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Abstract There is increasingly clear evidence that hu-
man influence has contributed substantially to the large-
scale climatic changes that have occurred over the past
few decades. Attention is now turning to the physical
implications of the emerging anthropogenic signal. Of
particular interest is the question of whether current
climate models may be over- or under-estimating the
amplitude of the climate system’s response to external
forcing, including anthropogenic. Evidence of a signifi-
cant error in a model-simulated response amplitude
would indicate the existence of amplifying or damping
mechanisms that are inadequately represented in the
model. The range of uncertainty in the factor by which
we can scale model-simulated changes while remaining
consistent with observed change provides an estimate of
uncertainty in model-based predictions. With any model
that displays a realistic level of internal variability, the
problem of estimating this factor is complicated by the
fact that it represents a ratio between two incompletely
known quantities: both observed and simulated re-
sponses are subject to sampling uncertainty, primarily
due to internal chaotic variability. Sampling uncertainty
in the simulated response can be reduced, but not
eliminated, through ensemble simulations. Accurate
estimation of these scaling factors requires a modifica-
tion of the standard “‘optimal fingerprinting” algorithm
for climate change detection, drawing on the conven-
tional “‘total least squares’” approach discussed in the
statistical literature. Code for both variants of optimal
fingerprinting can be found on http://www.climatepre-
diction.net/detection.
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1 Introduction

This study describes a variant of the regression-based
technique of climate change detection and attribution
that is generally known as “optimal fingerprinting” (see,
e.g. Hasselmann 1979, 1993, 1997; Bell 1986; North et al.
1995; Leroy 1998; Allen and Tett 1999). The finger-
printing approach is to define a pattern of response to
external climate forcing using a climate model and then
to estimate the amplitude of that pattern, or signal, in
the observed climate record. If the hypothesis of zero
pattern-amplitude can be rejected with confidence, then
that signal is said to be detected.

The standard approach to optimal fingerprinting
assumes that the model-simulated response-pattern is
known exactly, that is, it is not subject to sampling
uncertainty. By sampling uncertainty, we mean the
variability in the model-simulated response which would
be observed if the simulation (or ensemble of simula-
tions) were repeated with an identical model and forcing
and different initial conditions. A more general defini-
tion of sampling uncertainty would encompass how the
response-pattern might vary were we to use a different
but equally plausible model or forcing series. The gen-
eralisation of the algorithm described here to encompass
these wider sources of uncertainty (which are also much
more difficult to quantify) is still in progress: the key
problem here is obtaining meaningful statistics of vari-
ability resulting from systematic inter-model differences
given the small number of full-scale climate models
currently available (although see Allen 1999; Stainforth
et al. 2002; Allen and Ingram 2002).

Early applications using atmosphere—ocean general
circulation models (A-OGCMs) in optimal fingerprint-
ing ensured that the assumption of zero sampling
uncertainty was satisfied by using response-patterns de-
rived from simulations of mid-twenty first century cli-
mate change (e.g. Hegerl et al. 1996, 1997). By that time,
the signal-to-noise is so high that sampling uncertainty
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in the response-pattern can be safely neglected. The
main limitation of this approach is that it confines the
analysis to spatial patterns of trends: twenty first century
information cannot be used to determine the temporal
evolution of the climate response to external forcing
over the past few decades. This excludes information on
the differing time-histories of different components of
anthropogenic climate change and, even more impor-
tantly, excludes direct consideration of naturally-forced
signals (even if the information were available, the
model response to twenty first century solar forcing is
not relevant to its twentieth century response).

Direct comparison of noisy A-OGCM or AGCM
simulations and the observed record can proceed
through correlation-based approaches, as in Barnett and
Schlesinger (1987); Santer et al. (1993, 1996); Tett et al.
(1996), and Folland et al. (1998). The difficulty here,
again, lies in physical interpretation. Even if the corre-
lation between modelled and observed changes is very
high, this does not provide any information on whether
the model-simulated amplitude of the change is accu-
rate.

The simplest results to interpret are those based on a
direct comparison of “like with like”’: A-OGCM simu-
lations of twentieth century climate change compared
directly with the corresponding period in the observed
record, exploiting both pattern and amplitude informa-
tion in the model-data comparison (Allen and Tett 1999;
Tett et al. 1999; Stott et al. 2001; Allen et al. 2001). To
date, such studies have used ensembles to reduce sam-
pling uncertainty in model-simulated responses and have
not attempted to account for this uncertainty explicitly
in their analyses. The problem, of course, is that even
with the four-member ensembles used in the studies
mentioned, sampling uncertainty is still far from negli-
gible, particularly in weak signal-to-noise situations such
as the analysis of the response to solar forcing. With
more advanced models (R6ckner et al. 1999), even four-
member ensembles may be unfeasible.

We describe a revised approach to optimal
fingerprinting that provides unbiased estimates of
pattern-amplitudes and amplitude uncertainties when
model-simulated response-patterns are subject to a finite
level of noise. The algorithm is applicable even in the
case where the model is subject to the same level of noise
as the observations, as is the case (assuming model-
simulated variability is realistic) in a single-member
ensemble simulation. Uncertainties will typically be
quite large in this situation, for obvious reasons: if the
signal is poorly known in the first place, the uncertainty
in its amplitude in a noisy observed record is even larger.

Accounting for this noise is particularly important if
pattern-amplitudes are to be subject to a physical
interpretation, such as addressing the question of whe-
ther the A-OGCM is over- or under-estimating the re-
sponse to a particular forcing agent. Standard estimates
are subject to a known bias towards zero and may
therefore give a misleading impression of a weaker re-
sponse in the real world than that simulated by the
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models, even if the models are perfectly accurate. The
extent of this bias in typical climate change detection
problems, and the extent to which we can eliminate it, is
assessed in an accompanying study: Stott et al. (2003).

Estimated upper bounds are particularly severely af-
fected. This should be intuitively clear from the follow-
ing considerations: in estimating a pattern amplitude, we
are estimating the ratio between the amplitude of the
observed and the model-simulated response. The pres-
ence of noise in the denominator means that the
underlying noise-free model-simulated response (that
which we would obtain from a hypothetical infinite
ensemble) could be smaller than the response simulated
in this particular experiment. If the uncertainty is large
enough that this unknown noise-free response could
approach zero, then the ratio between the noise-free
model-simulated response and the observed response
could be very high, even infinite.

This point is illustrated in Fig. I, which shows
hypothetical estimation results based on a single ob-
servable quantity (global mean temperature trend, for
example) that is subject to unit variance noise due to
Gaussian internal climate variability. We assume that
the model-simulated variability in this quantity is real-
istic and a four-member ensemble is available to simu-
late the response to external forcing, so the variance of
the simulation is one quarter that of the observations.
Suppose we find an observed trend of two units and an
ensemble-mean model-simulated trend of one unit. The
distribution of noise-free, underlying trends in the real
world consistent with this observation is shown as the
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Fig. 1 a: distributions of underlying, noise-free trends in the real
world (solid line) and a hypothetical climate model (dashed line)
that are consistent with an observed trend of two units, a four-
member (¢ = 4) ensemble mean trend of one unit and known unit
variance in both modelled and observed trends. b, dashed line:
estimated distribution of ratios of real-world versus model-
simulated trends implied by conventional optimal fingerprinting
(obtained simply by taking the model-simulated trend as given and
accounting only for variance in the observations). b, dotted line: the
same but, including the 1 + 1/¢ correction for finite ensemble size
(see text). b, solid line: true distribution of ratios obtained from
random samples from the two distributions shown in the a
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solid line in the upper panel, while the distribution of
noise-free model trends (those that we would obtain
given a hypothetical infinite ensemble) consistent with
this four-member ensemble mean is shown as the dashed
line. The question is, given only this single observation
and this four-member ensemble simulation, by how
much can we conclude that the model is over- or under-
estimating the underlying noise-free response, and with
what range of uncertainty?

