj ðxÞ þ cmeanðxÞ
h i

: ð10Þ

The spread in uncertainty for East Asia is a lot smaller
than for Northern Europe. This is partly due to the
higher regional internal variability in Northern Europe
(evidenced here by the higher spread at early times when
the forcing is small). Pattern scaling error is also larger
for Northern Europe, since there is more variability
across the ensemble in the optimum correction fields
obtained for each member to correct the slab pattern
(recall from Eq. 5 that cmean(x) is the ensemble average
of the optimum fields, used because we lack sufficient
members to predict variations across the model param-
eter space). For example, those members in Fig. 7a with
a large discrepancy between the AOGCM and the scaled

response (e.g. 2�C by 140 years) correspond to cases of
large difference between the optimum correction field for
that member and the mean correction field. One can
conclude that for temperature the equilibrium response
is less able to explain the pattern of the transient re-
sponse in Northern European than in East Asia. This is
not surprising, since weakening of the North Atlantic
thermohaline circulation in the AOGCM simulations,
and its influence on future climate in this region, will not
be represented in the slab model patterns. Also, varia-
tions in the weakening across the AOGCM ensemble
will not be picked up by use of an ensemble mean cor-
rection field. Nevertheless, errors of 2�C by 140 years are
still only about 20% of the simulated warming, so
fractional emulation errors remain reasonably small,
even in Northern Europe.

The errors in the emulated responses shown in Fig. 7
were obtained by cross validation between the AOGCM
and slab model ensembles, removing one member at a
time from the ensemble and emulating its response.
Cross validation is an essential part of the process of
producing pseudo-AOGCM ensembles of the transient
response, as it allows us to quantify emulation uncer-
tainties and hence account for them in the widths of our
frequency distributions of future climate change (see
Sect. 5). As an illustration, Fig. 8a shows the ensemble
mean transient responses simulated by the AOGCM for

Fig. 7 Errors between the 17
AOGCM simulations of annual
surface temperature and the
emulated response obtained by
using the EBM to scale the slab
plus ensemble mean correction
field pattern, for a Northern
Europe, b East Asia

Fig. 8 Evolution of a the mean anomaly of the AOGCM ensemble of simulated changes in annual temperature, and the standard
deviation (b), and bias (c) of error in the corresponding emulated responses, in response to a 1% increase in CO2 concentration over
150 years, for eight selected Giorgi and Francisco regions
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eight representative GF regions, with quantitative esti-
mates of the standard deviation and bias of the emula-
tion error (Eq. 8) shown in Fig. 8b, c, respectively.
Emulation error is largest for GF regions in the high
northern latitudes.

In the next section we emulate the transient response
for each of the 129 slab ensemble members, to create
frequency distributions of transient regional climate
change. Each emulation is assumed to be sampled from

a normal distribution with mean value predicted by the
emulation, and variance d2 in prediction error given by
Eq. 25 (see Sect. 8):

d2 ¼ r2 � e2DT 2: ð11Þ

The cross validation variance r2 contains a contribution
from the variance e2 of random internal variability in the
slab patterns, scaled by the global temperature response.
To correct for this extra variance, we independently
estimate e2 from thirty 20-year means obtained from two
600-year simulations with the HadSM3 standard slab
model configuration with pre-industrial and doubled
CO2 concentrations:

e2ðxÞ ¼ 1

29

X30
l¼1

slðxÞ � sðxÞ½ �2: ð12Þ

Equation 2 is used to calculate slab patterns sl(x) from
20-year samples in these experiments. The estimate for e2

in Eq. 12 assumes the same internal variability for all
physics parameter perturbations. The blue curve in
Fig. 9 shows the variance r2 of emulation error for
Northern Europe obtained from the cross validation.
The green curve shows e2 for this region scaled by DT 2;
while the red curve corresponds to d2 (the difference
between the blue and green curves).

