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Abstract We examine the spatial patterns of variability
of annual-mean temperature in the control runs of eight
coupled atmosphere–ocean general circulation models
(AOGCMs) and of observations. We characterize the
patterns of variability using empirical orthogonal func-
tions (EOFs) and using a new technique based on what
we call quasi-EOFs. The quasi-EOFs are computed
based on the spatial pattern of the correlation between
the temperature variation at a given grid point and the
temperature defined over a pre-determined reference
region, with a different region used for each quasi-EOF.
For the first four quasi-EOFs, the reference regions are:
the entire globe, the Niño3 region, Western Europe, and
Siberia. Since the latter three regions are the centers of
strong anomalies associated with the El Niño, North
Atlantic, and Siberian oscillations, respectively, the
spatial pattern of the covariance with temperature in
these regions gives the structure of the model or ob-
served El Niño, North Atlantic, and Siberian compo-
nents of variability. When EOF analysis is applied to the
model control runs, the patterns produced generally
have no similarity to the EOF patterns produced from
observational data. This is due in some cases to large
NAO-like variability appearing as part of EOF1 along
with ENSO-like variability, rather than as separate EOF
modes. This is a disadvantage of EOF analysis. The
fraction of the model time-space variation explained by
these unrealistic modes of variability is generally greater
than the fraction explained by the principal observed
modes of variability. When qEOF analysis is applied to
the model data, all three natural modes of variability are

seen to a much greater extent. However, the fraction of
global time-space variability that is accounted for by the
model ENSO variability is, in our analysis, less than
observed for all models except the HadCM2 model, but
within 20% for another three models. The space-time
variation accounted for by the other modes is compa-
rable to or somewhat larger than that observed in all
models. As another teleconnection indicator, we exam-
ined both Southern Oscillation Index (SOI) and its
relation to tropical Pacific Ocean temperature variations
(the qEOF2 amplitude), and the North Atlantic Oscil-
lation Index (NAOI) and its relation to North Atlantic
region temperatures (the qEOF3 amplitude). All models
exhibit a relationship between these indices, and the
qEOF amplitudes are comparable to those observed.
Furthermore, the models show realistic spatial patterns
in the correlation between local temperature variations
and these indices.

1 Introduction

This is the first of two studies in which the interannual
variability of the global fields of annual-mean tempera-
ture and precipitation as simulated by eight coupled,
three-dimensional atmosphere–ocean general circulation
models (AOGCMs) is examined and compared with
observed variability. Climate model variability is of
interest for a number of reasons. First, the ability of a
model to successfully simulate key features of the ob-
served variability of climate is an important test of the
model processes, complementing its ability to simulate
the observed mean climate state. Second, changes in
climate at the regional level due to globally averaged
warming resulting from the buildup of greenhouse gases
(GHGs) might be expressed in part through a change in
the amplitude, frequency, or nature of natural modes of
climate variability (Hasselmann 1999; Corti et al. 1999;
Monahan et al. 2000). If a model cannot successfully
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simulate these features of observed present-day vari-
ability, then confidence in the reliability of projected
regional climatic changes must be diminished. Third,
since model climate variability obscures the emergence
of any anthropogenic signal in model simulations, it is
important to properly characterize this variability.

A number of papers have examined various features
of AOGCM variability, using a variety of techniques.
Key results from recent (1996 or later) studies of the
control runs of AOGCMs are given in Table 1. Many
studies have focused on the ability of AOGCMs to
simulate observed patterns of variability associated with
the El Niño-Southern Oscillation (ENSO); some have
also focused on the wintertime Arctic Oscillation (AO)
and North Atlantic Oscillation (NAO). In the three
models where the AO has been examined (CCC, Fyfe
et al. 1999; HadCM2, Osborn et al. 1999; HadCM2 and
ECHAM4, Zorita and González-Rouco 2000), the
models compare well with observations. Some models,
however, fail to simulate a realistic ENSO, the most
common problem being too small an amplitude of the
variability (Mao and Robock 1998; Stouffer et al. 2000;
Bell et al. 2000). Other, more recent models, do quite
well in simulating ENSO (Yukimoto et al. 1996, 2000;
Bacher et al. 1998; Collins, 2000; Collins et al. 2001;
Washington et al. 2000). A number of papers have
separately analyzed tropical Pacific Ocean variability at
sub-decadal and decadal time scales in AOGCMs, and
have found the spatial pattern of decadal variability to
be broadly similar to the sub-decadal (i.e., ENSO time
scale) variability (e.g. CCSR, Kang 1996; Yukimoto
et al. 1996, 2000; GFDL, Knutson and Manabe 1998;
CSIRO, Walland et al. 2000). This is also true for ob-
served temperature variations (Zhang et al.1997). Some
studies (e.g. Li and Hogan 1999, and the earlier work by
Meehl et al. 1993) have shown that the nature and
magnitude of tropical climate variability (both interan-
nual and sub-seasonal) depend on the simulated climatic
mean state, presumably reflecting the fact that the mean
state influences the strength of the various feedback
processes that give rise to variability.

Recently, the results of transient simulations of cli-
matic change by AOGCMs have been made available
through the Intergovernmental Panel on Climate
Change (IPCC) Data Distribution Centre (DDC) web-
site (http://ipcc-ddc.cru.uea.ac.uk/). These simulations
begin in 1860, 1880, 1890 or 1900, and extend to 2100.
Results are available for a control run and for one or
more cases with GHG forcing only and with GHG plus
direct sulfate aerosol forcing. In this study we examine
the control-run surface-air temperature fields for eight
models from the IPCC DDC website: the Canadian
Climate Centre (Victoria, British Columbia) model
(CCC); the Center for Climate Research Studies (Uni-
versity of Tokyo) model (CCSR); the Commonwealth
Scientific and Industrial Research Organization (As-
pendale, Australia) model (CSIRO); two versions of the
European Centre for Medium Range Weather Fore-
casts-University of Hamburg model (ECHAM3 and

ECHAM4); two model versions from the Hadley Centre
for Climate Prediction and Research (Bracknell, UK),
HadCM2 and HadCM3; and the NCAR Parallel Cli-
mate Model (PCM). Table 2 lists some of the properties
of these models and the references in which the model
simulation of the present-day climate is discussed. All of
the models except HadCM3 and PCM use flux-adjust-
ment in order to minimize climate drift and errors in the
sea surface temperature climatology. ECHAM3 and
ECHAM4 are coupled to two different ocean models, as
explained in the references given in Table 2. We have
chosen these particular models for analysis among those
available from the IPCC DDC, as simulation results
with GHG forcing through to 2100 (or thereabouts) are
also available for these models, something that will be
analyzed in a separate paper.

Empirical orthogonal functions (EOFs) have been
widely used to analyze the space-time variability of both
observed and model-generated climatic data. EOFs
provide an objective method of identifying the most
important modes of variability, with the first EOF
accounting for (‘‘explaining’’) the largest fraction of the
total space-time variability, and successive EOFs
explaining progressively smaller fractions of the total
variability. As shown later, when EOF analysis is ap-
plied to the model control runs, the patterns that are
produced generally have little similarity to the EOF
patterns produced from observational data. That is, the
model-generated variability is apparently dominated by
patterns (and processes) that are not dominant in nat-
ure. This is generally due to: (1) excessive winter-time
variability in ice-marginal regions, which must be related
to deficiencies in the sea-ice simulation or in ice-ocean–
atmosphere interactions; and/or (2) excessive summer-
time variability over continents, which might be related
to deficiencies in the land soil moisture scheme. How-
ever, this does not preclude the possibility that, embed-
ded in the spurious model variability, there are modes of
variability that correspond to observed modes of vari-
ability. In order to identify these modes of variability, we
developed an alternative technique, dubbed quasi-EOF
(qEOF) analysis, that specifically looks for pre-deter-
mined patterns of variability.

