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Abstract A statistical downscaling procedure based on
an analogue technique is used to determine projections
for future climate change in western France. Three
ocean and atmosphere coupled models are used as the
starting point of the regionalization technique. Models’
climatology and day to day variability are found to re-
produce the broad main characteristics seen in the rea-
nalyses. The response of the coupled models to a similar
CO2 increase scenario exhibit marked differences for
mean sea-level pressure; precipitable water and temper-
ature show arguably less spread. Using the reanalysis
fields as predictors, the statistical model parameters are
set for daily extreme temperatures and rain occurrences
for seventeen stations in western France. The technique
shows some amount of skill for all three predictands and
across all seasons but failed to give reliable estimates of
rainfall amounts. The quality of both local observations
and large-scale predictors has an impact on the statistical
model skill. The technique is partially able to reproduce
the observed climatic trends and inter annual variability,
showing the sensitivity of the analogue approach to
changed climatic conditions albeit an incomplete ex-
plained variance by the statistical technique. The model is
applied to the coupled model control simulations and the
gain compared with direct model grid-average outputs is
shown to be substantial at station level. The method is
then applied to altered climate conditions; the impact of
large-scale model uncertain responses and model sensi-
tivities are quantified using the three coupledmodels. The
warming in the downscaled projections are reduced
compared with their global model counterparts.

1 Introduction

Since anthropogenic climate change has become an im-
portant issue, the need to provide regional climate
change information has increased, both for impact as-
sessment studies and policy making (Mearns et al. 2001).
However, the available tools have directed research to-
ward understanding the climate system as a whole. A
regional climate is determined by interactions at large,
regional and local scales. Coupled GCMs are run at too
coarse resolution to permit accurate description of these
regional and local interactions. So far, they have been
unable to provide consistent estimates of climate change
on a local scale (Kattenberg et al. 1996; Giorgi et al.
2001). Several regionalization techniques have been de-
veloped to bridge the gap between the large-scale in-
formation provided by coupled models and fine spatial
scales required for regional and environmental impact
studies. This ‘‘downscaling’’ process is either dynamical
(Giorgi et al. 1990) or statistical (Hewitson and Crane
1996). Statistical downscaling is based on the view that
regional climate may be seen to be conditioned by two
factors: large-scale climatic state and regional and local
features. Local climate information is derived by first
developing a statistical model which relates large-scale
variables or ‘‘predictors’’ for which GCMs are trustable
to regional or local surface ‘‘predictands’’ for which
models are less skillful (McAvaney et al. 2001). The
main advantage of these techniques is that they are
computationally inexpensive, and can be applied to
outputs from different GCM experiments. Statistical
techniques used to perform such studies are numerous
(see Giorgi et al. 2001 for a complete review). Several
authors used such approaches for Europe (Murphy
1999) or smaller regions in Europe e.g. the British Isles
(Conoway et al. 1996), the Iberian Peninsula (von Storch
et al. 1993) or the Alps (Gyalistras et al. 1994). Previous
downscaling applications for France examined moun-
tainous areas in the southeast: the Alps (Martin et al.
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1997) or the mountains surrounding the Mediterranean
Sea (Guilbaud and Obled 1998). A novelty of this study
is to assess the use of such techniques for the western
half of France which is strongly affected by oceanic in-
fluence and large-scale circulation.

To understand the benefit of using a downscaling
approach for impact studies, requires us to be aware of
the different levels of uncertainties involved in generat-
ing regional climate information. The first level is asso-
ciated with emission scenarios. All model transient
simulations used in this study are based on a 1% per
year increase in CO2. This is roughly equivalent to the
IPCC scenario a (Leggett et al. 1992) and referred to in
the third IPCC report (Cubasch et al. 2001) as CMIP2
since it is the recommended scenarios for the Coupled
Model Intercomparison Project (Meehl et al. 2000). This
scenario does not reflect the uncertainty about the real
future rate of increase in CO2 and other well-mixed
greenhouse gases (in turn due to uncertainties in future
emissions), nor does it includes the effect of sulphate
aerosols. No attempt is made in this article to discuss
this level of uncertainties. A second level of uncertainty
is due to the simulation of the transient climate response
by coupled GCMs for a given forcing scenario. Uncer-
tainties arise due to imperfect knowledge and represen-
tation of physical processes, over simplifications and
assumptions in physical parametrizations. These uncer-
tainties are seen in the atmospheric part of the climate
model as well as from the coupled system due to ocean
mechanisms and coupled exchanges between the two
mediums. The inter-model differences in simulating a
response to a given forcing has been documented
throughout the history of atmospheric model develop-
ment (Cess et al. 1990, 1996; Colman et al. 2001; Colman
2002). They remain critical in understanding the large
spread amongst climate change projections as seen in the
third IPCC report (Cubasch et al. 2001). To investigate
the uncertainties attached to climate change simulation,
several projections provided by state-of-the-art GCMs
of different origins were used. The models used cover a
large spectrum of the observed model sensitivity spread
(Colman 2002) and future climate projections (Meehl
et al. 2000; Cubasch et al. 2001). A third level of
uncertainty lies in the regionalization tool itself. The
comparison of techniques (Wilby et al. 1998; Zorita and
von Storch 1999) have illustrated how regionalization
tools could yield different results. Finally, climate ob-
servations (in situ data as well as model generated ana-
lyses) are also subject to uncertainty. The relevance of
these uncertainties in the development and the applica-
tion of a regionalization tool is illustrated in this study.