The answer provided by standard optimal finger-
printing, neglecting uncertainty in the model simulation
altogether, is shown as the dashed line in the lower pa-
nel. This is obtained simply by dividing the distribution
of trends consistent with that observed by the mean
trend obtained in this particular ensemble. This is an
example of a regression problem in which the observa-
tions comprise only a single observable quantity, the
trend: in this trivial case, the standard regression solu-
tion is to divide the observed trend and its estimated
standard deviation by the model-simulated trend, which
is unity in this example.

The correct answer for the distribution of ratios of
observed/model-simulated responses consistent with
these results is shown as the solid line in the lower panel,
obtained simply by computing the distribution of ratios
from samples drawn at random from the two distribu-
tions shown in the upper panel (the distribution of the
ratio of two normally-distributed quantities is known as
a Cauchy distribution). The median (50 percentile) of
this distribution is close to two, which is the estimate
based on standard regression. In this case, only a small
fraction of underlying noise-free model-simulated trends
consistent with this ensemble simulation are negative
and, provided the distribution of the denominator does
not straddle zero, the median of the ratio of two sym-
metrically distributed quantities will be close to the ratio
of their medians. The true underlying distribution,
however, falls off less rapidly than the standard regres-
sion-based estimate as we move to percentiles higher
than the 50'". Hence any estimate of uncertainty in the
ratio of observed/model-simulated signal amplitudes
that is based on standard regression will tend to
underestimate the likelihood of high ratios. Points in this
“fat tail” at the high end of the distribution correspond
to the model understating the true observed response by
a substantial margin, which is clearly an outcome whose
likelihood we would like to pin down. Quantifying these
likelihoods, or inferring the correct distribution of ob-
served/model-simulated signal amplitudes from a single
observation and ensemble simulation, in the more gen-
eral case of multiple observable quantities, is the pur-
pose of the algorithm provided in this study.

Several authors using the standard regression-based
approach, aware of the presence of noise in their model-
simulated signals, attempted to correct for its impact by
scaling the estimated variance of their regression-based
estimates by 1 + 1/¢, where / is the ensemble size (Allen
and Tett 1999; Tett et al. 1999; Stott et al. 2000). The
impact of this correction is shown by the dotted line in
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the lower panel. As noted by those authors, this cor-
rection is only asymptotically valid in the limit of high
signal-to-noise, which is not the case here. Both standard
and “corrected” variants of optimal fingerprinting sug-
gest a very low probability that the true response in the
“real world” exceeds 4.5 times the ‘“‘true’ (noise-free,
infinite ensemble) model response, whereas a significant
fraction of the true distribution of observed/model-
simulated trend ratios lies above this threshold.

Before proceeding to details, we would like to stress
that, although the algorithm described later allows the
bias due to sampling uncertainty in model-simulated
responses to be quantified and eliminated, it is not a
substitute for reducing this uncertainty directly through
the use of larger ensembles. The size of ensemble re-
quired to pin down the response to an external forcing
agent accurately depends, of course, on the signal-to-
noise ratio as in Wehner (2000). For strong signals, such
as the response to greenhouse gases in the large-scale
surface temperature record over the past few decades
(Tett et al. 1999; Stott et al. 2000), a 3- to 4-member
ensemble may be enough, but for weaker signals such as
the response to solar forcing, larger ensembles are likely
to be required. In the drive for higher-resolution models,
it should not be forgotten that single-member ensembles
are of relatively little value in the analysis of observed
climate change, so a compromise will always be required
between model resolution and ensemble size.

One way of avoiding the use of large ensembles while
still relying on the standard optimal fingerprinting
algorithm for model-data comparison would be to use a
noise-free model, such as an energy balance model, to
simulate the response-patterns (e.g. Stevens and North
1996; Wigley et al. 1997; North and Stevens 1998; Knutti
et al. 2002). Unless, however, the spatio-temporal pat-
tern of response simulated by the EBM can be assumed
to be accurate (which seems implausible, since so many
important processes are omitted from these models), the
advantage is illusory. In a straightforward detection
problem (assessing whether the amplitude of a particular
pattern is significantly different from zero), inaccuracies
in the model-simulated pattern are of secondary
importance because, although they may reduce the
power of the algorithm, they are unlikely to lead to a
false-positive result. If, on the other hand, pattern-
amplitudes are to be interpreted physically (e.g. Allen
et al. 2000; North and Wu (2001), inaccuracies in model-
simluated responses become very important. A low
estimated amplitude of an incorrectly specified green-
house response pattern does not necessarily mean that
the true greenhouse response in the real world is small: it
may simply mean that the algorithm was looking in the
wrong direction. An even more fundamental problem is
that EBMs are no longer the primary tools for detailed
climate change prediction, so the information that a
particular EBM is over- or under-estimating the re-
sponse to a particular forcing agent is of limited prac-
tical value unless it can be related to predictions of more
detailed models.
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2 Optimal fingerprinting as linear regression

2.1 Estimation procedure

We begin by summarising the standard linear regression algorithm
as applied to the detection of climate change in order to introduce
notation and make the link between total least squares and the
standard approach. The standard detection model assuming noise-
free model-simulated response-patterns is as follows:

y:ix,ﬂi+u=X/3+v (1)
i=1

where y is the rank-n vector of observations, the m columns of X
are the model-simulated response-patterns, x;, the elements of f3, f;,
are the unknown pattern-amplitudes to be estimated and v is the
climate noise in the observations. We will use unadorned suffixes,
such as x; or f3;, to distinguish between different matrices, vectors
and scalars, and suffixes outside square brackets to identify
elements within matrices and vectors. Hence [X]; denotes the S
element of the " column of the matrix X, and [xi; denotes the
" element of the vector x;.
The climate noise covariance,

Cy = 6”(UUT)7 (2)

where & denotes the expectation operator, is generally unknown
and must be estimated from a control run of a climate model.
Because the noise is generally far from white, or Cy # o1, un-
weighted least squares regression gives highly inefficient estimators
for  and strongly biased estimates of the errors in . The solution
is to introduce a “‘pre-whitening” operator, P, defined such that

&(Pw'PT) =1,, 3)

where I is the rank-x unit matrix. Note that «, the rank of P, may
be much smaller than #, the rank of y, in general, a full-rank pre-
whitening operator (which would render the noise variance equal
on all spatio-temporal scales) will not be available because small-
scale noise variance is either unknown or expected to be poorly
simulated by the climate model.