The qEOF modes of variability correspond to phys-
ically distinct, observed modes of variability. Two of
these, the ENSO and NAO, correspond in nature to
oscillations in the pressure difference between Tahiti and
Darwin (the Southern Oscillation Index, or SOI) and
between Gibralter and Iceland (the North Atlantic
Oscillation Index, or NAOI), respectively. We compare
the correlation between these two qEOF amplitudes and
the corresponding pressure indices in nature and in each
of the models. To the extent that the pressure index and
corresponding qEOF amplitude are correlated, maps of
the correlation between local temperature variations and
the SOI or NAOI should resemble the maps of the
corresponding qEOF fields, so we complete our analysis
by computing these maps for the observations and the
models.
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zá
le
z-

R
o
u
co

(2
0
0
0
)

E
C
H
A
M
4

5
0
0
h
P
a
h
ei
g
h
t,
N
A
O
I

E
O
F

1
0
0

M
u
lt
i-
d
ec
a
d
a
l
p
er
io
d
s
o
f
lo
w

a
n
d
h
ig
h
N
A
O

v
a
ri
a
b
il
it
y

o
cc
u
r,

w
it
h
d
iff
er
en
t
sp
a
ti
a
l
te
le
co
n
n
ec
ti
o
n
p
a
tt
er
n
s
d
u
ri
n
g

p
er
io
d
s
o
f
lo
w

a
n
d
h
ig
h
v
a
ri
a
b
il
it
y

R
a
ib
le

et
a
l.
(2
0
0
1
)

G
F
D
L

T
a

E
O
F

1
3
9

D
ec
a
d
a
l
E
O
F
-1

lo
o
k
s
li
k
e
th
e
in
te
r-
a
n
n
u
a
l

E
l
N
iñ
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The qEOF analysis technique is explained in Sect. 2.
Section 3 presents the results of the EOF and quasi-EOF
analyses when applied to observed temperature data.
Section 4 describes the model climatologies, followed by
EOF and qEOF analysis in Sects. 5 and 6. Section 7
compares the leading qEOF amplitudes with key surface
pressure indices. Precipitation data are analyzed in Part
2 (Harvey 2003).

2 Statistical techniques used

The EOF and quasi-EOF analysis will be applied to observed and
model annual-mean and seasonal data. In the case of model data, we
first compute the annual or seasonal means for the control-run data
for each model. We then compute the linear trend at each grid point
and subtract this trend from the yearly or seasonal grid-point data in
order to remove the effects ofmodel drift (assumed tobe spurious and
likely to have a spatial pattern that differs from the patterns of
internally-generated variability). In the case of observations, we do
not detrend the data because the observations contain a signal from
anthropogenic forcing that has not varied linearly (e.g. Wigley et al.
1998), so that linear detrendingwould not entirely remove this signal.
Rather, we believe that the EOF and qEOF analysis techniques
themselves represent the best way to remove those parts of the
anthropogenic signal that are notmerely amplifications of themodes
of internal variability, allowing us to compare the remaining vari-
ability with detrended model control run variability. Nevertheless,
the question of how to best remove the anthropogenic component in
the observations, and how to correctly compare the model and ob-
served EOFs and qEOFs, is an important part of our investigation,
and something to which we will return later.

2.1 Empirical orthogonal function analysis

We first decomposed the space-time variability of the annual-mean
and seasonal-mean fields using empirical orthogonal functions
(EOFs). For this purpose, we used an EOF analysis package kindly
provided by Aiguo Dai and used, for example, in Dai and Wigley
(2000). EOF analysis can be performed using the raw data (and
involving the computation of a covariance matrix) or using the raw
data normalized by the local standard deviation (effectively
involving the computation of a correlation matrix). Since the
standard deviation tends to be larger at high latitudes than at low
latitudes, the correlation matrix approach places more weight on
the low-latitude variability. However, we have chosen to use the
covariance matrix approach because amplified variability at high
latitudes is an important part of real world variability that we wish
to retain, and because we also wish to be able to interpret the EOF

patterns (or amplitudes) in terms of absolute temperatures. The
grid-point data are multiplied by the square root of the cosine of
latitude prior to computing the EOFs, in order to account for the
smaller area represented by high-latitude grid points.

Having computed the EOFs using the raw data, we divided the
EOF fields by the maximum absolute value of the EOF field and
multiplied the corresponding EOF amplitude coefficient by the
same factor. The amplitude time series for each EOF therefore has
units of (�C) and can be interpreted as the maximum temperature
change associated with the corresponding EOF found anywhere at
a given time. We use these EOF results below to identify particular
modes of observed temperature variability, which we then search
for in the model control-run data using quasi-EOF analysis.

2.2 Quasi-EOF analysis

A procedure analogous to our quasi-EOF analysis can be found in
the work of Jones and Kelly (1983), Kang (1996), Tett et al. (1997),
Mitchell et al. (1999), and van den Dool et al. (2000). In three of
these papers, maps are presented showing the geographical pattern
of the correlation or covariance between the grid point temperature
anomaly (deviation from the mean) time series and the time series
for the global-mean temperature anomaly. In our quasi-EOF
analysis, we generate not one but a series of spatial covariance
patterns. The first (which we call quasi-EOF1, or qEOF1) is based
on the covariance (Eq. 1) between grid point variations and the
variation of the global-mean temperature. The product of this
spatial covariance pattern and the annual- and global-mean tem-
perature anomaly (which is the qEOF1 amplitude) gives the pattern
of temperature variation for that year associated with qEOF1.

This temperature variation pattern is then subtracted from the
original annual (or seasonal) temperature variation pattern, and
qEOF2 is computed based on the covariance between the residual
temperature variation and the mean variation computed over some
new, non-global reference region. The temperature averaged over
the new reference region is the qEOF2 amplitude. The temperature
variation associated with qEOF2 is then subtracted from the pre-
vious residual, and the process repeated in order to generate suc-
cessive qEOFs, each time using a different reference region as the
basis for computing the spatial correlation field. This gives a series
of spatial patterns, each tied to the variability in a specific region. If
the variability in that region, in turn, represents some specific mode
of climate variability (such as Niño3 SSTs as an ENSO indicator),
then the corresponding quasi-EOF defines the spatial character of
that particular mode.

The nth qEOF is given by

qEOFnðx; yÞ ¼ 1:0þ
P

D�TnðtiÞðDTnðx; y; tiÞ � D�TnðtiÞÞP
D�T 2

n ðtiÞ
ð1Þ

where the summation is over all years i; DTn(x, y, ti) is the tem-
perature deviation at grid point (x, y) and year ti for qEOF order n;

Table 2 The eight models
analyzed here, length of the
control run, the number of
latitudes and longitudes for
each model grid, and key
references describing the models
and the model spinup climate.
Model or institutional
acronyms are defined below
Table 1

Model Length of
control run
(years)

Number of
latitudes,
longitudes

Flux-adjusted? References

CCC 200 48 · 96 Yes Flato et al. (2000)
CCSR 210 32 · 64 Yes Emori et al. (1999)
CSIRO 209 56 · 64 Yes Gordon and O�Farrell (1997),

Walland et al. (2000)
ECHAM3 220 32 · 64 Yes Timmermann et al. (1999)
ECHAM4 240 64 · 128 Yes Bacher et al. (1998)
HadCM2 240 73 · 96 Yes Johns et al. (1997),

Tett et al. (1997)
HadCM3 240 73 · 96 No Gordon et al. (2000),

Collins et al. (2001)
PCM 220 64 · 128 No Washington et al. (2000),

Meehl et al. (2001)
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DTn(ti) is the temperature change averaged over the domain used to
define qEOFn (the domain is the whole globe for qEOF1). Both
DTn(x, y, ti) and DTn(ti) are the deviations from their time means.
The normalization by DTn

2(ti) and the addition of 1.0 are for
convenience of representation and interpretation. A qEOF value of
1.0 at a given grid point means that, on average, the temperature
change at that grid point is the same as the temperature change
over the reference region, while a qEOF value of 2.0 (for example)
implies a temperature change that on average is twice the temper-
ature change over the reference region.

The temperature change field associated with qEOFn is given by

qTnðx; y; tiÞ ¼ qEOFnðx; yÞD�TnðtiÞ ð2Þ

and the residual temperature change field, used for the next itera-
tion, is given by

DTnþ1ðx; y; tiÞ ¼ DTnðx; y; tiÞ � qTnðx; y; tiÞ ð3Þ

For calculating the first qEOF, DTn(x, y, ti) is the original tem-
perature anomaly field (detrended in the case of model control-run
data, as explained earlier), and DTn(ti) is the global average tem-
perature anomaly in year i. Subtracting qT1(x, y, t) in Eq. (3)
essentially removes that part of the original field associated with
changes in the global mean. In the next step, to obtain qEOF2, we
use Eq. (1) to define that part of the residual (DT2(x, y, ti)) that is
linked to variations over a new (sub-global) region. We then sub-
tract this component, and successively identify variations associ-
ated with different regions.