The analogue method used here was first described by
Lorenz (1969). Recently, analogue techniques have been
successfully applied to climate simulations at mid-lati-
tude (Zorita et al. 1995; Martin et al. 1997; Timbal and
McAvaney 2001). They compare well with more so-
phisticated methods (Zorita and von Storch 1999).
Three major assumptions govern any statistical down-
scaling approach in general and the analogue technique

in particular. First, the predictors on which the method
rely must be properly represented by the global models
(Hulme et al. 1993). Otherwise, the lack of reasonable
estimates of the predictors dooms the statistical ap-
proach to failure. Second, analyses of the downscaled
GCM outputs must demonstrate the improvement
compared with direct model outputs (Palutikof et al.
1997). Thirdly, the statistical relationship between large-
scale predictors and local predictands must remain valid
under altered climatic conditions. In other words all
expected future realizations of the predictors must be
contained in the observational record. It can be argued
that daily synoptic situations are highly variable and,
provided a sufficiently long training period is used, most
of the situations expected in a different climate will be
included. The validity of these assumptions is discussed
in the results sections.

After a description of the datasets (surface observa-
tions, analyses used to train the statistical model and
GCM outputs), the statistical model developed is pre-
sented and validated. Finally, downscaled projections
are deduced by applying the technique to transient runs
from the coupled models. The downscaled climate
change projections are compared and put in perspective
with those provided directly by the GCMs.

2 The datasets

Daily observations used include surface air temperature
(Tmax and Tmin) and rainfall at 17 high quality synoptic
stations in the western half of France (Fig. 1). These
data are highly reliable over the period of interest (1958–
1998). No missing data are reported for temperatures,
and less than 0.05% for rainfall in all cases (the largest
amount of missing data being Angoulême with 0.048%).
Part of the quality check on these stations was a
homogenization process (Mestre 2000) conducted on
monthly values. It detects and corrects in long-term
climate time-series multiple aberrant points and ensures
relative homogeneity. Correction coefficients applied are

Fig. 1 The surface observations used in western France
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for monthly means, whereas in this study the datasets
for the statistical model are daily. This may seem a
limitation of the correction but it is expected to remove
most, if not all, of the shifts due to altered location of the
stations or instrument changes. The amplitudes of such
coefficients are small, they are usually larger in summer
rather than in winter. The impact of applying such ho-
mogenization on daily values is evaluated later on.

Large-scale ‘‘observed’’ predictors are derived from
the National Centers for Environmental Prediction
(NCEP) and the National Center for Atmospheric Re-
search (NCAR) collaborative Re-analyses (hereafter,
NNR). This is a 41-year record of global analyses of
atmospheric fields (Kalnay et al. 1996) produced using a
frozen global data assimilation system. Most of vari-
ables used in this study are strongly influenced by ob-
served data, and hence, are the most reliable. Although,
precipitable water, a variable used, is strongly influenced
by the model.

The downscaling technique is applied to three atmo-
sphere ocean coupled GCMs. The global performances
and climate change projection of these models, amongst
others, were assessed in the Coupled Model Intercom-
parison Project (CMIP: Meehl et al. 2000; Lambert and
Boer 2001) and in the third IPCC scientific assessment
(Houghton et al. 2001). The models are labelled ac-
cording to their respective modelling centres: Bureau of
Meteorology Research Centre (BMRC, McAvaney and
Colman 1993; Power et al. 1993), Commonwealth Sci-
entific and Industrial Research Organization (CSIRO,
Gordon and O’Farrel 1997), and Laboratoire de Mété-
orologie Dynamique (LMD, Braconnot et al. 1997).
These models used similar low horizontal resolution of
the order of 500 km squared grid but with major dif-
ferences in both the numerical scheme employed to solve
the dynamical equations and the physical parametriza-
tion packages used. While the CSIRO and BMRC
models are flux corrected to limit control model drift
away from observed climatology, the LMD model is
not. Daily fields were extracted over 20 years in a tran-
sient experiment at the time the CO2 concentration
reached double present values. The LMD scenario was
somewhat different since the 20 years were extracted
after the coupled model remained at constant 2 � CO2

for roughly 50 years. A selection of 20 years were also
extracted from each coupled model control run from
corresponding model years. By doing so, similar model
drifts are discarded in both experiments. This is a
common practice to retain the climate change signal,
although, this method does not take into account pos-
sible non linearity in the development of model drifts
(Raper and Cubasch 1996).

Since the statistical model applicability is highly de-
pendent on the quality of the predictors, the coupled
model control run climatologies were first compared
with the NNR. All model fields were interpolated onto
the 2.5� · 2.5� NNR grid. Comparisons were carried out
for seasonal means over the 20 model years, for a 50�E
to 50�W and 20�N to 70�N domain covering most of the

North Atlantic, Europe and North Africa in order to
track most of the circulation patterns that affect western
France (e.g. the Atlantic storm-track, the Azores High
and Mediterranean lows).