Because Pv is independent, identically distributed (i.i.d.) “‘white
noise”, the best (lowest-variance) linear unbiased estimator of f3,
is given by minimisation of the merit function

» (ﬁ) = (PXB - Py) ! (PXB - Py) = "PTPs (4)
with respect to §. At the minimum,
g = (X"P"PX) 'X"P'Py =F'y, (5)

where the rows of F are the ““distinguishing fingerprints” (Allen and
Tett 1999) and

r?nin ~ Xf‘—m' (6)

If we ignore uncertainty in the estimate of the noise variance, dis-
cussed later, § is normally distributed with mean f and variance

V(#) = o(#-9)(F-5)

— (X'P’PX) .

(7,8)

Equivalently,

AP(B) = P (B) 2y

w2
Xmin-

(B - ﬁ>T(XTPTPX) (B - ﬁ) B (9,10)

To map a desired confidence region, therefore, we determine the
critical value of the appropriate distribution (e.g. 32 (0.05)) and plot
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the surface of values of § for which Ar*(f) is equal to that critical
value. In the absence of any additional information on the likely
values of f, we can then expect (at this confidence level) the vector
of true coefficient values to lie within this region.

Many applications require an estimate of uncertainty in indi-
vidual signal amplitudes, or in specific combinations of signals,
rather than the joint uncertainty in all components of f. For
example, to quantify uncertainty in the trend in global mean tem-
perature over a particular period, we introduce a vector ¢, where ¢;
is the corresponding trend in the model simulation which provides
the i column of X. The vector § represents the combination of
model-simulated signals which best reproduces the observations, so
the best-guess trend over thjs period is simply ¢ = ¢’ 8. The vari-
ance in ¢ is provided by V(d)j = ¢’V (B)c. To determine a confi-
dence interval, we find the valies of ¢ for which

-\ 2
Ej’\/_(;))c = 13(0.05).

If ¢ depends on the i signal only (e.g. only one of the signals
displays a trend), then the denominator of the LHS of Eq. (11) is
proportional to the corresponding diagonal element ofV(ﬁ), or the
variance in B;: [V(ﬁ)} = V(ﬂi).

It will prove helpful to note that an equivalent method of
computing confidence intervals in individual signals or signal-
combinations is to map the surface of values f; for which
A (By) = 73(0.05). We then compute ¢;=c'f; for all points on
this surface, and the limits on the confidence interval are given by
the maximum and minimum values of the ¢;. This is exactly
equivalent to Eq. (11) when V() is available (Press et al. 1992),
but proves useful when it is not.

(11)

2.2 Accounting for uncertainty in the estimated noise variance

Ignoring uncertainty in the estimated noise properties simplifies the
analysis but can lead to “‘artificial skill” (systematic bias towards
underestimation of uncertainties) in a climate change detection
context (Bell 1986). The simplest way to deal with this problem is to
base the uncertainty analysis on a set of v noise realisations, Y»,
which are statistically independent of the noise realisations, Y,
used to estimate P. The v columns of Y, correspond to y-like
vectors of pure noise (““pseudo-observations’) drawn, for example,
from v statistically independent segments of a control integration of
a climate model. If adjacent columns of Y, are not statistically
independent, the degrees of freedom of covariance estimated based
on this noise realisation, v,, will be less than the number of col-
umns, v. If these pseudo-observations are drawn from a control
integration of a climate model, it is standard practice to use over-
lapping segments in order to maximise the number that can be
extracted from a limited length integration. In this case, v, is
approximately equal to 1.5 times the number of non-overlapping
segments in the control (Allen and Smith 1996). ~
The standard fingerprinting algorithm is linear, so V(ﬂ)
does not depend on the actual amplitude of the signal in the

observations, y. An estimate of V(B) can therefore be obtained

by applying the same operator, F”, that was used to extract B
from y to the columns of Y, and estimating the variance of the
result:

o T
~r>  FIY,Y,F
== 12
V(B) =" (12)
Taking into account the sampling uncertainty in Yz gives
- Ta =1/~
(B-8) V(B) (B—B) ~ mFu, (13)

which can be used in place of Eq. (10) to provide confidence
intervals on f.
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We also have, to a reasonably good approximation, that

~ (PﬁﬁTPT)i.i
AN

=1 (PYZ PT>
V2

ii

2

min = ~ (k= (14)

m)F;cfm.vz.

This provides the F-test for residual consistency proposed in
Allen _and Tett (1999), ignoring the off-diagonal elements of

PYZYZPT. Since Cy, as defined in Allen and Tett (1999), is
non-invertible, there is potential ambiguity as to which pseudo-
inverse should be used. The algorithm detailed here gives
reasonably unbiased results and is the one used in Allen and Tett
(1999), Tett et al. (1999) and Stott et al. (2001).

It should be stressed that Eq. (14) is only approximately valid,
since the LHS actually represents the sum of (x—m)F; ,,-distributed
quantities rather than an F-distributed quantity itself, we are
grateful to Simon Tett for drawing this point to our attention.
Defining its distribution is complicated by the fact that, in typical
climate applications, the individual terms in this sum are not
mutually independent, for the following reason. The denominator
represents an estimate of the power in the direction defined by the
i™ column of P in the model control, Y,. A control segment which,
by chance, contains more power than the long-term average in
direction i is also likely to contain excess power in direction j. In
this respect, coupled climate models (and also, presumably, the
climate system itself) differ from a typical Markov random field in
that a relatively small number of processes with global impact, such
as El Nifio or fluctuations in the thermohaline circulation, are
responsible for the bulk of the variability in simulated variability
from epoch to epoch: quiet epochs tend to be quiet everywhere,
active epochs active everywhere. This is a difficult hypothesis to
test, since these “‘epochs” correspond to multi-century segments of
model control integrations, and we typically only have a very small
number of such segments available for any individual model.

Equation (14) is only strictly valid if the correlation in fluctu-
ations in variability in different modes is complete, which might be
expected if only one process, such as the model thermohaline cir-
culation, was causing some epochs to be more active than others.
As these correlations fall, the expected value of ?fnin falls, intro-
ducing a liberal bias into the Allen and Tett (1999), test for residual
consistency. Differences are of the same order as the differences
arising from uncertainty in the degrees of freedom of the control,
V2, so we believe this is an acceptable approximation provided
Eq. (14) is simply being used as a post-hoc check for internal con-
sistency and not an integral part of the analysis (Allen and Tett
1999). The fact that the test is subject to a liberal bias serves to
emphasise, however, that results in which the test is passed only
marginally should be viewed with caution.

Uncertainty intervals in individual signals or signal-combina-
tions are given by replacing Eq. (11) with

N2
)
-~ =F,/(0.05).
'V (ﬁ)c
Note that, because 1,,(0.025) = /Fi,,(0.05), this corresponds to

the same critical value of the two-tailed ¢-distribution (or the one-
tailed distribution at confidence level P/2).