For qEOF two to four, the reference regions used for com-
puting DTn(ti) are the tropical eastern Pacific Ocean (5�S–5�N by
90–150�W, corresponding to the Niño 3 region), Europe (40–70�N
by 0–40�E), and Siberia (40–70�N by 70–130�E), respectively.
These regions are the centers of strong anomalies associated with
the El Niño, North Atlantic, and Siberian oscillations, respectively,
as identified using a standard EOF analysis of the observed data
(discussed later). The spatial pattern of the covariance with tem-
peratures in these regions therefore gives the structure (i.e., tele-
connection pattern) of the model or observed ENSO, North
Atlantic, and Siberian components of variability.

The procedure described is similar to the ‘‘empirical orthogonal
teleconnections’’ method recently devised and discussed by van den
Dool et al. (2000). These authors propose searching for the single
point that explains the maximum space-time variance of all points
combined, removing that which is correlated with this point from
the original space-time dataset, searching the residual data for the
next most important point, and so on. Our procedure differs from
that of van den Dool et al. (2000) in that we use regions rather than
individual grid points as the basis for developing correlations to use
in removing successive modes of variability (thereby reducing the
statistical noise that might be associated with a single point), and in
that we choose the correlation regions so as to coincide with ob-
served physical modes of variability (an option also suggested by
van den Dool et al. 2000).

In our analysis, we want qEOF1 to represent the spatial pattern
of climatic change at decadal and longer time scales, unobscured by
the possible effects of interannual ENSO, NAO, or Siberian oscil-
lation variability, which might be partly transferred to qEOF1. For
example, since ENSO causes short-term fluctuations in global-
mean temperature (Wigley 2000), part of the variability associated
with it could be transferred to qEOF1. To avoid or least minimize
this, we use smoothed DT1(x, y, ti) and DT1(ti) (using a 9-year
running mean) prior to computing qEOF1 and qT1(x, y, ti). Thus,
DT2(x, y, ti) is given by the original temperature deviations minus a
qT1(x, y, ti) derived from smoothed data. All subsequent calcula-
tions are computed using unsmoothed DT1(x, y, ti). Subtracting
qT1(x, y, ti) from the original data will therefore not noticeably
alter the amplitude of year-to-year variations, so that qEOF2 to
qEOF4 will pick up the spatial patterns associated with interannual
modes of variability.

We apply the qEOF analysis here to observed data and to
control-run data from several AOGCMs. In a future paper we will

apply the qEOF analysis, as described, to raw temperature data
from the GHG and GHG + aerosol forcing runs of the same
AOGCMs. For the control runs, we first detrend the data grid-
point by grid-point (as noted). This removes any (presumably
spurious) long-term trend (drift) in global-mean temperature and/
or the spatial patterns of temperature change, which would
otherwise appear in qEOF1. For this reason, we can omit qEOF1 in
the analysis of model control-run data and avoid the possibility of
some ENSO variability being transferred to qEOF1. Thus, in the
first step with control-run data (the subject of this study), we
compute the local covariances of the detrended data with the
average in our El Niño region, using unsmoothed (but detrended)
data (we still refer to this as qEOF2). We find that the spatial
patterns for qEOFn (n ‡ 2) as computed with and without first
computing qEOF1 are almost indistinguishable, but qEOF2 ac-
counts for more of the space-time temperature variation if qEOF1

has not been first computed and subtracted from the data.

3 Application of EOF and qEOF analysis to observed
temperature data

The qEOF analysis is designed to search for particular
patterns of variability that are found in the observa-
tional data according to EOF analysis. Thus, a simple
way to test the validity of the qEOF analysis as a
means of identifying teleconnection patterns associated
with particular modes of variability is to compare the
observed qEOF patterns with the corresponding ob-
served EOF patterns. For this purpose, we have used
the observed temperature variation data on a 5� · 5�
latitude–longitude grid for the period 1900–2000 that
are available from the Climatic Research Unit (CRU)
of the University of East Anglia (http://
www.cru.uea.ac.uk). In computing the EOF or qEOF
fields, only those grid points with at least 30 years of
data were used. We begin with an analysis of annual-
mean data, then examine seasonal data.

Figure 1 compares the annual-mean EOF and
qEOF pairs. Table 3 gives the square of the pattern
correlations (or common variances) between corre-
sponding EOFs and qEOFs, and the percent of the
original space-time temperature variation that is ac-
counted for by each mode of variability (the EOFs and
qEOFs account for comparable amounts of variabil-
ity). All spatial pattern correlations given here are
computed by multiplying the grid-point data by the
square root of the cosine of latitude in order to ac-
count for the smaller area represented by high-latitude
grid points.

Kelly et al. (1999) identified the first four EOFs of the
CRU temperature dataset as corresponding to the global
warming signal, ENSO, the NAO, and the Siberian
Oscillation. We agree with this interpretation for at least
the first three EOFs. However, EOF4, while having a
maximum in Siberia, can also be viewed as an anti-phase
NH–SH oscillation, with high-latitude warming over
land in the NH (strongest over Siberia) associated with
circum-Antarctic cooling in the SH (and vice versa).

The correlations between the observed EOF and
qEOF patterns for the global warming signal and
ENSO are quite high (R2 values of 0.87 and 0.77,
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respectively, see Table 3), but drop off sharply for the
NAO and Siberian Oscillation (to 0.12 and 0.05,
respectively). In other words, the teleconnection pat-
tern identified by the qEOF analysis for these two
modes of variability differs markedly from that iden-
tified by a conventional EOF analysis. This is a
reflection of either or both of two things: first, the
constraint imposed by orthogonality in the EOF pat-
terns; and second, the constraint imposed by selecting
a single region to characterize a mode of variability in
the qEOF analysis.

Figure 2 shows the seasonal EOF2 and EOF3 pat-
terns for December–January–February (DJF), March–
April–May (MAM), June–July–August (JJA), and
September–October–November (SON). For EOF2,
positive temperature deviations, characteristic of
ENSO, occur in the eastern tropical Pacific Ocean and
are least pronounced in MAM and most pronounced
in SON. However, teleconnections with regions outside
the tropical Pacific Ocean are weakest during JJA.
There are pronounced negative deviations in the south-
central US in MAM, in the northern USA and

Fig. 1 The first four EOFs and the first four qEOFs of observed surface (ocean) or surface air (land) temperature, computed for data over
the period 1900–2000. In each column, the EOFs from top to bottom are EOF1 to EOF4
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southern Canada in JJA, and in northern Russia in
MAM and SON.

The classical NAO is a winter mode of atmospheric
variability that produces a see-saw in temperature be-
tween western Europe and Greenland. Indeed, Slonosky
and Yiou (2001) identify a quadrupole temperature
structure (in-phase temperature variations in Western
Europe and the eastern USA, out of phase in Green-
land/eastern Canada and North Africa), and this pattern
is evident in EOF3 for DJF (although the North African
pole is rather weak). A similar quadrupole was identified
by Stephenson and Pavan (2003) in 13 of the 17 models
that they studied. MAM shows a weak Greenland/
Western Europe see-saw. EOF3 for SON has a distinctly
ENSO-like pattern (warm eastern equatorial Pacific,
flanked by opposite anomalies in each hemisphere and in
the western tropical Pacific). The main difference be-
tween EOFs 2 and 3 in SON is that positive temperature
anomalies in the eastern equatorial Pacific are associated
with positive temperature anomalies in European Russia
for EOF3 but with negative anomalies for EOF2. Unlike
EOF2, there are marked differences between the EOF3

patterns in different seasons, and none of the seasons
shows a pattern as strong as the annual pattern. The
annual-mean EOF pattern is a good indicator of the
structure of seasonal temperature variability for EOF2

but not for EOF3.
The qEOFs are designed to pick up correlations

associated with predefined centers of action. The eastern
tropical Pacific Ocean was chosen as the reference region
for determining qEOF2 because it is a center of impor-
tant variability in the annual-mean observations, but it is
not the most important center for every season. The
seasonal qEOF2 fields (not shown) necessarily show
strong positive deviations over the tropical Pacific
Ocean, since the qEOF2 fields are determined by the
correlations with temperature variations in the eastern
tropical Pacific Ocean. However, the eastern tropical
Pacific is not the strongest center of variability for EOF2

during MAM and is matched by other centers of vari-
ability during DJF. As a result, qEOF2 and EOF2 spatial
pattern correlations are relatively low for these seasons
(R2 = 0.35), compared to JJA and SON (R2 = 0.86 and
0.68, respectively).