Amongst the atmospheric predictors tested, mean sea
level pressure (MSLP), temperature at 850 hPa (T850)
and precipitable water (PWTR) were found to have the
most skill. Only these modelled variables are discussed
here. Winter seasonal means of MSLP (Fig. 2) are
compared with NNR. The models reproduce the main
features but with some large discrepancies in the posi-
tioning and intensity of the centres of activity (Icelandic
Low and Azores High). The flow affecting Western
Europe is too zonal in all models. The BMRC model
has, for example, an Icelandic Low too deep and too
close to Europe, while its position is too far south in the
CSIRO model and by contrast displaced too far north
in the LMD model. The latter also exhibits an Azores
High too far north and east. In summer similar dis-
placements of large-scale centres of activities are ob-
served in model climatologies (not shown). For
example, the trough over the Mediterranean Sea is over
estimated in both the BMRC and the LMD models. The
extension of a ridge of high pressure over Western Eu-
rope from the Azores High is too strong in the CSIRO
model and displaced over the northern Atlantic in the
LMD model.

Differences between model and NNR are summa-
rized in Table 1. For each variable the mean difference
between each model and the NNR is calculated over the
entire domain used; the maximal absolute difference
over the same domain is also shown. Results show a
coherent pattern over the four seasonal means. The
BMRC model has the largest mean and maximal errors
forMSLP due to a general bias of the model toward low
surface pressure over the northern Atlantic. Of the two
other models, the CSIRO model is closer to the NNR
throughout the year.

Fig. 2 Winter (December to February) climatologies of MSLP:
NNR (top left) and the three models (BMRC, CSIRO and LMD)
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Mean errors for T850 are below 2.5 �C in all seasons
for both the CSIRO and the BMRC model. Largest er-
rors are usually below 10 �C, apart from summer for the
BMRC model, where a very large but localized maximal
error is obtained. The only non flux-corrected model in
this study, the LMD model, shows the largest tempera-
ture drift, with mean errors from 3.6 to 4.2 �C. The
largest errors are located over regions remote from
Western Europe: Greenland, the Central Atlantic, North
Africa and the Arabian Peninsula. This is encouraging,
since Timbal and McAvaney (2001) have shown that
T850 is strongly related to daily maximum temperature
on a small domain around the observation, in this case
where the models exhibit the smallest errors. PWTR
mean errors are below 3.5 mm indicating a realistic
modelled moisture content. However, large maximal er-
rors once again indicate strong local mismatches between
the models’ climatologies and the NNR. Consistent with

those of T850, the largest PWTR mean errors are ob-
served in the non flux-corrected LMD model.

Although model systematic errors are likely to affect
local climatology over Western Europe, the model’s re-
liability in reproducing the daily synoptic scale vari-
ability is the main concern, since model biases are
removed by the statistical downscaling. Accordingly, we
turn now to the principal components (PCs) calculated
using daily NNR on the regular 2.5 by 2.5 grid, based on
the covariance matrix. This method allows one to study
the main modes of daily variability in a concise manner
(Preisendorfer and Mobley 1988; Jolliffe 1989). The first
three PCs of MSLP are plotted in winter (Fig. 3) and
compared with the similar components from the models.
The first PC consists of a very active centre where the
Icelandic Low is located with a weaker centre of oppo-
site sign near the Azores High. The second PC exhibits
two centres of activity of equal intensity. Their northern

Table 1 Seasonal mean
differences and largest
differences (Maximum) between
coupled models and the NNR
over the entire domain of
interest for MSLP (hPa),
T850 (�C) and PWTR (mm)

Winter Spring Summer Autumn

Mean Maximum Mean Maximum Mean Maximum Mean Maximum

MSLP 5.6 19.6 4.8 11.9 6.0 16.0 3.7 16.5
BMRC T850 1.2 7.6 1.7 9.4 2.4 14.5 1.5 8.4

PWTR 2.0 10.3 1.7 10.7 2.6 13.5 2.2 12.1
MSLP 2.7 10.2 1.8 8.7 2.5 10.8 1.8 6.6

CSIRO T850 0.8 4.4 1.0 5.2 1.6 5.9 0.9 3.8
PWTR 1.4 9.9 1.4 7.1 2.3 11.4 1.6 13.3
MSLP 4.1 19.1 2.8 14.3 4.2 11.4 3.5 15.5

LMD T850 4.2 22.3 3.9 13.7 3.6 8.2 3.6 12.9
PWTR 3.0 18.0 2.5 12.5 3.5 12.1 3.0 11.5

Fig. 3 First three PCs for winter MSLP (in hPa): NNR (left), BMRC (second column), CSIRO (third column) and LMD (right) models.
The percentage of explained variance is shown for each PC
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position (eastern Baltic Sea and southeast of Greenland)
indicates higher variability at high latitude. The third PC
has a main centre of activity to the SW of the British
Isles. These PCs do not exhibit patterns of ill-defined
PCs (Richman 1986; Jolliffe 1989). The size of the cho-
sen domain is sufficient to allow enough degrees of
freedom and ensures that main centres (two in each PCs)
of daily variability are identified.