5 Frequency distributions of transient regional climate
change

We are now in a position to emulate the transient re-
gional responses which would be obtained by taking
each atmospheric model version from the full 129
member slab ensemble, and coupling it to the dynamic
ocean of HadCM3. The frequency distribution of equi-
librium climate sensitivity for the full slab ensemble is

Fig. 9 Evolution of the variance r2 of error (blue curve) in the
emulated annual surface temperature for Northern Europe, in
response to a 1% increase in CO2 concentration over 150 years.
The green curve shows an independent estimate of the extra

variance 2e2int DT 2 for this region due to scaling of random internal
variability in the slab patterns by the global surface temperature
response. The difference between these two quantities (red curve)
corrects for this unwanted noise, and represents the variance d2 of
the distribution of random uncertainty assumed to be associated
with each emulation

Fig. 10 a The frequency distribution of 2 · CO2 equilibrium
climate sensitivity, diagnosed from the 129 member perturbed
physics slab model ensemble. b Plume of global surface tempera-
ture responses to a 1% increase in CO2 concentration predicted by
the EBM, using feedbacks diagnosed from a. c EBM transfer

function between climate sensitivity and global surface temperature
warming, for decades 60–80 (blue curve) and 130–150 (red curve),
for a 1% increase in CO2 concentration (i.e., two times and four
times pre-industrial CO2 concentrations, respectively)
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shown in Fig. 10a. Values range from 2.0 to 7.0�C across
the ensemble (equivalent to a range of 0.53–
1.86 W m�2 K�1 for global climate feedback parame-
ter). Ocean climate feedbacks ko were likewise diagnosed
for each slab member, and used to drive the EBM.
Fixing other ocean parameters of the EBM to those
obtained in Sect. 3, the global surface temperature re-
sponses of 129 variants of HadCM3 to a 1% per annum
increase in CO2 for 150 years are shown in Fig. 10b.
Figure 10c shows the resulting transfer function between
equilibrium climate sensitivity and mean global surface
temperature response for years 60–80 and 130–150. This
warming for years 60–80 (the time of CO2 doubling) is
commonly referred to as the transient climate response
(TCR), and the EBM estimates a range of between 1.5
and 3.0�C for the pseudo-ensemble of HadCM3 ver-
sions.

Using Eq. 10, each EBM projection in Fig. 10b is
used to scale the sum of the corresponding slab model
response pattern plus the ensemble mean correction
field, and is then meaned over 20 year periods and
averaged over the GF regions. For each region k,
member j and time t, we assume the resulting emulation
of the transient response to be normally distributed with
unknown mean and variance. The mean can be esti-
mated from the emulated response ÆDFj

pred(x,t) æk, minus
the mean bias �ekðtÞ obtained from cross validation using
the AOGCM ensemble. The variance dk(t) can be esti-
mated from cross validation using the 17 member
AOGCM ensemble, with the variance in emulation error

reduced to remove variance due to scaled noise in the
slab patterns (Eq. 11). As the variance has been esti-
mated, we sum cumulative t-distribution functions
t(z;M � 1) with M � 1 = 16 degrees of freedom:

DkðDF ;tÞ¼
X129
j¼1

t
DF � DF pred

j ðx;tÞ
D E

k
��ekðtÞ

	 


dkðtÞ
;M�1

0
@

1
A:

ð13Þ

to obtain cumulative frequency distributions Dk (DF,t)
for surface climate anomaly DF as a function of region
and time. The derivative with respect to climate anomaly
gives the frequency distribution. The blue curve in
Fig. 11 shows the frequency distribution obtained using
Eq. 14 for the TCR for the All Land region. Also shown
here for comparison is the frequency histogram (grey
shading) obtained from the EBM projections alone.
Contributions to the uncertainty dk (t) in Eq. 13 include
(see Sect. 8):

– Discrepancy between the emulated and simulated
patterns of transient climate change

– Error due to the assumption that emulated patterns
scale linearly with global temperature

– Error in the global surface temperature response ob-
tained from the EBM

– Internal regional variability in the transient simula-
tion.

For the All Land region, dLND(70 years) = 0.14�C,
which is small relative to the spread observed in Fig. 11.
The main source of uncertainty in this frequency dis-
tribution is therefore due to the uncertainty in the
physical parameters in the climate model rather than
emulation uncertainty. The shape of the distribution is
also affected by incomplete sampling of the model
parameter space; e.g., the second minor peak at 4.2�C
corresponds to the two highest sensitivity members of
the ensemble.