(15)

3 Noise in model-simulated response-patterns

We now consider the impact of noise in X as well as in y.
In place of the simple statistical model (1), we have:

y:i(xi—vi)ﬁi+vo, (16)

i=1

where x; is the i model-simulated response-pattern,

estimated from a finite ensemble and therefore
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a OLS with noise in model-simulated signal
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Fig. 2 a: application of ordinary least squares regression to a
system in which both “model” (plotted in the horizontal) and
“observations” (plotted in the vertical) are contaminated with equal
levels of noise. “True” values (normally unobservable, except this is
a synthetic example, and uncontaminated with any noise) are
plotted as crosses along the dotted line; noise-contaminated
“observations” and “‘simulation” are plotted as squares, with the
thin arrow showing the orientation of the noise vector in one case;
best-fit line and reconstructed observations are shown as the
diamonds, with heavy arrow showing the hypothetical noise that is
minimised in the OLS algorithm. The best estimate is biased
towards zero under OLS and, in this example, the 5-95%
confidence interval, shown by the dashed lines, does not include
the correct slope. b: application of total least squares regression to
the same example. TLS minimises the perpendicular distance from
the best-fit line, shown by the heavy arrow, not the vertical distance
minimised by OLS. The bias towards zero slope is removed, and
the 5-95% confidence interval on the slope now includes the
correct value

contaminated with sampling noise v;, and v, is the noise
in the observations. We reiterate that the only contrib-
utor to the v; we consider here is the sampling uncer-
tainty due to the use of a small ensemble of simulations
to obtain the response-pattern.

A simple case in which X has only a single column is
shown in Fig. 2. The “true”, uncontaminated, elements
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true true

of y = y—upand x = X — vy, are plotted as the
crosses, while the observable quantities y and x; are
shown as squares. The noise contamination contains
both horizontal and vertical components, shown by the
thin arrow. Ordinary least squares minimised the verti-
cal distance between the scatter of points and the best fit
line, shown by the thick arrow in the left panel.

Having recognised that optimal fingerprinting is
simply a variant of linear regression (e.g. Leroy 1998;
Allen and Tett 1999), the solution to the problem of noise
in both “independent” (predictor) and ‘“‘dependent”
(predictand) variables (being the response-patterns and
observations respectively) is readily available (Adcock
1878; Deming 1943; van Huffel and Vanderwaal 1994).
Several approaches have been proposed, the differences
between which are likely to be much less important than
the impact of neglecting response-pattern noise alto-
gether. The total least squares (TLS) algorithm discussed
in this study minimises the distance perpendicular to the
best-fit line, shown by the thick arrow in the right panel.
In this particular example, the 5-95% confidence interval
on the slope of the best-fit line includes the correct value
only if the TLS algorithm is used: clearly, it is possible to
select a synthetic example to force this to be the case, yet
if the example is regenerated many times, OLS is indeed
found to be subject to a bias towards zero slope which is
resolved by the use of TLS.

Among alternatives to TLS, Press et al. (1992),
present the “iterated weighted least squares” (IWLS)
solution of Jeffreys (1980), reviewed in Lybanon (1984).
In the simple case of a straight-line fit (m = 1) and equal
and uncorrelated noise in all elements of y and x, the
IWLS and TLS solutions are identical, with the only
difference being that TLS is a single-step rather than an
iterated algorithm. TLS is, however, much simpler to
generalise to the multi-signal case (m > 1), not discussed
in Press et al. (1992). Ripley and Thompson (1987),
discuss biases in the IWLS solution in the situation
where the noise variance increases monotonically with
signal amplitude. This might be the case in a climate
change detection problem, despite the use of a pre-
whitening operator which, in principle, assigns equal
noise variance to all input variables. The pre-whitening
operator is based on a control simulation of a climate
model, and because of non-linearities in the real climate
system which may not be adequately represented in the
model (e.g. Palmer 1999), model-simulated variance may
be underestimated in precisely the patterns in which the
signal amplitude is large. We therefore follow Ripley
and Thompson’s (1987) approach, based on maximum
likelihood fitting of a functional relationship (MLFR),
which is closely related to Adcock’s (1878) original
solution. We use the name total least squares, following
van Huffel and Vanderwaal (1994), since this seems an
intuitive way of describing the algorithm.

Since the bias in OLS estimates due to noise in the
independent variables can be quantified with a
straightforward Monte Carlo simulation (see Fig. 1), a
third option would be to use OLS and then correct both
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estimates and estimated errors to account for this noise
systematically, rather than with the ad hoc variance
correction used by Allen and Tett (1999). Tett et al.
(1999), and Stott et al. (2000). Like IWLS, this approach
should, in a single-signal case, give identical results to
TLS, and this has, indeed, been verified by Professor
David Ritson (personal communication). An implicit
algorithm based on Monte Carlo simulation, is, how-
ever, more cumbersome to generalise to the multi-signal
case. In summary, there are various ways of dealing with
the presence of noise in model-simulated response pat-
terns: differences between the different approaches,
correctly implemented, are likely to be much less
important than neglecting this noise altogether or simply
relying on ad hoc corrections. In the general multi-signal
case with correlated noise, we believe a full implemen-
tation of any valid alternative ends up being as or more
complicated than TLS.

3.1 The total least squares algorithm

Having confined ourselves to sampling uncertainty due
to finite ensemble size, and assuming model-simulated
variability is consistent with that in the real world, we
can assume that the noise has the same autocorrelation
structure in y as in every column of X. Under these
circumstances, the same pre-whitening operator, P, may
be applied to all variables. Note that this assumption
will only be valid if the dominant source of noise is
internal climate variability which is correctly simulated
by the model used to generate the columns of X. We
should not a priori expect noise due to model error or
observation error to share the autocorrelation structure
of climate variability, so if either of these is a significant
contributor then a more complex treatment is called for
which we will pursue elsewhere. If the expected noise
variance in X is different from that in y, for example, if
ensemble means have been used to reduce noise in
model-simulated response-patterns, individual columns
of X can simply be scaled up to make the expected noise
variance in each the same as that in y, and the same
scaling factor(s) applied to the final parameter estimates.
For simplicity, we will ignore these scaling factors in the
following, so the following discussion applies directly to
the case of single-member ensembles.

Given that there is the same noise in each column of
X as expected in y, we have

& (Popo PT) =1, (17)
and

& (Poovg PT) =1,. (18)
If m” = m + 1, we define the m’ X k matrix

Z = [PX, Py] (19)

as the observed (pre-whitened but still noise-contami-
nated) values of X and y.
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Our basic linear model asserts that there exists a Z™™
whose columns are linearly related, that is

Z™ey = (Z — Y)v =0, (20)

where v is a rank-m’ vector of coefficients, and Y is an
m’ X Kk matrix representing the true (pre-whitened) noise
contamination in the m’ variables. If the noise is nor-
mally distributed to begin with, then as a result of the
prewhitening operator, P, all the elements of Y are
normally distributed with unit variance, so the maxi-
mum likelihood estimator of v, ¥, is given by maximising
1 T

L = constant — Etr (T Y), (21)
where Y=Z—Z and Z¥=0. The rows of Y are
uncorrelated with ¥, so maximising L is equivalent to
minimising the revised merit function
27 =Y Tv. (22)

We require a constraint to avoid the trivial solution
¥ = 0 Since all columns of Z are subject to noise of equal
amplitude, this constraint should not discriminate be-
tween them, so we use the standard normalisation,
#% =1 Imposing the constraint [¥],,= —1 (i.e. only
constraining the coefficient on y) and minimising s gives
the standard regression model (1).