Although all three models are affected by large biases
in their winter means, the models exhibit realistic modes
of variability with close to observed amount of variance
(around 50% for the first three PCs compared with 58%
in the NNR). Pattern correlations between models and
NNR PCs (Table 2) are somewhat higher for the BMRC
model (the second and third PCs are ranked in inverse
order but since they explain a relatively similar amount
of variance, this is not significant) than the other models.
The BMRC model exhibits the largest bias for the mean
climatology, demonstrating that there is no clear impact
of model bias on a model’s ability to reproduce daily
variance.

T850 is another important predictor (Timbal and
McAvaney 2001), although its first three winter PCs
(Fig. 4) explain only 35% of the variance (compared
with 58% for MSLP). T850 has less spatial coherence
than surface pressure as more variance is explained by
smaller local features, and hence is less likely to be well
captured by the coarse resolution coupled models. In-
deed, the first three PCs from the modelled climatologies
show large discrepancies compared with the NNR and
explain more variance than observed. Large coherent
modes of variability are favoured by the models. The
first PCs, for example, are close to the observed, but
with a displacement of the main centre of variability and
large differences in the intensity. In the CSIRO model,
the first and second PCs are inverted and the model
tends to combine these two modes of variability. In the
LMD model, both the second and third PCs are closely
related to the second observed PC.

There is little spatial coherence in the daily variability
of atmospheric moisture (PWTR). The first three PCs
explained only 20% of variance (not shown). Not
surprisingly, therefore, the models do a poor job in

handling these modes, with very low pattern correlations
(Table 2). Pattern correlations are not given when
model’s modes do not resemble any observed modes.

Results for the same variables are summarized for the
other seasons (Table 2) under the form of pattern cor-
relations and explained variance. PCs which are ranked
in a different order, in terms of explained variance are
denoted with an asterisk. No figures are given when the
correlation achieved was below 0.4 or when the mod-
elled pattern exhibit similar correlation (within 0.05)
with two observed patterns, suggesting an ill-defined
pattern. MSLP daily variability is, all year around, the
most realistically reproduced, while PWTR is generally
the worst. No single model stands out as consistently
best at reproducing the observed PCs. No particular link
could be established during the validation of the models
between the size of the model systematic errors and its
ability to reproduce daily synoptic variability, although
the number of models considered is not large enough to
draw any strong conclusion.

The main predictor changes, due to CO2 increases,
are now analyzed. They are defined as seasonal anom-
alies between the transient run and the control run.
Anomalies are remarkably different between models on
the continental scale. In winter, for example, little
agreement is found amongst the models’ patterns for
MSLP anomalies (first row in Fig. 5). A pressure in-
crease centred over Western Europe indicates a shift
further north of the main features (Azores High and
Icelandic Low) in the BMRC model; while surface
pressure rises also but over northern Europe in the
CSIRO model. Both CSIRO and LMD models show an
increased cyclonicity over the North Atlantic near Eu-
rope. All models agree on a strong warming trend for
upper-air temperature, but the magnitude of the warm-
ing is about twice as large in the CSIRO model (ranging
between 3 to 4 �C over France) as in the BMRC model
(1� to 3 �C). The LMD model lies in between with a
warming of around 3 �C. This is coherent with the
model global responses (Meehl et al. 2000) and their
climate sensitivity (Colman 2002). In all three models,
maximum warming tends to occur at high and low
latitudes with minimum values over the northern parts

Table 2 Correlation between model and NNR PCs for the main predictors (MSLP, T850 and PWTR), for the four calendar seasons and
the three GCMs. PCs which are ranked differently are noted with an asterisk. Missing correlations indicate a modelled PC which is not
similar to any of the first three PCs from the NNR

Winter Spring Summer Autumn

PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3

MSLP 0.91 0.75 *3 0.87 *2 0.96 0.94 0.86 0.95 *2 0.80 *1 0.85 0.94 *2 0.96 *1 0.79
BMRC T850 0.80 0.49 0.58 0.75 0.86 0.51 *3 0.54 *2 0.85 0.89 *3

PWTR 0.88 0.86 0.51 0.79 0.62 0.56 0.54 0.58 0.88 0.58
MSLP 0.73 0.72 0.88 0.61 0.58 0.79 0.67 0.82 *3 0.97 *2 0.75 0.86 0.79

CSIRO T850 0.68 *2 0.71 *1 0.64 0.88 0.91 0.85 0.74 0.90 *3 0.57 *2 0.89 0.95 0.89
PWTR 0.81 0.67 0.83 0.83 0.69 0.41 0.61 0.70 0.69 0.61
MSLP 0.73 0.84 0.74 0.82 0.56 0.79 *2 0.77 0.91 *3 0.75 *2 0.57 0.67 0.53

LMD T850 0.83 0.41 *2 0.50 *2 0.89 0.75 0.60 0.56 *3 0.54 0.89 0.50
PWTR 0.62 0.62 0.47 0.43
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of the Atlantic Ocean. Local patterns are clearly differ-
ent. Mean changes in PWTR indicates a general increase
of atmospheric moisture due to the temperature chang-
es. Geographical patterns differ due to dynamical fac-
tors. The CSIRO model exhibits the largest signal with a
maximum of increased PWTR extending from the
tropical Atlantic to the Iberian Peninsula. Similar geo-
graphical features are seen in both the LMD and BMRC
models with the ridge of maximum increase being dis-
placed north of the Azores Islands.