Frequency distributions for regional transient climate
change can be derived in an identical manner for smaller
sub-regions. For example, Fig. 12a plots frequency
distributions for the regional TCR for eight selected GF
regions, while Fig. 12b shows the evolution of the fre-
quency distribution for the Northern Europe surface
temperature response through five different 20 year
periods. The results illustrate wide spatial and temporal
variations in the uncertainty of the response. South
Australia and Alaska are the two GF regions which give
the smallest and largest median response respectively, in
our ensemble. At early times the widths of the distri-
butions are dominated by internal variability, although
there is some contribution from pattern scaling error
(e.g., failure to capture the early transient response in
land–sea temperature contrast). At later times the widths
of the distributions for surface temperature response are
dominated by uncertainty in the physical parameters in
the climate model. It is worthwhile noting that the

Fig. 11 The frequency distribution (grey shading) for the transient
climate response (TCR) in surface temperature, for all land surface
points for the 60–80-year interval during a 1% per annum CO2

increase. The grey distribution includes uncertainty due to the
perturbations of uncertain climate model parameters and error in
emulated values of global surface temperature from the EBM.
Including (in addition) pattern scaling error and pattern bias
correction gives the frequency distribution in blue. Black vertical
bars on the horizontal axis show the TCR for this decade for the 17
member AOGCM ensemble
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existence of pattern scaling error does not invalidate the
emulation technique, since any uncertainty introduced is
quantified by the cross validation ensemble, and in-
cluded as an additional broadening of the final emulated
frequency distribution.

A full description of the evolution in the predicted
response and its uncertainty for a particular region can
be given by looking at the evolution of specified confi-
dence ranges of the frequency distributions. In Fig. 13
for each of the 24 GF regions, the median (black line)
and 2.5, 5, 10, 90, 95 and 97.5% percentiles are chosen,
with shading corresponding to the 80, 90 and 95%
confidence ranges, respectively. Both the median re-
sponse and the width of the distributions are a strong
function of region, with higher response and uncertainty
in the high northern latitudes than in the tropics and
southern hemisphere. The confidence ranges increase in
time for all regions, in a similar way to Fig. 12b. This is
due both to the increasing spread of the response due to
variations in climate model parameters, and also to
trends in emulation error.

6 Emulation of the precipitation response

Scaling patterns of precipitation change (measured in
mm day�1 K�1) is a more difficult proposition than
temperature. Mitchell et al. (1999) using the earlier
HadCM2 version of the Hadley Centre GCM, con-
cluded it was hard to distinguish between errors in the
emulation and the effect of natural variability, although
some regions did show a genuine scaleable climate
change response. Mitchell (2003) concluded that by

redefining anomalies with respect to a control simulation
of pre-industrial climate rather than the recent past, and
increasing the averaging period from 10 to 30 years,
then the simulated signal-to-noise ratio could be raised
sufficiently to obtain robust response patterns for pre-
cipitation change. For HadCM3, Huntingford and Cox
(2000) explained 68% of the global precipitation change
in response to increasing CO2 by scaling the optimum
pattern (see Eq. 3). Another potential issue for the
emulation is whether the distributions for the errors in
predicted anomalies are normally distributed. Kol-
mogorov-Smirnov tests for the AOGCM cross valida-
tion ensemble produce no evidence to suggest these
distributions for emulated precipitation are anything
other than Gaussian.

The technique described here uses a 20-year averag-
ing period, and anomalies are defined with respect to a
control simulation, so we should expect scaling of pre-
cipitation patterns to be skilful wherever the signal is
significant. Unlike Mitchell (2003), we scale slab pat-
terns augmented by the ensemble mean correction field
(see Eq. 10) rather than the optimum response pattern.
Different atmospheric parameterisations with different
response patterns are also scaled here. It is therefore
important to demonstrate the validity of scaling for
emulation of a pseudo-ensemble of AOGCM precipita-
tion changes.

As an example of the precipitation anomalies we ex-
pect the scaling technique to emulate, Fig. 14 plots the
DJF (boreal winter) precipitation responses of our 17
member AOGCM ensemble for two GF regions:
Northern Europe and North Australia. In Northern
Europe there is a clear common response across the

Fig. 12 a Frequency distributions of surface temperature response
for the 60–80-year interval during a 1% increase in CO2

concentration, for eight selected Giorgi and Francisco regions.
Results were obtained by scaling the equilibrium responses of the

perturbed physics slab model ensemble. b Evolution of the
frequency distribution of annual surface temperature change in
the Northern Europe GF region, for five selected 20-year periods
during a 1% per annum increase in CO2 concentration
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Fig. 13 Evolution in the median, and 80, 90, and 95% confidence ranges for annual surface temperature change, for a 1% per annum
increase in CO2 concentration for 150 years, for all 24 Giorgi and Francisco regions
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ensemble for an increase in precipitation rate with
increasing radiative forcing, although compared to an-
nual surface temperature we observe more variability in
the climate change signal.