Incorporating this constraint into our merit function
gives
s2(¥) =V 27 Zv + 72 (1 - ¥'9) (23)
where A% is a Lagrange multiplier. In geometric terms,
minimising s? is equivalent to finding the m-dimensional
plane in an m’-dimensional space which minimises the
sum squared perpendicular distance from the plane to
the x points defined by the rows of Z: the Adcock (1878),
solution.

Differentiation of Eq. (23) with respect to Vv gives an
eigen-equation defining the stationary points of s° at
which

19(s)

Z —7ZT7v - )% =0 24

200 ' ’ 24)

and the curvature matrix

19(s)

~ =7"7 - 1. 25

) (25)
The solution which minimises s> is 4> = A2 the

min?
smallest eigenvalue of Z’Z. and ¥ being the corre-
sponding eigenvector (the vector normal to the best-fit
m-dimensional plane). In a practical implementation, we
simply take the singular value decomposition (SVD)
Z = UAV so, after sorting, ¥ = v,».

The m’™ element of the solution vector corresponds
to the best-fit scaling parameter on the observations, y.
Since we are looking for a model to reproduce the
observations themselves, not some scaled version there-
of, we translate these coefficients into more familiar
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pattern-amplitudes by taking the ratios f; = [¥],/[¥],,. At
the minimum,

2 92 2
min — /“min ~ Xi—m>

(26)

S

provided x > m and neglecting, for now, uncertainty in
the noise estimate. This provides an approximate check
on residual consistency analogous to that which we use in
standard regression. The detailed small-sample proper-
ties of Siﬁn when x = m require a discussion in terms of
Wishart matrices, which we will not attempt here.

Uncertainty analysis of the f is somewhat more
complicated. If the diagonal matrix A? contains the
ranked eigenvalues of Z'Z, and the columns of V con-
tain the corresponding eigenvectors, v; we can rewrite
Eq. (25) as

2(.2
VW) vy,
2 9(¥)

VT (27)

Note the relationship between Eq. (27) and the per-
turbation analysis of North et al. (1982): like them, we
are analysing the stability of an eigen-decomposition. It
is tempting to treat the pseudo-inverse of Eq. (27) as a
standard covariance matrix on v and this is indeed a
reasonable approximation in the limit of high signal-
to-noise. Because of the non-linearity introduced by the
normalisation constraint on Vv however, the merit func-
tion s is not quadratic, so more realistic confidence
intervals are obtained by explicitly mapping surfaces v
where As*(v) = s*(v) — 52, has some constant value. As
in the standard model,

2 2
AsP(v) = AZTV(A — D VY (28,29)
~  Xmin>

so having selected a confidence level, we compute the
corresponding critical values of the As*(v) = s?(v) — 52,
distribution and map the vectors v for which As*(v) is
equal to this critical value.

In a practical implementation, this mapping is
achieved by first defining a set of points on an m-sphere
of radius y2 , where s2,,, is the critical value of the y2 (or
mkF,, ,, distribution — see next sub-section):

m

z2 = ASgrit' (30)
i=1
For each of these points, we compute
b= 2 (31)
12 /12

1 min

If the b; provide the weights on eigenvectors 1 —m in V
used to generate v, then Eq. (28) is automatically satis-
fied. The weight on v, is provided by the normalisation
constraint,

ibf: 1.
i=1

(32)
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If As2;, is too large, then b, will be zero or imagi-
nary, and the confidence region will be unbounded in
this direction. This means that the v are unconstrained
(at this confidence level) to rotations through 360° in
some plane.

In order to express these uncertainties in terms of
familiar pattern-amplitudes, we need to take ratios f§; =
[V1i/[¥],s, giving confidence regions which may differ
markedly from ellipsoidal. To compute confidence
intervals on individual signals or signal-combinations,
we compute surfaces f; for which As*(v) is equal to the
appropriate critical value of the y? distribution, and
simply take the maximum and minimum values of ¢; =
¢’p, as before. Note that certain signal-combinations
can be well constrained by the observations even if the
full m-dimensional confidence interval is open-ended.

3.2 Uncertainty in noise variance under total least
squares

If we take into account noise in all variables, the esti-
mation algorithm becomes non-linear, so we cannot
simply compute a series of f-like estimates from a set of
independent realisations of pure climate noise (referred
to earlier as the columns of Y,) and use the resulting
distribution to prov1de a confidence interval. Instead, we
note that each /1 represents the signal-to-noise ratio in
the correspondmg pair of singular vectors of Z:

w77y,

2 _
/11'*1 Y P
;u-TPTlYlP u;

(33)

1

where the denominator is identical to unity if the p
columns of Y; have been used to derive the pre-whit-
ening operator, P. Relying on these,4 for the uncertainty
analysis may be misleading if Y;Y, is rank-deficient, as
will generally be the case because only relatively short
control segments of model-simulated variability are
available. Poorly sampled state-space directions will
automatically be given high weight by Tthe pre-whitening

operator, since by construction PYJA”I P7=uI This art-
ificially inflates the differences between eigenvalues and
reduces estimated uncertainties.
_ The solution, as in the linear case, is simply to replace
Y, with Y, in Eq. (33), giving
r77T

A u; 77" v;
=t (34)

%uiTPYng Py,

Because Yg is independent of P, if P is artificially
inflating variance in a particular state-space direction,
the same bias will be apply to both numerator and
denominator in Eq. (34), whereas in Eq. (33) it only
applied to the numerator The estimates, v and f are
unaffected, but s, is replaced by $2, in the uncertainty
analysis, as follows: the check for residual consistency,

Eq. (26), becomes
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Stin = /‘Li"nn (K - m)F(K—m);Vz’ (35)
and Eq. (29) becomes
AR(Y) = TV( — RZL0)VTy (36.37)

~  mly,,.

3.3 Properties of TLS estimators and the problem
of open-ended confidence intervals

In the simplest case in which there is an equal level of
noise in model and observations (i.e. assuming an
ensemble of size one: and, as noted, an ensemble of size n
can be transformed into this case by pre- dnd post-
multiplying the model-simulated signals by nt and n2
respectively), TLS estimates of the angle of slope of the
line relating model and observations are symmetrically
distributed about the correct value. If we were to per-
form the estimation procedure many times, the average
angle of slope would converge to the correct one. In
conventional regression analysis, however, results are
normally quoted in terms of the tangent of this slope
(the familiar scaling parameter f3), or the ratio between
observed and model-simulated signal amplitudes. Be-
cause the tangent operator is non-linear, if we express
TLS results in terms of familiar scaling parameters, their
behaviour can appear unfamiliar. For example, with
exactly the same level of correlation between model and
observations, the TLS-based uncertainty interval on the
angle of orientation of the line relating could be either
—5° to 50° or 40° to 95°. Expressed in terms of scaling
parameters, f3, the latter interval includes infinity: what
does this mean?