For the sake of brevity, the other seasons will not be
shown. The features seen amongst the models in winter
vary greatly throughout the year. For example, the
models agree on positive MSLP anomalies directly west
of France, with a decrease almost everywhere else, in
spring. This suggests increased blocking over Western
Europe and this in turn should affect surface predict-
ands. In summer, a similar but further north (west of
Scotland), pressure increase is indicated by the three
models with, again, a general pressure decrease else-

Fig. 4 Same as Fig. 3 but for T850 (in �C): NNR (left), BMRC (second column), CSIRO (third column) and LMD (right)

Fig. 5 Winter climate change
scenarios provided by the
coupled models (BMRC,
CSIRO and LMD from right to
left) for the three main
predictors (MSLP, T850 and
PWTR
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where (most notably around the Mediterranean Sea). In
autumn as in winter, models generally disagree on the
pattern of MSLP anomalies.

Some features for T850, such as a stronger atmo-
spheric warming over continental Europe than over the
Atlantic Ocean are seen year round. The contrast is at its
strongest in summer. The largest warming signal is seen
in the LMD model (3 to 4 �C in all seasons, winter
excepted). This is similar to the CSIRO model (2.5 to
4 �C), while the BMRC model indicates a more mod-
erate warming of around 2 �C. PWTR anomalies range,
over France and all year round, from 2 to 7 mm. The
BMRC model consistently gives the smallest signal with
the other extreme is, depending on the season, either the
LMD or the CSIRO model.

These results exhibit the spread of responses, to a
common CO2 forcing, as far as the three main predic-
tors, used by the statistical technique, are concern.
Therefore the use of these GCMs enables us to explore
the uncertainties associated with large-scale GCM pro-
jections. This choice of GCMs covers a large range of
predicted climate changes under the chosen scenario
(Cubasch et al. 2001).

3 The downscaling method

The statistical model (SM) contains numerous parame-
ters discussed in details in Timbal and McAvaney (2001).
The particular set up of the technique for Western Eu-
rope is presented here. A pool permutation technique
was chosen instead of splitting the dataset in two, to
ensure the largest possible set of data (Preisendorfer and
Barnett 1983). Day by day analogues were chosen in a
different calendar year to avoid any artificial skill due to
inter-annual variability. A analogue for any particular
day was searched for over all the days included in the
season amongst the other 40 years available in the NNR
(3600 situations). The skill obtained for the SM was
compared with a fully cross-validated approach, splitting
the time series in two. In one case the SM was optimized
over half of the dataset and applied to the other one. In
the other case the SMwas optimized and applied over the
entire dataset. Due to the limited extent of the SM op-
timization, no artificial skill appears in the results.

Several domains were tested, ranging from a minimal
size just encompassing the domain of interest, to the
entire grid used for the model field validation (Fig. 6), in
all cases both raw grid data and leading PCs were tested.
On the one hand, a larger domain requires a longer
database to find a suitable analogue (Van Del Dool
1989). On the other hand, a smaller domain does not
completely capture the synoptic signal affecting the local
station. A medium size was found to be the best com-
promise and for this particular domain the use of raw
data yielded better results than using PCs. A further
refinement was added by using different domains
for different stations. Northern stations (Dunkerque,
Cherbourg, Beauvais and Rennes) perform better when

the domain is towards north and west, while for Medi-
terranean stations (Montpelier, Perpignan) domains to-
wards the south and east are more effective. Similar
dependence using an analogue approach was found by
Guilbaud and Obled (1998). It shows that this technique
is strongly driven by dominant meteorological processes.

The predictive skill of atmospheric predictors daily
departure from seasonal means has been assessed for
each season, each station and each predictand using
temporal correlation between daily values of the ob-
served and the reconstructed series (Fig. 7). Statistical
significance of the results was calculated using a Monte-
Carlo approach: a 100 random selection of analogues
were made, statistics were calculated from this ensemble
for the 90 and 99% level. The dynamic fields (MSLP,

Fig. 6 The various domains tested during the SM development

Fig. 7 Correlation between observed and reconstructed series for
the predictands (Tmax, Tmin and rainfall) in a summer and b winter
using several predictors
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Z1000, Z500) perform better for maximum temperatures
in winter. Wintertime weather is heavily influenced by
cyclonic systems. In other cases, the thermal information
given by T850, Z1000 – Z500 (the thickness difference be-
tween 1000 and 500 hPa) and moisture availability
(PWTR) are more relevant. For rainfall, skill is limited
to the dynamic predictors, especially in winter and to
some extent to PWTR in winter too. These findings are
coherent with several previous studies (see Rummukai-
nen 1997 for an overview). At station level, predictors
usually rank in the same order. Apart for Tmax, T850

performs better than MSLP for southern stations (An-
goulême, Toulouse, Bordeaux, Montpelier, Perpignan,
Limoges and Pau), while for northern stations (Dun-
kerque, Beauvais, Cherbourg and Rennes) this is re-
versed. This behaviour is coherent over many stations,
showing that the winter time weather type encountered
by northern stations does not affect southern stations.