Figure 3a shows the annual EOF scaling factors,
while Fig. 3b shows the 5-year running means of the
annual scaling factors (recall that the magnitude of
the EOF scaling factor in a given year is equal to the
largest temperature change anywhere associated with
that EOF). EOF1, representing the global warming
signal, shows an upward trend that matches the vari-
ation in global-mean temperature (R2 = 0.84). EOF2,
representing ENSO, shows considerable decadal-scale
variability, as well as a weak downward trend from
1905 to the end of the record. There is no evidence of
any unusual change during the last 20 years. The
qEOF amplitude, which is numerically equal to the
average temperature deviation in the eastern tropical
Pacific Ocean, also fails to show any major difference
between the past 20 years and the preceding record.

This would appear to contradict the work of
Trenberth and Hoar (1997) and others, who found
evidence of an increase in the intensity and duration of
ENSO after the mid 1970s based on an analysis of the
southern oscillation index (SOI). However, if we first
linearly detrend the observations and then apply the
EOF analysis, a distinctive upward shift in the
amplitude of EOF1 (which now represents ENSO
variability) is seen after the mid-1970s. This is an
illustration of how decadal and longer term trends in
particular modes of temperature variability can depend
on how the data are treated prior to analysis. Pre-
treatment clearly affects the comparability of temper-
ature indices (analyzed here) and pressure indices
(analyzed by Trenberth and Hoar 1997). Even after
detrending the temperature data, the temperature and
pressure-based indices do not give entirely the same
picture: the amplitude of the temperature ENSO EOF
is, by the end of the record, no larger than previous
peaks in the 1940s and late 1890s, whereas the SOI
reported by Trenberth and Hoar (1997) shows a peak
in 1940 that is about 20% weaker than the largest post
1970s peak (in 1983).

EOF3, representing warming in Western Europe and
cooling in the North Atlantic Ocean and Canada in the
annual mean (Fig. 1), shows weak evidence of an
approximately 70-year oscillation (whose long-term
significance cannot be judged because of the shortness of
the record). A 70-year oscillation is consistent with the
work of Schlesinger and Ramankutty (1992), who also
find evidence of a 70-year oscillation in the North
Atlantic region. Finally, EOF4, representing warming in
northern Asia and cooling in parts of eastern Canada,
shows a strong downward trend during the first half of
the record, followed by an equally strong upward trend
during the second half of the record. This implies that
the rate of warming in north Asia was considerably less
than the global-mean rate of warming during the first
part of the record but considerably greater during the
second half, whereas eastern North America experienced
minimal warming during the past 70 years. This is
consistent with direct observations of temperature
trends in these regions.

Table 3 Common variance (R2) between observed EOFs and
qEOFs, and the percent of the total temperature space-time vari-
ation that is accounted for by each EOF or qEOF. Results are
given for the observed annual-mean temperature for the period
1900–2000

Mode
number

Physical
mode

EOF – qEOF
common
variance

Variation
accounted
for by EOFs

Variation
accounted
for by qEOFs

1 Global
warming

0.87 16.5% 14.9%

2 ENSO 0.77 8.6% 8.4%
3 NAO 0.12 4.9% 3.1%
4 Siberian

oscillation
0.05 3.9% 2.5%
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Figure 4 shows the latitudinal variation of the zonally
averaged annual-mean EOF and qEOF fields. Results
are plotted only for latitudes with data extending back at
least 50 years over at least 50% of the grid squares. The
qEOFs are calculated such that the mean value of each
qEOF is 1.0 �C, averaged over the domain used to
compute DTn(ti). Since the reference domain for qEOF1

is the entire globe (exclusive of grid points with less than
30 years of data), the zonal-mean qEOF1 values shown

in Fig. 4 represent the zonal-mean temperature changes
scaled up to a global-mean warming of 1.0 �C. These
show a minimum in warming at low latitudes, increasing
with latitude by about a factor of two by latitudes 40�S
and 50�N (the zonal means poleward of these latitudes
have decreasing significance due to a decrease in the
number of grid points with adequate data). This pattern,
with an amplification of a factor of two toward high
latitudes, is consistent with the transient response of the

Fig. 2 Seasonal a EOF2 and b EOF3 fields derived from observed data over the period 1900–2000
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AOGCMs, as will be discussed in a subsequent study.
The second qEOF, representing ENSO variability, has a
peak zonal-mean amplitude of about 0.6 �C (near the
equator) and minima of about –0.15 �C near 40�S and
40�N. qEOF3 and qEOF4 show zonal-mean peaks of
0.4 �C and 0.3 �C, respectively, around 60�N. Both
qEOFs drop to near zero between 30�S and 30�N, then
drop to a minima of –0.3 �C (qEOF3) or –0.2 �C
(qEOF4) near 60�S, implying inversely correlated
Northern and Southern Hemisphere changes around 60�
latitude. This anti-phase behavior is also seen in EOF4,
as discussed already.

Figure 4c directly compares the zonal mean of EOF1

and qEOF1, along with the 100-year temperature change
computed from the linear trend over the period 1900–
2000. EOF1 shows a hemispheric asymmetry (a greater
mid-latitude peak in the NH), while for qEOF1 and the
linear trend the midlatitude peaks are virtually the same.

3.1 Impact of prior detrending of the data

Many of the AOGCMs to be analyzed here have sub-
stantial regional trends in the control runs (particularly
at high latitudes) in spite of the use of flux adjustment.
We have assumed that the relatively large magnitudes of

these regional trends preclude their being physically
realistic manifestations of internal variability. For this
reason, the EOF analyses of the model data are applied
to temperatures that have been linearly detrended grid-
point by grid-point. The EOFs computed from the

Fig. 3a, b Variation in the scaling factor for observed annual-mean
EOFs 1 to 4. a Yearly values, b 5-year running mean

Fig. 4 Latitudinal variation in the zonal-mean value of a the first
four EOFs and b the first four qEOFs, and c comparison of EOF1,
qEOF1, and the linear trend (from 1900 to 2000) in zonal-mean
temperature, all as computed from observed annual-mean temper-
ature data for the period 1900–2000. In c, EOF1 has been
normalized to give a global-mean value of 1.0 �C, which is
comparable to the global-mean value of the linear trend. The
global-mean value of qEOF1 is 1.0 �C by definition
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detrended data thus contain no contribution from long-
term (100 years and longer) temperature trends. The
observed temperatures, on the other hand, do contain a
long-term trend (the global warming signal) that is
contained largely in the first EOF. Thus, we would ex-
pect the first model EOF to correspond to the second
observed EOF (which represents ENSO variability), the
second model EOF to correspond to the third observed
EOF, and so on.

Alternatively, we could detrend the observed data in
the same way that we detrend the model data, and di-
rectly compare the corresponding EOFs. However, local
observed trends have not been uniform, and the forcing
causing global warming has varied nonlinearly, with an
acceleration during the last few decades. Thus, even after
linearly detrending the observed data, there will be an
important component of variability related to external
forcing that will be represented in one or more of the
first few observed EOFs.

To test the effect on the EOFs of linearly detrending
the observed data, we computed the common variances
between annual-mean EOFn of the detrended data with
annual-mean EOFn+1 of the raw data for the first three
pairs. If detrending largely removes the signal picked up
by EOF1 of the raw data (which we here identify as the
externally-forced global warming signal), then detrend-
ing will have little effect on the patterns associated with
the subsequent EOFs of the raw data. The common
variances are as follows (with the first subscript corre-
sponding to the detrended data): EOF1/2: 0.874, EOF2/3:
0.068, EOF3/4: 0.006. Detrending has little effect on the
ENSO mode (EOF1 of the detrended data, EOF2 of the
raw data), perhaps because it is the strongest mode.
However, detrending significantly alters the other
modes. This is because, in the detrended data, the global
warming signal is no longer the strongest mode, it hav-
ing been supplanted by the ENSO mode (which is now
EOF1). However, the global warming signal is only
crudely removed by detrending, and now appears as
parts of EOF2 and EOF3. Hence, EOF2 and EOF3 of the
detrended data cannot be expected to match EOF3 and
EOF4 of the raw data. We therefore conclude that it is
not appropriate to linearly detrend the observed data
prior to performing an EOF analysis. Rather, we believe
that EOF1 is a more effective method for removing the
anthropogenic global warming signal from the raw data,
so that the appropriate comparisons are between ob-
served EOFn+1 and control-run EOFn.