In interpreting coefficients derived from standard
regression, we are accustomed to see these coefficients
decline to zero as the amplitude of the signal in the
observations goes to zero. With noise in both observa-
tions and model-simulated patterns, there is no reason
for the vector f§ to prefer one orientation over any other
as the signal amplitude in both model and observations
goes to zero, because model and observations are
equivalent. The orientation the line relating model and
observations thus becomes arbitrary, and the ratios
B; = [V],/[¥],, can take any value. The physical inter-
pretation of a near-infinite ‘“pattern-amplitude’ requires
some thought. What it means is that, because we are
allowing for the presence of noise in the model-simu-
lated patterns, it may be the case that the true response-
pattern (the pattern which we would obtain if we were to
run an infinite ensemble) may be close to zero every-
where. Supposing that this pattern has a finite amplitude
in the observations, this means we would have to mul-
tiply this near-zero pattern by an arbitrarily large
number to get a reasonable fit.

At higher signal-to-noise levels, the main impact of
adopting TLS estimators in place of the standard
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approach will generally be to increase the best-guess
pattern amplitudes and also to increase, possibly sub-
stantially, the estimated upper bounds on parameter
uncertainty ranges. Lower bounds (which are crucial for
claims of detection) may either increase or decrease
depending on the confidence level specified. The ques-
tion will doubtless arise as to whether the additional
precision of these revised estimators justifies these
additional complications of interpretation. In view of
the fact that we know that any response-patterns ob-
tained from small ensembles are subject to sampling
uncertainty, there should be no question that we should
satisfy ourselves what the impact of this uncertainty is
within an unbiased estimation framework. Whenever
these revised estimators give qualitatively different re-
sults from the traditional approach, we have two op-
tions: either we use the revised approach in policy
advice, accepting the additional complexity that this
entails; or we increase the size of the ensembles we use to
estimate the response-patterns until differences between
the two approaches are negligible. While the latter op-
tion is clearly preferable in principle, the cost of running
very large ensembles to pin down weak signals may
dictate otherwise.

3.4 Reconstructing noise-reduced observations
and signals

Under OLS, reconstructing the noise-reduced observa-
tions and signals scaled by best-fit scaling parameters is
straightforward: we simply compute § = Xf Under TLS,
the problem is only slightly more complicated. Assum-
ing, as before, equal noise in observations and signals,
we project both onto the plane orthogonal to ¥, thus:
7.=17 7" (38)
This provides a “best-fit” reconstruction of both
observations and signals: note that the presence of noise
in X now means that the true (noise-free) model-pre-
dicted response-patterns must be estimated along with
the noise-free observations.

Noise-reduced observations and model-simulated
signals associated with the v on a particular confidence
surface are computed identically to Z This gives a set of
possible observation-signal combinations that are con-
sistent with the statistical model at a given confidence
level. If we desire an uncertainty range on a single
quantity, such as the trend attributable to a particular
signal, then we require the v corresponding to univariate
confidence intervals (i.e. those on the surface where
A$?(v) = Fi,, For the joint distribution of two trends,
we require bivariate intervals and so on. Note that
reconstructions of noise-reduced observations and
model-simulated signals will, in general, be much better
behaved than the corresponding regression coefficients:
if a particular v corresponds to the model-simulated
signal having zero amplitude while the observed signal
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has a finite amplitude, the corresponding f; will be
infinite, but the reconstructed noise-reduced observed
and model-simulated signals will all be finite.

4 Example: application to climate change
in a simple chaotic system

We now demonstrate the estimation algorithms de-
scribed in this paper to a numerical model of climate
change in a non-linear system proposed by Palmer
(1999), based on the Lorenz (1963), model of low-order
deterministic chaos. The governing equations are very
familiar,

& = —gX+0aY+ fycosO
o' — —XZ+rX —y+ fosin0 (39)
‘;—f = xy—bZ,

where X, Y and Z are the prognostic variables while a, r
and b are adjustable parameters, set here to put us
squarely in the ‘‘chaotic” regime (10, 28 and 8/3
respectively). The final terms on the RHS of the first two
equations represent an imposed external forcing in the
horizontal (X, Y) plane, with amplitude £, and direction
0.

We use output from this model to generate both
“climate change signals” and ‘“‘climate noise”, rather
than simply adding pre-defined signals to the more usual
linear stochastic (“‘red noise”: e.g. Hasselmann 1976)
model of internal variability for the following reason.
The estimation theory described is based on the
assumption that the climate variability can be thought of
as a linear stochastic process which is independent of
externally forced signals of climate change. Hence, if the
statistical model is correctly specified, validating our
estimation procedure against the output of such a linear
process (which we have, of course, done) is simply a
check for coding accuracy, not a fundamental test of the
theory.

Palmer (1999), observed that climate change in a non-
linear system could also be thought of as a change in the
occupancy statistics of certain preferred “weather re-
gimes” in response to external forcing, and argued that
this might cause problems for the linear analysis tech-
niques used for climate change detection. It is therefore
of interest to test out our estimation procedures on
precisely the system Palmer (1999), proposed.

We do this by imposing a forcing as shown in the Eq.-
set (39) whose magnitude, f,, increases linearly over
time, representing the effect of, for example, a 1% per
year increase in greenhouse gas levels. The principal
impact of the forcing is to increase the fraction of time
the system spends in one of its two basins of attraction.
This is shown in Fig. 3. The left hand panel displays an
estimate of the attractor probability density function, or
PDF, of the unforced system (f, = 0). The two lobes of
the “Lorenz butterfly”” are clearly evident, and are of
equal size, since the unforced attractor is symmetric.
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Fig. 3 a: estimate of the attractor probability density function
(PDF) of the unforced Lorenz (1963), system. The plot shows a
two-dimensional histogram of the location of “‘one-Lorenz-day”
time-averaged values of the (X, Y) variables obtained from a long
integration. b: PDF after imposing a steady forcing in the (X, Y)
plane in the direction shown by the arrow, following Palmer (1999)

It is important to stress that the appearance of the
PDF is sensitive to the averaging period represented by
individual points making up the histogram. In Fig. 3,
this is one ‘“Lorenz-day” which is comparable to the
time scale of exponential error growth in this system.
The only component of the climate system that has been
unambiguously shown to display exponential error
growth is the mid-latitude atmosphere. For example,
despite years of research, the jury remains out whether
the El Nifio phenomenon is best represented by chaotic
or damped linear stochastic dynamics on seasonal to
interannual time scales (Jin et al. 1994; Penland and
Sardeshmukh 1995). In climate change detection studies,
we are typically working with diagnostics based on
averages over time-periods several orders of magnitude
longer than the atmospheric error growth time. A better
model of the climate change detection problem, there-
fore, is to work with long time-averages of the Lorenz
(1963), system, as shown in Fig. 4. The impact of the
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Fig. 4a, b As Fig. 3, but based on 500-Lorenz-day averaged data,
to show the impact of time-averaging on the distributional
properties of variability generated by a chaotic system: a simple
consequence of the Central Limit Theorem

Central Limit Theorem is immediately apparent, with
the distribution of 500-day averaged values of the Lor-
enz variables being much closer to Gaussian and dis-
playing none of the bi-modal behaviour shown in Fig. 3.
Studies reporting non-Gaussian or multi-modal behav-
iour in the climate system have generally been based on
relatively high time-resolution data (monthly or daily
averages: e.g. Corti et al. 1999; Gillett et al. 2001).
Failure to detect multi-modal behaviour on longer time
scales is generally attributed to the lack of sufficiently
long data records, but it is equally reasonable (and
arguably more conservative) to assume that the statistics
of internal climate variability do in fact converge to
Gaussian if we average over multi-year time scales.