Combinations (from 1 to 6) of predictors are then
tested, the mean of all possible combination and the
spread between the best and worse combination are
shown (Fig. 8). In all cases, two predictors give better
results than the individual predictor alone. The mean
(stars in Fig. 8) of all possible combinations show in-
creased correlations when up to four predictors are
combined. However, the most skillful combination (top
of the vertical lines) remains steady and even tends to
drop if too many predictors are considered. When more
predictors are used, a larger pool of historical analyses
must be searched to find an equally good match. The
useful combinations were found to be MSLP combined
with T850 for Tmax and MSLP, T850 and PWTR for Tmin

and rainfall.
This completes the optimization of the SM. Overall

six different models were used depending on the target
variable. The 17 observed stations are separated in three
groups from north to south and use different domains;
different predictors for Tmax and for Tmin or rain oc-
currence were used. All other parameters are identical in
all six SMs. No model has any seasonal dependence.

Once the SM is optimized, an analogue is found for
each day and the surface predictands observed on the
same day are determined. The surface predictand time
series are, then, reconstructed day by day and compared
to the observed values. The main statistical tools used for
this comparison are the correlation and the root mean
square errors (RMSE) between the two series. Spatially,
correlations and RMSE are very homogeneous (Fig. 9
for Tmax). The analogue technique preserves the spatial
correlation provided by the observed predictands on the
chosen date of the analogue. Correlations are lower for
coastal stations such as Dunkerque and Cherbourg
compared to inland stations; RMSE is also among the
lowest for these stations. This is due to a strong oceanic
influence which generates low day-to-day variability.

A skillscore is developed to assess the skill of the
statistical model and compare it with simpler ap-
proaches such as persistence and climatology. This
skillscore is similar to that deduced from the Brier score
for probabilistic forecasts by Wilks (1995):

BSS ¼ 1� MSE
MSEref

� �
� 100

MSE is the mean square error and the reference is a
random choice of analogue. A perfect forecast gives a
score of 100% while a score of 0 is obtained if analogues
are randomly chosen. Negative values are obtained if the
method has less skill than a random choice of analogue.
This is a direct measure of the skill of the SM in iden-
tifying a suitable analogue. The analogue statistical
models show skill from 60 to 70% all year round for
Tmax and Tmin (Fig. 10), indicating a skillful choice of
analogue compared to a random choice. It performs
better than persistence (in six out of eight cases) and
markedly better than climatology (in all cases). Persis-
tence is very high for Tmax in winter and to a lesser
degree in autumn (higher than for Tmin) making persis-
tence difficult to beat in winter.

The technique was first tested for rainfall amount
(Fig. 7). However, correlations with individual predic-

Fig. 8 Range of correlations between observed and reconstructed
series for Tmax, using a combination of several predictors (MSLP,
T850, PWTR, Z500, Z1000 and Z1000–Z500). The star indicates the
mean of all possible combinations

Fig. 9 Correlation and RMSE between analogue reconstructed
and observed Tmax series in autumn for each station

814 Timbal et al.: An estimate of future climate change for western France using a statistical downscaling technique



tors were below 0.3 in all cases and the reconstructed
time series, reproduce the observed probability distri-
bution functions (PDFs) with a large bias towards lower
rainfall. Therefore validation was focused on the rain
occurrence instead of rain amounts. The ratio between
the number of wet days in the analogue series and the
observed one was between 0.96 and 1.02 all year around
(first column in Table 8) indicating an unbiased method
for rain events. The skill of the SM in reproducing rain
days was also assessed using an index I defined as:

I ¼ 100� 1� m
wþ m

� f
d þ f

� �

The letters refer to w: a wet day forecast and observed, d:
a dry day forecast and observed, m: a wet day missed by
the forecast and f: a dry day falsely forecast as wet. This
index gives 100% for a perfect forecast (m = f = 0; it
would give a value of 0 for a random choice of uncor-
related days (w = m and f = d). This index takes into
account the asymmetrical partition between dry and wet
days. A simple scheme of extreme persistence, which
would assume either rain (or no rain) every day would
have a score of 0, unless such extreme persistence is
observed, giving a value of 100%. Results are consistent
across all stations, ranging from 0.30 to 0.37 (Fig. 11 for
autumn), but lower around the Mediterranean Sea. This
reflects the convective nature (i.e. smaller scale) of

rainfall for that part of France in autumn. The index I
averaged over all the stations used and expressed in
percent is around 30% all year around (lowest diagram
in Fig. 10), the lowest values are seen in summer. This
skillscore is not directly comparable with the score used
for temperature. However, for both predictands, the
technique can be compared with persistence. For rainfall
occurrence, the analogue model is lower all year round
than persistence, this was not the case for temperature.