This is not to imply that EOF1 captures all of the
anthropogenic signal. It is possible that there is some
spill-over of the anthropogenic signal onto higher ob-
served EOFs, and this could be a reason for some of the
differences between model and observed EOFs, noted
later.

In the case of the qEOFs, our procedure for calcu-
lating qEOF1 removes that portion of the local trend
that is correlated with the trend in the global-mean
temperature. As with the EOF case, this is not a perfect
method for removing the anthropogenic signal, due to

its nonlinearity and spatial heterogeneity. If the local
trend increases more (or less) strongly at the beginning
(or end) of the time series than based on the average
correlation at that grid-point with the global-mean
trend, then a local long-term trend will still appear after
removing qEOF1. In the case of CCSR (a model with
substantial drift in the control run), we find that qEOF1

on average removes about half of the grid-point trend.
Conversely, if we linearly detrend the data first, grid-
point by grid-point, we do not eliminate qEOF1, there
are still short-term fluctuations in the global-mean
temperature, and there is a spatial structure in these
fluctuations. This ‘‘residual’’ qEOF1 is modestly corre-
lated with the ‘‘raw’’ qEOF1 (i.e., based on the raw
data): the common variance between the two is 0.290 in
the case of the observed temperature data. However,
prior detrending has a negligible effect on qEOF2 and
higher qEOFs. For observed temperature, the common
variances between qEOFs computed from the raw data
and the same qEOFs computed from detrended data are
as follows: qEOF2: 0.992, qEOF3: 0.983, qEOF4: 0.980.
We therefore conclude that it is valid to compare model
qEOFs (computed from detrended data) with the ob-
served qEOFs (computed from raw data), for qEOF2

and higher. This comparability is an additional advan-
tage of qEOF analysis over EOF analysis.

4 Model climatology and variability

In order to provide a context for the presentation of the
most important model EOF and qEOF fields, we briefly
compare the model climatological temperatures and
variability with the corresponding observations. Fig-
ure 5a compares the latitudinal variation of the globally
averaged surface air temperature for each model, aver-
aged over all years of the linearly detrended control
runs, with the observed (1961–1990) climatology (Jones
et al. 1999). Overall, the models do well in simulating the
observed zonal structure of annual-mean temperature.
Table 4 lists the pattern correlation (R2) between the
model and observed climatological annual-mean tem-
peratures (the model data were interpolated to the same
latitude–longitude grid in order to compute the pattern
correlations). The squared pattern correlations (with
grid point values weighted by the square root of the
cosine of latitude) range from 0.88 to 0.91.

Figure 5b compares the model and observed grid-
point standard deviation of the zonal-mean of the
annual-mean temperatures. In this case, the observed
values are computed from the gridded time series data
available from the Climatic Research Unit at the
University of East Anglia (http://www.cru.uea.ac.uk)
and documented by Jones et al. (1997, 2001). We have
used data over the period 1900–2000. This temperature
dataset is a composite of surface air temperature over
land and sea surface temperature, and so is not strictly
equivalent to the model data over ocean areas. How-
ever, our main conclusion, that the models significantly
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and consistently over-estimate the interannual vari-
ability of zonal-mean temperature in middle latitudes
of the Northern Hemisphere, will not be altered by the
small difference between sea surface and surface air
temperature variability at the same grid point. Later
will we see that the interannual temperature variability
in specific longitudinal sectors at middle latitudes is
about right. The overestimation of zonal-mean vari-
ability by the models is due to an inadequate contrast
between concurrent positive and negative temperature

Table 4 Error in global-mean surface air temperature (K) for the
eight models, common variance (R2) between model and observed
fields of annual-mean temperature, root mean square error
(RMSE, K) between model and observed grid-point annual-mean
temperature, and standard deviation of the annual- and global-
mean surface air temperature for the eight models and for obser-
vations. Standard deviations have been computed from linearly
detrended data in all cases. The observed data are a composite of
sea surface temperature and land air temperature

Case Error in
global
mean

Common
variance

RMSE Standard
Deviation
(�C) of
annual- and
global-mean
temperature

CCC 0.45 0.97 3.03 0.068
CCSR 0.30 0.96 3.30 0.133
CSIRO 0.13 0.98 3.16 0.090
ECHAM3/LSG 0.78 0.98 2.64 0.085
ECHAM4/OPYC3 0.57 0.99 1.85 0.126
HadCM2 –0.51 0.99 2.10 0.154
HadCM3 –0.60 0.99 2.14 0.119
PCM –1.73 0.98 2.78 0.101
Observed 0.113

Fig. 5 Comparison of the zonal-mean of model and observed a
annual-mean temperature, and b standard deviation of annual-
mean temperature

Fig. 6 Variation in global and
annual-mean temperature for
control runs of the eight
models. The model data were
linearly detrended
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deviations in different longitudinal sectors, so that
there is inadequate cancellation of the regional devia-
tions when computing the zonal-mean deviation.

Figure 6 compares the time series of detrended con-
trol-run global- and annual-mean temperatures for the

eight models, while Table 4 compares the model and
observed standard deviations. As seen from Figure 6
and Table 4, CCSR, HadCM2, and HadCM3 have the
largest temperature variability.

Fig. 7a, b First and second EOFs based on detrended control-run annual-mean temperatures for the eight AOGCMs. For each model, a
shows EOF1 and b shows EOF2
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5 EOF analysis of AOGCM temperature data

Figure 7 shows EOF1 and EOF2 for the detrended
control-run annual-mean temperatures for the eight
models. Figure 8 gives the percent of annual variance
explained by the first three EOFs for all eight models,

as well as for the corresponding EOFs (2 to 4) of the
observed temperature data. Comparison of Fig. 7 with
Fig. 1 shows that the leading model modes are not
particularly realistic, while Fig. 8 shows that the frac-
tion of the model temperature variation explained by
these unrealistic modes is generally greater than the

Fig. 7 (Contd.)
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fraction of the observed temperature variance explained
by the observed modes of variability.

Many of the model EOF fields shown in Fig. 7 con-
sist of strong, closely spaced ‘‘bulls-eyes’’ of alternating
sign, generally in mid- or high-latitude regions. This
suggests that the models are unable to simulate the
spatial scales of teleconnections with any realism. Simi-
lar bulls-eye patterns are seen in many of the EOF3 and
EOF4 fields. The significance of the EOF3 and EOF4

patterns is doubtful. Both EOFs explain similar amounts
of variance, so the detailed fields are likely to be sensitive
to minor (noise) variations in the original data (Prei-
sendorfer 1988). Nevertheless, we still include these
EOFs in the analysis later.

Table 5 gives the squared pattern correlations between
observed EOFs 2 to 4 and the model EOF having the

highest correlation with each observed EOF (generally,
model EOFn is most closely correlated with observed
EOFn+1, but exceptions occur and are listed in Table 5).
To compute the pattern correlations, we first interpolated
the model EOFs (or qEOFs) to the same 5� · 5� latitude-
longitude grid as for the observational data, then multi-
plied the grid point data by the square root of the cosine
of latitude. Pattern correlations are computed based on
the grid points with observed EOF values, which corre-
spond to those grid points with at least 30 years of data.
The results are rather disappointing. Most of the pattern
correlations show common variances less than 30%.
Observed EOF2 (the ENSO pattern) is most closely cor-
related with the leading mode of model variability in five
of the eight models, but in only two models (HadCM2
and PCM) is this at all similar (i.e., R2 > 0.3) to the
observed pattern of ENSO variability. qEOF results
(qEOF2), also given in Table 5, are better, with pattern
R2 values ranging from 0.29 (CCSR) to 0.53 (PCM).

For observed EOF3 (NAO), only one model has an
EOF that shares more than 30% of common variance
with the observed NAO pattern (CCC). However, rather
than appearing in the model as the second most
important mode of variability (i.e., as model EOF2), the
NOA-like mode appears as EOF1 in CCC. Nevertheless,
it is encouraging that most models show an EOF with an
NAO-like structure straddling the North Atlantic, as
either the first (CCC, CCSR) or third (ECHAM3, EC-
HAM4, HadCM2, HadCM3, PCM) EOF, and with ei-
ther a dipole (CCC, ECHAM4, HadCM2, PCM) or
quadrupole (CCSR, ECHAM3, HadCM3) structure.