North Australia is the region whose precipitation
response is the most difficult to emulate. Internal var-
iability for any given ensemble member is large in this
region. The response for a majority of members is for
an initial increase in precipitation rate, although some
members show no clear signal or predict a decrease in
precipitation. Furthermore, in some cases the precipi-
tation anomaly depends non-linearly on global surface
temperature anomaly, with an initial increase in
precipitation followed by a reduction. The median
North Australian response of the ensemble is similarly
non-linear (red curve in Fig. 16a), with an initial in-
crease in DJF precipitation followed by a decrease.
Sub-regional trends (Good and Lowe 2006) are impli-
cated in this response, although further analysis is re-
quired.

We now look at the ability of pattern scaling to
emulate regional responses typified in Fig. 14. For
precipitation changes over land, Fig. 15a, b show the
slab and optimum correction field patterns respectively
for one member of the ensemble, while Fig. 15c shows
the ensemble mean correction field. In some areas the
correction field is no longer small compared to the slab
pattern of precipitation change (the average value of
the absolute ratio of the two fields in Fig. 15a, b is
0.62). This implies that for some regions, the equilib-
rium anomaly pattern does not represent the transient
response well. In North-East Australia for example,
the slab pattern implies a reduction in rainfall, while
the correction field is similar in magnitude, but oppo-
site in sign, suggesting the equilibrium response is drier
than the transient response. The discrepancy in this
region could be due to the effects of ocean dynamics,
represented in the transient response but not the
equilibrium response. However, the correction field is
derived from a single optimum pattern calibrated from
the whole period of the transient simulation, and is
unable to represent non-linearities in the dependence of
the response on global temperature. Such non-lineari-
ties are seen in Fig. 14b, and will also contribute
to discrepancy between the emulated and AOGCM

responses. A further contribution arises from use of an
ensemble mean correction field in the emulation tech-
nique, which can differ substantially from the (usually
unknown) optimum correction field for a given loca-
tion in the model parameter space (cf. Fig. 15b, c)
Cross validation therefore gives large uncertainty for
emulated DJF precipitation anomalies in areas where
these factors make emulation difficult, such as North
Australia.

In addition, for the ensemble member in Fig. 15
there is a signal for a reduction in precipitation in the
western half, and an increase in precipitation in the
eastern half of both the North Australia and Amazon
GF regions. By averaging over the full GF region, we
reduce the climate change signal and make pattern
scaling in these regions less robust. There is a good
case for a redefinition of some regions to permit more
accurate scaling predictions, but as the GF regions
have wide recognition, we continue at present to use
them.

Similarly to Fig. 8 for surface temperature, Fig. 16
shows the results of cross validating emulated changes
obtained from scaled precipitation patterns with simu-
lated changes from the 17 member AOGCM ensemble.
Simulated AOGCM anomalies, and the standard devi-
ation and bias of errors in the emulated precipitation
changes, are shown for eight selected GF regions. For
the reasons just outlined, North Australia is difficult to
emulate, and the standard deviation of error for this
region is the largest of all the GF regions (for the DJF
season). The non-linear time dependence of the median
response for North Australia and the Amazon is re-
flected in changes in sign of the bias in Fig. 16c, the
effects of which are included in the emulated responses
via Eq. 10. This further underlines the importance of
cross validation to our technique, both in optimising the
skill of the emulated changes, and in quantifying those
regions, seasons and climate variables for which emu-
lation uncertainty is large.

Emulating the transient precipitation response for
the full 129 member pseudo-ensemble of HadCM3
versions leads to the plumes of evolving uncertainty
shown in Fig. 17 for the 24 GF regions. The median
response for most regions is for an increase in DJF
precipitation. In the high Arctic and many temperate

Fig. 14 Regional response of a
Northern Europe and b North
Australia (eight members
shown for clarity), for
precipitation changes for the
AOGCM ensemble, under a
1% increase in CO2 for
150 years
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Northern Hemisphere regions (e.g. NEU, ENA, NAS,
GRL) the sign of this precipitation change is robust to
modelling uncertainty as explored by our ensemble. In
tropical and Southern Hemisphere regions, uncertainty
is sufficient to preclude the conclusion that the pre-
dicted precipitation responses are significantly different
from zero during the DJF season. Sample frequency
distributions for the 60–80 year period (the time of
CO2 doubling) for eight selected GF regions are plotted
in Fig. 18.