An important effect on the SM skill is the quantity of
data used in the optimization of the SM. The impact of
the number of years available for the choice of analogue
was assessed by looking at RMSE of the reconstructed
series when using only part of the NNR dataset. This
choice ranged from one year to the entire 41 years and
starting from either 1958 and going forward in time or
1998 and going backward in time (Fig. 12). When only a
few years are used, RMSE values show large changes
when one more year is added. However these jumps are
not statistically significant. Instead a logarithm fit to the
data is a more useful piece of information. The RMSE
decreases rapidly as more years are used; the rate of
improvement slows around 25 years when starting in
1998. When further years are added, prior to the 1970s,
no advantage is gained using a larger pool to draw an-
alogues from or is counter-balanced by the decrease in
data reliability. Since NNR depends on the amount of
data available, the latest period for which more obser-
vation were available, is bound to be more reliable. In-
deed, a clear cut difference appears between the two
curves showing that if only 20 years of the NNR dataset
were used, the second half of the NNR dataset provides
more consistent information leading to smaller RMSE.

From this figure however, it is not clear which part of
this reduction can be attributed to errors in the predic-
tors (NNR) or in the surface predictands. As stated
earlier, the daily surface observations were found to
include temporal inhomogeneities (Mestre 1996). A
monthly calibration procedure was applied to remove
historical jumps. To test the utility of such homogeni-

Fig. 10 Skill (in percent) achieved by the analogue technique for
Tmax (top), for Tmin (middle) and rain days (bottom) and compared
with references. See discussion in the text regarding how the
skiillscores are calculated

Fig. 11 Index I between analogue reconstructed and observed rain
day series in autumn at each station
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zation procedures at the daily time scale, the SM is used
with both raw observed series and homogenized ones.
Since the statistical model does not depend on the tar-
geted variable, it is used as a tool to measure the rele-
vance and effectiveness of series corrections. Stations are
classified into three groups, according to the size of the
correction factor. A general but small decrease of RMSE
is noted, consistent for all stations (Table 3 shows in
autumn for Tmin, an example for each group of coeffi-
cient). The a priori classification into three groups ap-
pears to be reasonable. Even at a daily time scale, this
homogenization method has improved the observations.
Improvements are only significant at the 5% level for the
largest corrections. The RMSE difference of the order of
0.1 to 0.3 cannot explain the larger gap between the two
curves in Fig. 12 (0.5 around 10 years). Therefore the
improved reliability of the NNR data over the period
1958 to 1998 is assumed to explain a large part of the
greater skill shown by the SM when using the latter part
of the NNR dataset.

After testing the impact of data quality and to max-
imize the skill of the SM, the homogenized surface
temperature are used with the entire NNR from 1958 to
1998. Once optimized, parameters are set and the SM is
applied to control run GCM predictors. This is an im-
portant step towards downscaling of climate change

scenarios. Mean biases between control runs GCM
predictors and NNR are removed. Analogues are chosen
from the entire dataset of NNR 1958–1998, and asso-
ciated with surface predictands observed the same day.
To measure the benefit of downscaling GCM large-scale
predictors, raw time series provided by the nearest GCM
grid points over land are calculated for each station.
This is a coarse evaluation since it is generally accepted
that GCMs provide information averaged over an entire
grid box (Skelly and Henderson-Sellers 1996). (LMD is
not used for the direct use of GCM information, since it
does not include a diurnal cycle and therefore does not
represent daily extremes of temperature.)

For each station, seasonal means of the reconstructed
temperature series are compared with the observed ones
(Table 4 and 5 for Tmax and Tmin). There is no overall
tendency towards positive or negative bias. The means
were not significantly different, at the 95% confidence
level, at any station in any season. Differences are rela-
tively small and without any particular seasonal or
geographical trend. This was expected since the tech-
nique used anomalies for the predictors, thereby re-
moving model biases and is unbiased as seen when using
the NNR (first column) during the validation of the SM.
By contrast, direct GCM temperatures (fourth and fifth
columns) show biases of up to 5 �C, with a marked
tendency toward a smaller than observed amplitude of
the diurnal cycle (i.e. cooler Tmax and warmer Tmin).
Thus, the downscaling technique, by providing unbiased
estimates of surface locally observed predictands, is a
marked improvement over the raw GCM grid-average
values. The variance of the time series was also verified
(Table 6 and 7 for Tmax and Tmin). Reconstructed series
using analogues have smaller variances than observed.
This reduction is partly due to the downscaling method,
which underestimates the natural variability. This is seen

Table 3 RMSE between the observed and reconstructed series of
Tmin in autumn using the raw (second column) and homogenized
(third column) dataset. Differences significant at the 95% level are
shown in bold. The first column indicates the maximum size of the
coefficient applied to the series over the 1958 to 1998 period, av-
eraged over the three autumn months, for the particular station