For the third most important observed mode (EOF4

or qEOF4), the Siberian oscillation, in only one model
(HadCM2) is there an EOF pattern that shares more
than 20% common variance with the observed mode. In
other words, when assessed using traditional EOFs, the
observed Siberian oscillation is never a recognizable
component of model internal variability. As noted ear-
lier, in the observed EOF analysis, this mode is more
properly referred to as an inter-hemispheric mode of
variability, so what we are seeing is a failure of the
models to exhibit variability that is out of phase between
the hemispheres. The situation is greatly improved when
variability modes are identified using qEOFs (and where
the terminology ‘‘Siberian oscillation’’ for EOF3 is more
appropriate). For qEOF3 and qEOF4, model modes
share 41–50% and 43–56%, respectively, with the cor-
responding observed mode.

5.1 Seasonal EOF patterns

We also examined the seasonal EOF1 patterns for each
of the models, and found that: (1) there is no resem-
blance to the observed ENSO pattern (shown in Fig. 2)
for any season for CCC, CSIRO, and ECHAM3; (2) for
CCSR, there is a weak ENSO pattern in SON, but
nothing close to the observed seasonal ENSO pattern
for any other season; (3) for ECHAM4 and HadCM2,

Fig. 8 Percent of total space-time variance of mean annual
temperatures accounted for by the first three EOFs for the eight
AOGCMs and for observational EOF2 to EOF4

Table 5 Common variance (R2) between observed temperature
EOFs 2 to 4 and the model EOF having the highest correlation
with the given observed EOF. The number in parenthesis next to
the EOF correlations is the rank of model EOF that is compared
with the observed EOF; for a �perfect� model, the EOF rank would
be one less than the observed-EOF rank. Also given is the squared
pattern correlation between model and observed qEOFs 2 to 4. The
model data were linearly detrended prior to computing the EOFs
or qEOFs. The three EOFs or qEOFs correspond to the ENSO,
NAO, and Siberian oscillation modes of variability

Model Common variance
between model
and observed EOFs

Common variance
between model
and observed qEOFs

EOF2 EOF3 EOF4 qEOF2 qEOF3 qEOF4

CCC 0.10 (1) 0.33 (1) 0.12 (2) 0.34 0.44 0.43
CCSR 0.18 (1) 0.28 (2) 0.08 (2) 0.29 0.45 0.47
CSIRO 0.24 (3) 0.22 (3) 0.15 (1) 0.37 0.41 0.52
ECHAM3 0.18 (4) 0.22 (4) 0.12 (3) 0.33 0.46 0.47
ECHAM4 0.29 (2) 0.12 (4) 0.07 (2) 0.44 0.49 0.56
HadCM2 0.40 (1) 0.18 (4) 0.21 (2) 0.43 0.50 0.53
HadCM3 0.27 (1) 0.28 (3) 0.05 (2) 0.47 0.47 0.48
PCM 0.34 (1) 0.17 (2) 0.18 (2) 0.53 0.47 0.54
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the most ENSO-like pattern occurs during NH spring;
and (4) for HadCM3 and PCM, there is a ENSO pattern
in NH spring and fall, with reasonable spatial telecon-
nections (a weak ENSO pattern is also evident during
NH summer in PCM). The seasonal EOF1 patterns are
shown for HadCM3 and PCM in Fig. 9. The negative
regions in North America in DJF and MAM and in
Siberia in NH fall in PCM match the observations well.

An NAO-like temperature variation structure is evi-
dent in EOF1 during DJF (and sometimes also during
MAM) in all of the models except CSIRO. In the case of
ECHAM3, ECHAM4, HadCM3, and PCM, a quadru-
pole structure occurs, as is evident from Fig. 9 for
HadCM3 and PCM. In PCM, this structure persists into
MAM, and appears along with the ENSO structure in
the tropical Pacific.

Fig. 9 Seasonal fields of EOF1 for a HadCM3 and b PCM. Fields from top to bottom are for DJF, MAM, JJA, and SON
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The absence of an ENSO structure in EOF1 during
DJF for all the models except HadCM2 is not neces-
sarily due to the absence of this mode of oscillation in
the models during this season, but rather, appears
(except for CSIRO) to be the result of the NAO mode
of variation being strongest during this season. As
discussed later, this mode is too strong in five of the
eight models, while the ENSO mode is too weak in all
the models except HadCM2. Because of this it is the
NAO mode instead of the ENSO mode that is picked
up by EOF1. Thus, the two most important observed
modes of variability are present in EOF1 to some ex-
tent in most of the models, depending on the season,
but combined into a single mode of variability. This
often causes the spatial correlation between the model
and observed EOFs to be rather poor because, in the
observations, there is a clearer separation of the ENSO
and NOA modes into separate EOFs.

Yuan and Martinson (2001) and Liu et al. (2002)
discuss the ‘‘Antarctic dipole’’, an out-of-phase oscil-
lation seen in NCEP-NCAR reanalysis surface air
temperature at 60�S, with poles centered on the Ant-
arctic Peninsula (at 60�W) and centered at 140�W. The
Antarctic dipole is strongly linked to ENSO. Cai and
Watterson (2002) also find an Antarctic Dipole, in
EOF3 of annual-mean and seasonal 500 mb heights in
the Southern Hemisphere (also from NCEP-NCAR
reanalysis). They found a similar oscillation in CSIRO
pressure variations, and is seen here in annual-mean
EOF2 for surface temperature in CSIRO and HadCM2
(see Fig. 7). CCSR also shows an Antarctic dipole
structure with 100� of longitude separation between
the two poles, but shifted into the eastern hemisphere.
This dipole is strongest during JJA in CCSR but ap-
pears in EOF1 rather than EOF2 (as for the annual-
mean data). In PCM it does not appear in either an-
nual-mean EOF1 or EOF2 (Fig. 7), but a very strong
and correctly positioned dipole appears during JJA in
EOF1 (Fig. 9). CCC shows a weak Antarctic dipole
during JJA. The other models do not show this dipole
in either annual- or seasonal-mean EOFs.

5.2 Zonal mean of the annual EOF fields

The differences between the models and observations
are highlighted in Fig. 10. Figure 10 compares the
latitudinal variation in the zonal means of observed
EOF 2 to 4 with the model EOF that has the highest
spatial correlation with each of the observed EOFs.
For observed EOF2, only HadCM2 and HadCM3
show any similarity with the observations, but even
here, this breaks down north of 40�N. For observed

Fig. 10a–c Latitudinal variation in the zonal mean value of
observed EOFs 2 to 4, and of the model EOF having the highest
pattern correlation with each of these three observed EOFs. The
observed EOFs are computed from raw data, while the model
EOFs where computed from linearly detrended control-run data.
The model EOFs that are shown with each observed EOF are given
in Table 5

Fig. 11a–b Quasi-EOF 2–4 of mean annual temperature for each
of the eight AOGCMs. For each model, the top, middle, and lower
panels are qEOF2, qEOF3, and qEOF4, respectively

c
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Fig. 11 (Contd.)
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EOF3, most of the models show the high-latitude peak
in the NH, generally displaced to the south. For the
SH, there are no model-observed similarities. For ob-
served EOF4, four models show some similarities in
the midlatitudes of the NH, but model-observed sim-
ilarities are generally poor.

6 Quasi-EOF analysis of AOGCM temperature data

EOF analysis asks the question, ‘‘What are the domi-
nant modes of variability in the space-time data array?’’
The qEOF analysis asks the question, ‘‘To what extent
are specific patterns of variability, defined a priori from
observations, present in the model space-time data ar-
ray?’’ Since the qEOF analysis has been constructed to
seek the dominant patterns of variability that have been
identified in the observations using EOF analysis, it is
not surprising that the EOF and qEOF analyses give
essentially the same results when applied to observed
data. However, since the models examined here do not
replicate or separate the observed modes of variability
well, it is equally unsurprising that the qEOF and EOF
analyses yield quite different results when applied to the
model data. With model data, the advantage of qEOFs
is that they allow us to determine how strongly observed
modes of variability are represented in the model results.