If we impose a steady forcing in the direction shown
by the arrows in Figs. 3 and 4 (0=140°) and repeat
the integration, the size (average rate of occupancy) of
the upper right lobe in Fig. 3 increases while that of the
lower left lobe diminishes. Although it is not particularly
evident from Fig. 3, the location of the maxima is also
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displaced slightly in the direction of the forcing (i.e.
above the line X=Y). This latter component of the re-
sponse is more evident in the histograms of 500-day
averages (Fig. 4), which shows that the centre of gravity
of the system has moved into the upper right quadrant
but has also moved slightly above the X =Y line.

The point made by Palmer (1999), was that the sign
of the response in the X direction can (as in the case
shown here) be opposite to that of the forcing. Some
early climate change detection studies (e.g. Santer et al.
1996) used patterns of forcing in place of model-simu-
lated responses as signals to be looked for in the
observed record. If the real climate system is conforming
to this non-linear ““paradigm,” these studies might well
have been looking in the wrong direction, although it
should be stressed that there is no a priori reason to
expect this problem to result in an excessive number of
false-positive detection claims. Likewise, other studies
have used signals derived from equilibrium climate
change experiments or simulations of twentyfirst century
climate change (e.g. Hegerl et al. 1996). In a non-linear
system, the direction (pattern) of response can depend
on the amplitude of the forcing. For example, in the
system shown here, as we increase fj the centre of gravity
of the whole attractor moves further into the upper right
quadrant but does not move much further off the X=Y
line. Hence a signal derived from a strong-forcing
experiment might prove inappropriate to the relatively
weak forcings observed over the twentieth century.
Again, this problem would be more likely to result in
failure to detect a climate change than in a false-positive
result.

Recognising these problems, more recent climate
change detection studies (Tett et al. 1996, 1999; Allen
and Tett 1999; Stott et al. 2001) have compared simu-
lations of the twentieth century, with as realistic forcing
amplitudes as possible, directly with observations. This
approach entails costs: ensemble simulations are re-
quired, and quantitative comparison of models with
observations requires the more complex total least
squares analysis procedure detailed here. The great
advantage, however, is that there is no a priori reason to
suppose that the presence of non-linearity per se will
result in the model-simulated response-pattern pointing
in the wrong direction, provided the same non-linearities
are represented in the climate model as are operating in
the real world (and the objective of the exercise is to
establish whether or not this is the case). Moreover, in
using the Palmer (1999), example, we aim to show in this
paper that there is also no reason to suppose that the
linear analysis techniques used in climate change detec-
tion are rendered inapplicable simply because the
underlying system is non-linear.

The key constraint is that the forcing amplitude must
be small enough that the characteristics of internal
variability on the time scales of interest do not change as
a result of the imposition of external forcing. This is
illustrated in Figs. 3 and 4. Variability in “daily” aver-
aged data (Fig. 3) does change as a result of the forcing:
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the distribution becomes more skewed towards the up-
per right quadrant. Gillett et al. (2001), see tentative
evidence of similar behaviour in daily averages of certain
diagnostics of atmospheric circulation over the past few
decades. Yet the characteristics of variability in “annu-
ally” (500-Lorenz-day) averaged data (Fig. 4) are un-
changed. There is no contradiction here, nor is it simply
a question of insufficient sampling on the 500-day time
scale. A system can be non-Gaussian on short time
scales and Gaussian on much longer timescales simply
by the operation of the Central Limit Theorem. Evi-
dence of interesting non-linear behaviour, such as multi-
modality, threshold or saturation effects, on short time
scales therefore does not necessarily imply that behav-
iour should depart significantly from linearity on longer
time scales. While difficult to confirm in the real world,
modelling studies to date (e.g. Timmermann et al. 1999;
Fyfe et al. 1999; Collins 2000) suggest that much larger
forcing amplitudes than have been observed over the
twentieth century are required to have a significant im-
pact on internal variability on interannual to decadal
time scales.

In the context of our idealised system, we impose a
reasonably strong forcing amplitude: increasing f, line-
arly over a 2500 Lorenz-day period to about half that
required to cause the attractor to collapse altogether.
The response is shown in the left-hand panel of Fig. 5,
which displays the time-evolution of the of 500-day
averages of the Lorenz variables over this 2500-day
period averaging based on a 4-member ensemble. This
may be thought of as the motion of the centre of gravity
of the attractor shown in Fig. 4. The 1000-day fluctua-
tions in the lines are partly attributable to sampling
noise, and would be different in another ensemble, but
the overall response is consistent: Y increases first, so the
centroid moves upwards away from the X axis in Fig. 4.
X and Y then increase together as the forcing strength-
ens, meaning the centroid moves out into the upper right
quadrant following the line X=Y.

Mimicking the experimental design of, e.g. Tett et al.
(1999), we generate:

1. A time-history of pseudo-observations of all three
Lorenz variables using the model described by
Eq. (39) and a linear increase in forcing

2. A spatio-temporal response pattern using ensemble
simulations with the identical model and forcing
history, varying initial conditions between ensemble
members

3. A simulation of internal variability using a long,
unforced, “control” integration of the model.

Hence, comparing these response patterns with the
pseudo-observations, we should find the pattern-ampli-
tudes, ff to be consistent with unity, since the model-
simulated response is correct.

We use this “perfect model” set-up to focus on the
statistical techniques used for model-data comparison.
With such an idealised system, there is less point in
exploring the impact of systematic model errors since
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Fig. 5 a: response of three
variables in model (39) to a
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Signals

Fingerprint

linear increase in forcing f,
from 0 to 5 units, with 6= 140°,
showing an initial increase in Y
(upward movement on the
previous plot) followed by a
simultaneous increase in X and 04l
Y, with no change in Z.

b: optimised climate change
fingerprint after multiplying
this signal (the spatio-temporal
pattern of response shown on
the left, arranged as a single
column-vector y, by the inverse
noise covariance estimated
from a long control integration
of the unforced model
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this would be specific to the problem considered. First,
we show the impact of pre-whitening, or “optimisation”,
which is used in both TLS and OLS algorithms. The
right hand panel in Fig. 5 shows what Hasselmann
(1993), refers to as the “optimised fingerprint” of this
particular climate change, or F (which has only a single
column, because we have only one candidate response-
pattern) in Eq. (5). In the OLS algorithm, this is simply
the pattern by which we need to multiply the raw data to
obtain the best (lowest variance) linear unbiased esti-
mator of the response amplitude, § (the scaling on the
model-simulated signal required to reproduce the
observations). There is no such simple interpretation in
the TLS case, because all the analysis is done in terms of
pre-whitened variables, but the principle is the same.
What is striking about the optimised fingerprint in
this case is that it points in a direction almost orthogonal
to the original signal: the fingerprint is increasing line-
arly in a direction orthogonal to the X=Y line (X de-
creases while Y increases in the right panel of Fig. 5),
while the signal primarily consists of a movement along
the X'= Y line (both X and Y are positive by day 2500 in
the left panel). The reason is simple: most of the noise in
this system is along the X=Y line, since this is the way
the PDF is oriented in Fig. 4. Hence the component of
the response that best distinguishes it from internal
variability is the small displacement away from the
X=Y line, even though the largest single component of
the response is along the X=Y line. In this particular
example, the fingerprint happens to point in the direc-
tion of the forcing, but this is largely a coincidence: for

2000 2500 O 500 1000 1500 2000
Time (days)

2500

different values of 6, it can be engineered to point else-
where.