7 Summary and discussion

Perturbed physics ensembles of coupled atmosphere
mixed layer ocean (‘‘slab’’ model) simulations have been
used to examine the effect of modelling uncertainty on
the equilibrium response of climate to a doubling of
CO2. However, to predict uncertainty in the transient
response of regional climate we need large ensembles in
which atmospheric general circulation models are cou-
pled to a dynamical ocean model (AOGCMs). Collins
et al. (2006) report an initial step towards this goal,
consisting of an ensemble of 17 versions of HadCM3
with multiple perturbation of 29 key atmospheric, sur-
face and sea-ice parameters. However, it is not yet
computationally feasible to produce the larger ensembles
required to explore fully the model parameter space. We
have therefore developed a technique to scale equilib-
rium patterns of climate change derived from much
cheaper ensembles of slab model simulations, in order to
emulate the transient response of an equivalent ensemble
of AOGCM simulations.

With this technique climate sensitivities are diagnosed
for each member of a slab model ensemble, and used to
drive an EBM for a specified forcing scenario to predict
the time dependent global surface temperature response
expected for the equivalent AOGCM version. The EBM
projections are then used to scale normalised patterns of
climate change for each slab member to emulate the
transient response of a 129 member AOGCM ensemble
with multiple parameter perturbations. In this paper, we
have emulated the response for annual surface temper-
ature and DJF precipitation anomalies for a 1% per
annum increase in CO2 concentration. The technique
can be used however for any plausible forcing scenario
realisable with an EBM, and for any climate surface
variable that has a strong response to forcing whose
dependence on global surface temperature anomaly is
approximately linear. In the future we shall extend the
technique to other seasons, and attempt emulation for
other important climate impact variables such as soil
moisture, surface wind speed, surface relative humidity,
etc.

The emulation technique is validated by comparing
estimations of the transient response based on scaling of
patterns with corresponding output from the 17 member
AOGCM ensemble referred to above. For these cases we
can also derive the optimum single pattern which, when
scaled, minimises the mean square error between the
AOGCM and the emulated response. The optimum
pattern offers substantial reduction in emulation error
when added to the slab pattern for the purpose of scal-
ing. The difference between the slab and optimum pat-
terns (the correction field) is a measure of how well the
equilibrium response represents the pattern of transient
response. For surface temperature the correction fields
are considerably smaller in magnitude than the slab
pattern over much of the globe, confirming the
assumption that the equilibrium pattern explains most

Fig. 15 a Pattern of the equilibrium response to doubled CO2 of
boreal winter (DJF) precipitation change (mm day�1 K�1) simu-
lated by one perturbed physics slab model ensemble member. b
Correction field that minimises the MSE between the scaled slab
pattern in a and the response when the same perturbed version of
the atmosphere model is coupled to a dynamic ocean, for a 1%
increase in CO2 for 150 years. c Ensemble mean correction field for
DJF precipitation change for the 17 members of the AOGCM
ensemble
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of the variation in regional response. Locally, the largest
values of correction field relative to the slab pattern are
located over the oceans in regions where the slab model
fails to capture a dynamical oceanic response to green-
house gas forcing.

Precipitation is more difficult to emulate. The cor-
rection field can be of comparable magnitude to the
slab pattern in some regions, implying the equilibrium
response does not correspond well to the transient re-
sponse. Also, in some regions, such has North Aus-
tralia and the Amazon, we find sub-regions of
increasing and decreasing precipitation (Good and
Lowe 2006). Averaging over these regions can reduce
the climate change signal, leading to less robust emu-
lation. Thirdly, the precipitation response for some
AOGCM simulations was found in some regions to
possess a non-linear relationship to global temperature,
with initial precipitation increases followed by a de-
crease (perhaps a reflection of sub-regional trends).
Development of non-linear pattern scaling techniques
could therefore potentially reduce emulation error in
such regions.