Figure 11 shows annual-mean qEOF patterns for
qEOFs 2 to 4 for each model, corresponding to the
ENSO, NAO, and Siberian Oscillation modes of vari-
ability. When these patterns are compared with the
corresponding observed patterns, we can see how well
the models simulate the observed teleconnection struc-
tures associated with particular modes of variability.
Table 5 quantifies this feature by giving the pattern
correlations between the model and observed modes
(although it should be noted that at least moderate R2

values are guaranteed because patterns are constrained
to be similar near the mode ‘‘focus’’ region). Figure 12
compares the latitudinal variation in the zonal-mean
qEOF magnitude in the models with that of observa-
tions.

All three natural modes of variability can be seen in
the model control runs to some extent. This means, for
example, that when the temperature is warmer than
average in the eastern tropical Pacific Ocean (ENSO

Fig. 12 Latitudinal variation in the zonal-mean value of temper-
ature qEOF 2–4 as computed from observed data and from the
detrended control-run data for each of the eight AOGCMs

Fig. 13 Percent of total space-time variance of mean annual
temperatures accounted for by qEOF 2–4 for the eight AOGCMs
and for linearly detrended observations
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mode, qEOF2), there is a spatial pattern of positive
and negative temperature deviations around the globe
that partly resembles (R2 = 0.29 to 0.53) the observed
patterns of temperature variation associated with a
warm tropical eastern Pacific Ocean. Five of the
models (CCC, CCSR, CSIRO, ECHAM3, HadCM2)
show much more extensive ENSO teleconnection pat-
terns than seen in observed qEOF2. Except for Had-
CM2, this result is different from the conclusion that
might be drawn from conventional EOF analysis.

For qEOF3 and qEOF4, the R2 correlations between
model and observations tend to be higher and more
consistent than for qEOF2, perhaps due to the simpler
(and easier to simulate) structure of the observed
qEOFs. The correlation between model and observed
qEOFs is higher (usually substantially so) than between
the corresponding model and observed EOFs, without
exception. For qEOF3 (the NAO mode), the models
uniformly show a stronger Greenland/Europe dipole
than is observed, perhaps because this mode is more
uniform across the seasons in the models than in the
observations. Many of the models show a weak anti-
phase relationship between warming in Europe and
high southern latitude cooling, as seen in the observed
qEOF3 (Fig. 1).

In contrast to the EOF results, zonal-mean tem-
perature fluctuations agree well with the observations;
for qEOF2, both the models and observations show a
maximum centered at the equator, flanked by minima
at 35�S and 35�N. The maxima in the zonal-mean
values are close to observed in all of the models for
qEOF3 and qEOF4, but significantly too large in many
models for qEOF2. This latter is a result of an inade-
quate anti-phase equatorial temperature anomaly out-
side the eastern and central equatorial Pacific in most
models.

Figure 13 compares the percent of space-time tem-
perature variation accounted for by these three qEOF
patterns in the models and in the linearly detrended
observations. (When the observations are detrended,
qEOF2 to 4 account for a larger fraction of the space-time
variation than if the observed data are not first detrended,
and it is more appropriate to compare these higher ac-
counted-for variabilities with the variability accounted
for by the model qEOFs.) In all of the models except
HadCM2, the ENSO-like variability is too small
(accounting for about 3%of the total variability in four of
the models, compared to 8% in the observations). For the
other two modes, the model variability is comparable to
that observed.

Finally, Fig. 14 compares the standard deviations of
the interannual qEOF amplitudes for the eight models
and for the observations on a seasonal basis (recall, the
qEOF amplitude in a given year is simply the average
temperature deviation in that year averaged over the
appropriate reference region). Depending on the overall
model variability, a given model could have a realistic
qEOF amplitude variability but account for too small or
too large a fraction of the total variability, the quantity
shown in Fig. 13.

The amplitude of qEOF2 is, by definition, equal to
Niño 3 temperature variability, and in most models this
variability is too small and does not have the correct
seasonal structure or, usually, no seasonal structure at
all. HadCM3 and PCM have the correct annual-mean
variability but incorrect seasonal cycle. These results
are consistent with the findings for specific models,
summarized in Table 1, by Flato et al. (2000), Tim-
mermann et al. (1999), Bacher et al. (1998), Collins

Fig. 14 Standard deviation in the annual amplitude of a qEOF2

(tropical Pacific), b qEOF3 (western Europe) and c qEOF4 (Siberia)
for the eight models and observations for DJF, MAM, JJA, and
SON
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(2000), and Washington et al. (2000). For the NAO
mode, temperature variability is too large in most
models (especially in CCSR), but has the correct sea-
sonality. The Siberian temperature variation tends to
be too large in all models, especially in CCSR. In
CCSR the maximum variability occurs in MAM, rather
than in DJF (as observed), while in HadCM2 the
summer variability is too large relative to the winter
variability. Thus, no single model simulates a realistic
variability magnitude and seasonal structure for all
three qEOF modes. The anti-phase behavior of high-
latitude temperature fluctuations in the two hemi-
spheres, seen in observed qEOF 2 and 3, is either not
present or is very weak in the model qEOFs.

7 Comparison with pressure indices

We have identified temperature qEOF2 and qEOF3 with
the ENSO and the NAO, respectively. As a further test of
the model performance compared to observations, and as
a further means of comparing different models, we have
computed the time series of annual-mean Southern
Oscillation Index (SOI) and North Atlantic Oscillation
Index (NAOI) for each of themodels. The SOIwe employ
is given by the surface pressure at Tahiti (17.5�S, 149.6�W)
minus the surface pressure at Darwin (12.4�S, 130.9�E),
while the NAOI is given by the pressure at Gibralter
(36�N, 5.5�W) minus the pressure at Reykjavik, Iceland

Table 6 Annual-mean values (mb) and standard deviation of the
annual-mean SOI and NAOI for the eight models and for obser-
vations, and time series correlations (R2) between the SOI and
qEOF2 amplitude and between the NAOI and qEOF3 amplitude.

R2 values in brackets are maximum values obtained when the grid
points used to compute the indices are shifted to account for pos-
sible spatial errors in the key centers of action (see text)

Fig. 15 Spatial variation of the observed temporal correlation between local temperature and the SOI. Results are given for seasonally
averaged temperatures and SOI values

SOI NAOI Squared correlations

Mean SD Mean SD SOI – qEOF2 NAOI – qEOF3

CCC 1.11 0.75 16.97 2.17 0.67 (0.79) 0.31 (0.40)
CCSR 5.11 0.62 11.88 3.80 0.29 (0.79) 0.27 (0.41)
CSIRO 0.62 0.69 6.52 1.90 0.52 (0.70) 0.05 (0.15)
ECHAM3 3.58 0.49 13.37 3.13 0.22 (0.72) 0.24 (0.36)
ECHAM4 0.72 0.64 13.23 2.55 0.49 (0.69) 0.31 (0.36)
HadCM2 1.84 1.17 10.43 2.50 0.67 (0.77) 0.19 (0.25)
HadCM3 3.29 0.66 4.77 2.39 0.52 (0.75) 0.18 (0.28)
PCM 1.56 0.58 21.07 2.47 0.34 (0.63) 0.30 (0.40)
Observed 2.10 1.51 12.48 2.67 0.61 0.33
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(64�N, 22�W). (We choose not to normalize these pressure
indices in order to provide a more stringent test of the
models.) For the models we use the control-run surface
pressures (which are available from the IPCC website) at
the grid points closest to the four sites given, while for
observations we use the monthly pressure data at these
four sites for the period 1900–2000 that are available from
the afore-mentioned Climatic Research Unit website.

Table 6 gives the mean and standard deviation of the
annual-mean SOI andNAOI for the eight models and for
observations. For the SOI, the model pressure differences
range from 70% too small to 2.4 times too large, with only
HadCM2having a result similar to observations. Thus, all
models bar HadCM2 have serious errors in the trans-
Pacific Ocean pressure gradient. In terms of inter-annual
variability, all models underestimate this parameter. Even
the most variable model (HadCM2) has an SOI standard
deviation that is only three-quarters of that observed.

For the NAOI, the average model Gibralter-minus-
Reykjavik pressure difference ranges from less thanhalf of
that observed to almost twice that observed. For about
half of the models, however, the standard deviation is
within 10% of that observed. The ranking of the SOI
standard deviation is not the same as the ranking of the
standard deviation of Niño 3 temperature (shown in
Fig. 14a). For example, ECHAM4 and PCM have a
temperature variability close to that observed but an SOI
variability less than half that observed. ECHAM3 has a
relatively high NAOI variability, but relatively little west-
European temperature variability.