When pseudo-observations are projected onto the
raw climate change signal, we find that no response can
be detected to this forcing at, for example, the P = 0.05
level in the vast majority of cases regardless of the
ensemble size used to estimate the signal. This supports
the point made by Palmer (1999), that responses ori-
ented in the preferred directions of the noise “attractor”
may be difficult to detect. However, if we project pseu-
do-observations onto the optimised fingerprint,
the response can almost always be detected at a high
significance level. This demonstrates the power of the
optimisation algorithm in enhancing signal-to-noise,
and also provides a test-bed to the OLS and TLS algo-
rithms described in this study.

Since this is a perfect model set-up, we focus on the
hypothesis #o(f = 1). Testing at the P = 0.05 level
(one-tailed), we should find 2 rejected with f signifi-
cantly greater than unity (the ensemble simulation
underestimating the “observed” response) or [ signifi-
cantly less than unity (simulation overestimating ob-
served) in approximately 5% of cases respectively, if the
statistical analysis techniques are working perfectly.
What we actually find is shown in Fig. 6. With 500-day
averaged data (left panel) and small (one- to four-
member) ensembles there is a systematic bias towards
OLS underestimating the observed response amplitude.
That is, OLS is found to indicate f significantly less than
unity in up to 21% of cases (solid line), while indicating
p significantly greater than unity in as few as 0.5% of
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which #o(f = 1) is rejected in a 50
“perfect model” study in which i
the true value of f is known to
be unity. Ideally, rejection rates
should equal the nominal
significance level of 0.05, shown
by the dotted line in both panels.
The a shows results based on
500-day averaged data, the b
results based on 50-day
averages. The solid (dashed)
lines show the percentage of
cases in which OLS significantly
under- (over-)estimates the
observed response amplitude,
falsely indicating the model
response is significantly higher
(lower) than observed response
when it is, in fact, correct. The
dash-dot (dash-triple-dot) lines
show the corresponding
statistics for TLS. Note the
strong bias in OLS results
towards indicating that the
observed response is lower than

30}

Percentage

— ols low B 40
-~ ols high 1 [
== tls low

—-- tls high

50

— ols low b
-~ ols high

== tls low

—-- tls high

Percentage

the model-simulated response
with small ensemble sizes

rar

Ensemble size

cases (dashed line). Results with TLS (dash-dot and
dash-triple-dot lines) are not subject to this low bias,
although for small ensembles TLS appears to be slightly
over-conservative in both directions, with somewhat
fewer than the nominal 5% of cases being found to be
both too high and too low. Both algorithms converge on
the correct (5%) rejection rate for very large (64-mem-
ber) ensembles.

Differences between the two algorithms are more
marked if we consider 50-day averaged data, in which
the signal-to-noise level is lower and the underlying PDF
is further from Gaussian. Results are shown in the right
hand panel of Fig. 6. For single-member ensembles,
OLS suggests that the model is significantly over-esti-
mating the observed response in over 50% of cases.
Given the implications for future climate change if
models are indeed found to be overestimating the ob-
served response, introducing this level of error simply
through the adoption of an inadequate statistical model
is clearly unacceptable. TLS results display no such
systematic bias, although there is a tendency for the
algorithm to be liberal (underestimate uncertainty ran-
ges) with small ensembles, with rather more than the
nominal 5% of cases being rejected.

Our reasons for demonstrating the algorithms de-
scribed in this paper on the Palmer (1999), variant of the
Lorenz (1963), system were three-fold. First, we wanted
to demonstrate the advantages in accuracy of the TLS
algorithm in a case which was clearly not expressly de-
signed to “‘show it off” but which was, nevertheless,
sufficiently idealised for large ensemble tests to be per-
formed. Second, we wished to motivate the experimental

Ensemble size

design of the more up-to-date climate change detection
and attribution studies that are based on ensemble
simulations of the twentieth century with approximately
realistic forcing amplitudes rather than signals obtained
from idealised forcing scenarios or idealised models.
This approach has its price, both in the cost of running
the ensembles and in the additional complexity of
interpreting results, and we wished to demonstrate in the
context of an idealised system that this price is worth
paying. Third, and more generally, we wanted to show
that the linear statistical models (1) and (16) are appli-
cable to the analysis of externally forced changes even in
highly non-linear systems and not simply the linear
stochastic processes on which the supporting theory is
based. The requirement is simply that the noise distri-
bution is approximately Gaussian on the time scales of
interest in the detection problem and that the forcing
amplitude is small enough not to affect it. It does not
matter whether the noise has been generated by a sto-
chastic or deterministic chaotic process, nor whether it
can be distinguished from Gaussian if sampled on
shorter time scales.

5 Summary

We have described a variant on the standard “‘optimal
fingerprinting” approach to climate change detection
and attribution that explicitly takes into account sam-
pling uncertainty in AOGCM-simulated responses to
external forcing that have been derived from small ini-
tial-condition ensembles. The analysis procedure, known
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as total least squares (TLS), is drawn from the standard
statistics literature with some adaptation to the climate
change detection and attribution problem. The principal
advantage over the standard ordinary least squares
(OLS) approach, which neglects uncertainty in model-
simulated response-patterns, is that it eliminates a
systematic bias towards underestimating the relative
magnitude of the observed versus model-simulated
response that is evident in OLS results.

The conclusion that current models are systematically
over-predicting observed climate change would have
considerable implications for the future, so we clearly
need to minimise the chance of drawing this conclusion
incorrectly through the application of an inadequate
statistical model. We cannot eliminate this chance com-
pletely, and the problem of error in model-simulated
response-patterns due to systematic errors in forcing or
response remains, but the problem of sampling error due
to the use of small ensembles is clearly identifiable and
can be largely eliminated through the application of the
TLS algorithm. Given sufficient resources, the problem
can also be eliminated through the use of OLS in con-
junction with much larger ensembles: the size of ensemble
required for results from the two algorithms to converge
clearly depends on the specific application and signal-to-
noise level. These issues are explored in the context of
AOGCM simulations of twentieth century climate
change in a companion paper by Stott et al. (2003).

We demonstrated the advantages in accuracy of the
TLS algorithm with an analysis of externally-forced
“climate change” in the Palmer (1999), variant of the
Lorenz (1963), model of deterministic aperiodic flow.
Use of this model also allowed us to show that linear
analysis procedures are applicable to highly non-linear
systems under certain circumstances. Provided we are
dealing with time-averages taken over periods suffi-
ciently long that the noise distribution is approximately
Gaussian, and forcing amplitudes sufficiently small that
they do not have a detectable impact on the noise
characteristics, it does not matter whether the noise has
been generated by a linear stochastic process or deter-
ministic chaos: the same procedures apply. While not
wishing to down-play the potential importance of non-
linearity in the climate change detection and attribution
problem, it is important to demonstrate that essentially
linear analysis techniques can be applied to the output of
non-linear chaotic systems and give coherent and accu-
rate results.
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