Information from the correction fields can be used to
reduce the errors associated with scaling slab ensemble
members for which no corresponding AOGCM simu-
lation is available. The correction fields vary as uncer-
tain model parameters are perturbed, and with just 17
verifying AOGCM simulations spanning a 29-parameter
phase space, we cannot hope to derive statistical rela-
tionships between the parameter perturbations and the
correction fields. However, it is possible to calculate a
mean correction field (assumed invariant across
parameter space) by averaging the fields obtained from
the 17 members of the verifying AOGCM ensemble.
Addition of this mean correction field to the slab pattern
is shown to reduce emulation error.

Cross-validation also permits quantification of the
mean bias and standard deviation of emulation error as
a function of time and region, and is a key component of
the emulation method. For example, correcting for a
time-dependent emulation bias allows the technique to

capture non-linearities in the transient response (see
above), at least to the extent that departures from line-
arity are independent of variations in AOGCM physics.
The estimates of emulation error include error due to the
scaling assumption that climate response patterns scale
linearly with global temperature, error in the EBM
predictions of global surface temperature change, and
discrepancy between the emulated and simulated re-
sponse patterns. The presence of pattern scaling error
does not invalidate the emulation technique, since any
uncertainty introduced is quantified by the cross vali-
dation ensemble, and is included as an additional
broadening of the final emulated frequency distribu-
tions. Of course it is desirable to reduce emulation error
wherever possible. Assuming the net emulation error to
be normally distributed, we obtain regional frequency
distributions for transient climate change whose widths
are determined both by the divergence of regional re-
sponse for the different AOGCM parameter combina-
tions, and by regional emulation error. For example,
after 70 years (at the time of CO2 doubling) the median
changes in annual surface temperature and precipitation
rate for Northern Europe are 3.5�C and 0.34 mm/day,
while the 90% confidence ranges for the frequency dis-
tributions are 2.4–4.7�C, and 0.12–0.57 mm/day
respectively.

In this study we considered the spread of transient
climate changes consistent with perturbations to uncer-
tain parameters relating to atmospheric, surface and sea-
ice processes in one climate model. We neglected struc-
tural uncertainty (e.g., variations in model resolution or
in the basic physical assumptions used in the parame-
terisation of sub grid scale processes), and we also ne-
glected modelling uncertainties in other key components
of the Earth system, such as ocean physics and the
carbon and sulphur cycles. Work is under way at the
Hadley Centre to address some of these additional
sources of model uncertainty with an enlarged AOGCM
ensemble, the results of which can be expected to broaden
the uncertainty ranges associated with predicted future
changes. We also plan to estimate distributions of the

Fig. 16 Evolution of a the mean anomaly of the AOGCM ensemble of simulated changes in DJF precipitation, and the standard
deviation (b), and bias (c) of error in the corresponding emulated responses, in response to a 1% increase in CO2 concentration over
150 years, for eight selected Giorgi and Francisco regions
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Fig. 17 Evolution in the median, and 80, 90, and 95% confidence ranges for DJF precipitation changes, for a 1% per annum increase in
CO2 concentration for 150 years, for all 24 Giorgi and Francisco regions
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response to policy-relevant forcing scenarios using the
techniques described in this paper. For this purpose we
are creating a new 17 member AOGCM ensemble forced
by historical forcings from 1860–2000, followed by the
A1B SRES scenario to 2100 (Nakicenovic et al. 2000).

Our frequency distributions for future climate
change depend on the 129 member slab model ensemble
(Webb et al. 2006) from which the transient responses
are emulated. Although this is a large ensemble by cli-
mate modelling standards, it was not designed, and
indeed is not large enough, to provide a comprehensive,
unbiased sample of the model parameter space
according to some specified prior distribution of values.
As it is not computationally feasible to run sufficient
slab model versions to sample fully the 29 parameter
space, we are constructing a new statistical emulator to
estimate the non-linear response for parameter combi-
nations not sampled by an actual slab model simula-
tion. The new emulator (which predicts equilibrium
responses), in conjunction with the emulator described
here (which predicts transient changes from the equi-
librium response), will enable us to utilise Bayesian
methods to obtain distributions of predicted equilib-
rium and transient changes consistent with specified
prior distributions for uncertain quantities. Ultimately,
we aim to produce probability distributions of future
transient regional changes accounting for the relative
likelihood of different model versions based on com-
parison with observations.
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8 Appendix

This section provides an estimate of the variance in the
frequency distribution of the transient regional response
emulated from the slab ensemble. For a given region and
time, the emulated response Pj in Eq. 10 is assumed to
be equivalent to:

Pj ¼ DTj sj þ ej
� �

: ð14Þ

where sj is the signal in the combined slab and correction
field pattern for member j, and ej is random internal
variability in the normalised slab pattern uncorrelated
with sj. Internal variability in the slab pattern arises since
we have used 20 year means to estimate the response.
The variance of the emulated frequency distribution is:

V ¼ 1

N � 1

XN

j¼1
Pj þ dj
� �

� Pj þ dj
� �h i2

ð15Þ

where to each emulated response Pj we add random
noise dj, sampled from a normal distribution with some
yet to be determined variance d2. In the limit (N�1)/N
fi 1, and with dj ¼ 0 this becomes

V ¼ P 2 � P
2 þ d2: ð16Þ

Equation 14 for Pj is used in Eq. 16 to give

V ¼ d2 þ s2DT 2 � sDT
2 þ e2DT 2 þ 2seDT 2 � eDT

2

� 2eDT sDT : ð17Þ

Random internal variability in the slab pattern is as-
sumed to be uncorrelated with EBM projections for DT,
so the last three terms in Eq. 17 equal zero. Defining the
variance Vs in scaled prediction of the true slab pattern
signal:

Vs ¼
1

N

XN

j¼1
sjDTj � sjDTj
� �2 ¼ s2DT 2 � sDT

2 ð18Þ

the variance in the emulated frequency distribution be-
comes

V ¼ Vs þ e2DT 2 þ d2: ð19Þ

The second term in Eq. 19, with internal variability
scaled by the EBM global temperature response DT2,
represents variance due to our uncertain knowledge of
the true slab signal. The remaining variance d2 will in-
clude a contribution Vem arising from uncertainty in the
emulation, and variance g2 due to random internal
variability in the transient response being emulated:

d2 ¼ Vem þ g2: ð20Þ

The variance d2 can be estimated from the cross vali-
dation ensemble. Similarly to Eq. 14, we assume the
AOGCM simulated response Mj for a given region and
time is equal to a model signal mj, plus random internal

Fig. 18 Frequency distributions of DJF precipitation change for
the 60–80-year interval during a 1% increase in CO2 concentration,
for eight selected Giorgi and Francisco regions. Results were
obtained by scaling the equilibrium responses of the perturbed
physics slab model ensemble
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variability gj uncorrelated with mj:

Mj ¼ mj þ gj: ð21Þ

Substituting ej=Pj�Mj into the definition for r2 in
Eq. 8, expanding, and setting the means of uncorrelated
terms such as sg to zero, the variance in cross validation
error is given by

r2 ¼ 1

M � 1

XM
j¼1

DTjsj � mj
� �

� DTjsj � mj
� �h i2

þ 1

M � 1

XM
j¼1

g2j þ
1

M � 1

XM
j¼1

e2j DT 2
j :

ð22Þ

The first term in Eq. 22 is the variance of the emulation
error for the true signal, which we identify as Vem, i.e.:

Vem ¼
1

M � 1

XM
j¼1

DTjsj � mj
� �

� DTjsj � mj
� �h i2

: ð23Þ

Vem includes error due to non-linearities in the simu-
lated AOGCM signal mj, and error due to discrepancy
between mj and the slab signal scaled by global tem-
perature from the EBM. The second term in Eq. 22
represents uncertainty in the validation due to random
internal variability in the AOGCM transient simula-
tions. The third term represents emulation uncertainty
due to scaling of random internal variability in the slab
patterns by the temperature response. A quadratic
dependence on DT is indeed demonstrated in Fig. 9,
where the variance in emulation error r2 for Northern
Europe surface temperature is shown (blue curve).

Equation 22 can be rewritten:

r2 ¼ Vem þ g2 þ e2DT 2 ð24Þ

and combining this with Eq. 20, we arrive at an
expression that relates d2 to the variance of cross vali-
dation error:

d2 ¼ r2 � e2DT 2 ð25Þ

assuming ej to be uncorrelated with DTj. The required
variance in random uncertainty associated with each
emulation Pj is therefore equal to the variance in cross
validation error, minus the variance associated with
scaling of random internal variability in the slab patterns
by the global temperature response. An estimate for e2 is
obtained from thirty 20 year means from a 600 year
control simulation with the HadSM3 standard slab
model configuration.
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