Also given in Table 6 are the squared correlations
between the SOI time series and the corresponding

reference-region temperature (qEOF2 amplitude) time
series, for the models and for observations, and the
corresponding NAOI results. In the observed data,
the SOI–qEOF2 time series correlation is 0.61. Two of
the models, CCC and HadCM2, show a SOI–qEOF2

correlation that is slightly stronger than observed, but in
the other models the correlation is as little as one third
that observed. These poor correlations, however, could
be due to the centers of pressure variability in the
models differing slightly in location from the observa-
tions. To test this hypothesis, we considered the 5 lon-
gitudinal grid points and the 5 latitudinal grid points
centered at the grid cells containing Tahiti and Darwin
(25 grid points each), and computed all possible pres-
sure differences between these two sets of points (a total
of 625) and the correlation between each of these time
series and the qEOF2 time series. The maximum cor-
relation so obtained is given in brackets in Table 6. In
every case, the maximum correlation is comparable to
(and generally greater than) the observed correlation.

One might suspect that the poor SOI–qEOF3 time
series correlations in most models using the original
SOI could be related to errors in the tropical pattern of
sea surface temperature (SST). This does not appear to
be the case. We have computed the deviations in model
climatological surface air temperature (which will track
SST) from the ocean-only 30�S–30�S mean, and com-
pared this with the deviations in the Jones et al. (1999)
observed climatology (where temperatures over ocean
regions are SSTs). We find that the differences between
the model and observed deviations are less than
1 K everywhere or almost everywhere in all of the

Fig. 16 Spatial variation of the observed temporal correlation between local temperature and the NAOI. Results are given for seasonally
averaged temperatures and NAOI values
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flux-adjusted models. In the two models without ad-
justed fluxes (HadCM3 and PCM), the discrepancies
between the model and observed deviation fields are
less than 1 K everywhere except in upwelling regions,
where discrepancies in excess of 4 K can occur. In spite
of the poorer SST simulations in these models, how-
ever, their SOI–qEOF3 correlations are not unusual
relative to those in flux-adjusted models.

The NAOI–qEOF3 time series correlation in the ob-
served data is much weaker (R2 = 0.33) than the SOI–
qEOF2 correlation (R2 = 0.61) and this is echoed in the
model results. A comparableNAOI–qEOF3 correlation is
seen in CCC, CCSR, and PCM. After generating 625
alternative NAO indices for each model (in a manner
analogous to that for the SOI), the maximum correlation
is comparable to or greater than the observed correlation
for all models except CSIRO and HadCM3, where the
maximum correlations are about half the observed cor-
relation. This suggests that, in these twomodels, processes
other than North Atlantic pressure fluctuations are the
cause of NAO-like temperature variability.

We also computed time series of annual SOI and
NAOI values based on seasonal data, and computed
the correlations of these with the corresponding sea-
sonal qEOF amplitudes. For the observations, the
SOI–qEOF2 correlation is the strongest for SON. In
three models (CCSR, ECHAM4, and HadCM2) the
correlation is strongest during SON, in two models
(ECHAM3 and PCM) it is strongest during DJF, and
in remaining models the correlation is strongest during
MAM or JJA. In the observations and in six of the
models, the NOAI–qEOF3 correlation is strongest
during DJF, while in the other two models (CCC and
PCM) the correlation is strongest during MAM.

As a final comparison between model and observed
ENSO and NAO variability, we prepared maps of the
correlation between local temperature and the standard
SOI and NAOI for each season. The observed seasonal
correlation fields for the SOI and NAOI are shown in
Figs. 15 and 16, respectively.

The seasonal SOI- or NAOI-temperature correlation
maps resemble the seasonal qEOF2 and qEOF3 fields,

Fig. 17 Spatial variation of the observed temporal correlation between local SON temperature and the SON SOI for the eight models
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respectively, which is not surprising given that the qEOF
amplitudes are correlatedwith the correspondingpressure
index (Table 6). For the models we show the spatial cor-
relation fields for the SON (SOI) and DJF (NAOI) sea-
sons only (as Figs. 17 and 18). We computed model
correlation fields using both the standard SO and NAO
indices andusing the indices thatmaximize the correlation
between the SOI or NAOI and the corresponding qEOF
amplitude; model results are given in Figs. 17–18 for the
standard indices. Use of the SOI that maximizes the cor-
relation with the qEOF2 amplitude or of the NAOI that
maximizes the correlation with the qEOF3 amplitude has
little effect on the correlation patterns.

As seen from Fig. 17, most models display the main
observed features of the observed patterns of correlation
with SOI: a broad region of strongly negative correlations
in the central and eastern equatorial Pacific, flanked by
two diagonal bands of positive correlation in the central
and western Pacific that converge on a region of positive
correlation centered at Indonesia and northern Australia.

Figure 18 indicates that, to some extent, all models show
the observed quadrupole structure in the correlation be-
tween temperature and theNAOI duringDJF, a structure
that is also seen in observed EOF3 and in some of the
model EOFs, as noted already. Osborn et al. (2000) had
previously shown HadCM2 to produce a quadrupole
pattern in the temperature-NAOI correlation, and our
results are indistinguishable from the results given in their
Fig. 5c.

8 Discussion and concluding comments

In order to detect anthropogenic and other externally-
forced climatic change signals against the background
of internally generated fluctuations, it is essential that
these fluctuations be characterized reliably in climate
models (Mitchell et al. 2001). Their reliable character-
ization is also important for estimating the details of
future anthropogenic climatic change, since future

Fig. 18 Spatial variation of the observed temporal correlation between local DJF temperature and the DJF NAOI for the eight models
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changes may well involve changes in the relative mag-
nitudes of the primary modes of natural variability
(Hasselmann 1999; Corti et al. 1999).

The comparison of model EOFs with observed EOFs,
on face value, is somewhat discouraging. Most of the
models examined here have major difficulties simulating
the observed structure and magnitude of the leading
EOFs from the observational data. Of the eight models
examined here, HadCM2 has the best pattern correlation
between EOF1 and the corresponding observed EOF (the
R2 is around 0.4). For many of the other models, the
leading EOFs have squared correlations with the ob-
served EOFs in the range of 0.1–0.2. Furthermore, the
variability associated with these modes of variability in
the models is often much larger than the variability
associated with the observed modes of variability. It
should be noted, however, that the poor spatial correla-
tions between model and observed EOFs are related, at
least in part, to the fact that the model EOFs often com-
bine elements that appear in separate EOFs for the
observations. In particular, an NAO-like temperature
structure is often seen in model EOF1, along with or in
place of (depending on the season) the ENSO structure.

The correlation between model and observed qEOFs
is much better than between model and observed EOFs,
thereby validating the use of qEOFs as a measure of
model variability. The amplitude of the qEOFs is given
by the average temperature in the reference regions used
to compute each qEOF field. For CCSR, HadCM2,
HadCM3, and PCM, the temperature variability in the
eastern equatorial Pacific Ocean (related to qEOF2) is
comparable to the observed variability, but it is too small
in the other models. Conversely, most of the models have
European and Siberian temperature variability compa-
rable to or greater than observed.

We computed the correlations between the amplitude
time series for qEOF2 and qEOF3 (corresponding to
ENSO and NAO modes of variability) and pressure
indices related to these modes of variability (the Southern
Oscillation Index, SOI, and theNorthAtlanticOscillation
Index, NAOI, respectively). In general, model correla-
tions are substantially less than those observed. If alter-
native pressure indices (using grid cells near to those
normally used to compute the indices) are allowed, how-
ever, then all models have correlations comparable to
those observed.

As a third measure of model and observed variability,
we computed maps of the correlation between local tem-
perature and the SOI and NAOI. These maps compare
well with similar maps computed from observed data for
seasons where the SO andNAOmodes of variability have
the strongest teleconnections in nature (SON and DJF,
respectively). The SOI- and NAOI-temperature correla-
tion maps also closely resemble the qEOF2 and qEOF3

fields, respectively, as one would expect given the corre-
lation between the pressure indices and corresponding
qEOF amplitude time series.

In Part 2 (Harvey 2003), the spatial fields of mean
precipitation and variability, as simulated by the same

eight models, are examined. Surprisingly, although the
models do not do as well in simulating the precipitation
climatology compared to observations as they do in sim-
ulating the temperature climatology, themodels generally
do much better in simulating the observed patterns of
precipitation variability (as given by EOF analysis) than
they do in simulating the observed patterns of tempera-
ture variability.
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