Maximum Coefficient Raw series Homogenized

Bourges 0.4 3.22 3.21
Pau 0.8 3.33 3.19
Cherbourg 1.2 2.81 2.45

Table 4 Anomalies (in �C) for seasonal mean of Tmax between
observed and reconstructed series: using the NNR (first column),
applying the SM to GCM outputs (BMRC and CSIRO model, 2nd
and 3rd columns) and using Tmax as modelled by the same GCMs
using the nearest grid point value (4th and 5th columns)

NNR BMRC
SM

CSIRO
SM

BMRC
GCM

CSIRO
GCM

DJF 0.07 0.18 0.16 0.39 1.21
MAM 0.30 0.03 0.20 –3.92 –1.78
JJA 0.20 –0.24 0.14 –4.94 –2.76
SON 0.33 0.09 0.30 –1.70 –0.81

Table 5 Same as Table 4 but for Tmin

NNR BMRC
SM

CSIRO
SM

BMRC
GCM

CSIRO
GCM

DJF 0.06 0.03 0.12 2.70 2.65
MAM 0.12 –0.03 0.15 0.30 2.48
JJA 0.07 –0.30 –0.12 –0.83 1.29
SON 0.09 –0.07 0.07 1.56 1.41

Fig. 12 SM performance measured as RMSE between observed
and reconstructed Tmax series as a function of the number of years
used to refine analogues. The star and fitted curve (solid line)
commence in 1958 on wards; the cross and dotted line start in 1998
and go back in time
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in the first column during the validation phase using
NNR, with the reduction of variance varying from 0.8–
0.9 �C2 in summer to 1.5–2.2 �C2 in autumn and winter.
This reduction of variance is seen in most downscaling
techniques (von Storch 1999). In the case of the ana-
logue technique it is a consequence of the limited pool of
data to choose analogues from, which therefore prevents
finding the perfect match (Van Del Dool 1994). When
GCM predictors are used, there is a tendency toward
lower variance, rather small for Tmin but much larger
and more consistent for Tmax (up to 10 �C2). GCM raw
data show arguably as large differences (up to 16 �C2),
which are mostly negative with one notable exception in
summer. Overall, although biases tend toward lower
variance, the SM shows a marked improvement com-
pared with raw GCM outputs.

For rainfall, the numbers of wet days in the recon-
structed series are compared with observations (Ta-
ble 8). Values close to one obtained with the analogue
during validation (with NNR) prove that the technique
is unbiased. When applied to GCM outputs, the total
rain days are overestimated by less than 10%. Com-
pared with this, rainfall modelled by GCMs shows a
very large tendency towards more wet days by a factor
ranging from 1.4 to 2.4.

The temporal structure of the rain occurrence series
or conditional probabilities (the four possible combina-
tion of wet and dry days following each other) is of
particular interest for impact studies (e.g. in agromete-
orology). They are examined in the form of the probably
most important critical occurrence: dry and wet spells.
Dry spell duration (DSD) is shown in summer for three
locations generally depicting the range of climate en-
countered in the western part of France (Fig. 13).
Dunkerque (bottom diagram) is representative of the
mild oceanic influence which affects most of northwest
France, showing a linear relation between the logarithm
of probability and spell length. The analogue technique
reproduces most of this tendency with a slight underes-
timation especially for rare events (i.e. those occurring
with a probability less than 1%) while the direct GCM

Table 8 Ratio of total wet days between reconstructed and ob-
served series: using NNR predictors during the validation phase
(1st column), applying the technique to BMRC and CSIRO out-
puts (2nd and 3rd columns) and using modelled rainfall (4th and
5th columns)

NNR BMRC
SM

CSIRO
SM

BMRC
GCM

CSIRO
GCM

DJF 0.96 1.07 1.01 1.90 1.81
MAM 0.98 1.00 0.98 1.64 1.86
JJA 1.02 1.09 1.03 1.47 2.40
SON 0.98 1.04 1.04 1.53 1.84

Table 7 Same as Table 6 but for Tmin

NNR BMRC
SM

CSIRO
SM

BMRC
GCM

CSIRO
GCM

DJF –1.8 –3.8 –0.7 –2.8 –0.6
MAM –1.4 –2.2 –1.3 –3.6 –2.9
JJA –0.8 –1.1 –1.7 –1.6 –1.3
SON –1.3 –2.7 –2.4 –5.3 –5.9

Table 6 Same as Table 4 but for variance (in �C2) of Tmax

NNR BMRC
SM

CSIRO
SM

BMRC
GCM

CSIRO
GCM

DJF –1.4 –5.1 –2.9 –9.0 –7.8
MAM –1.6 –6.7 –7.1 –12.0 –14.3
JJA –0.9 –4.5 –4.9 –5.8 –8.8
SON –2.2 –8.6 –9.7 –12.3 –15.6

Fig. 13 Observed (thick line) dry spell duration in summer in three
locations; analogue reconstructed series using BMRC and CSIRO
predictors (thin lines) and direct GCM rainfall (dashed lines)
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control climate show very few long dry spells. In Cha-
teauroux (middle diagram), as in most central parts of
France, observed DSDs are similar to those further
north, but large disagreements in some cases and are
generally poor matches to the observed PDFs.

One of the key issues in the climate change debate is
how extreme events will be affected. Here, we apply the
generalized extreme value (GEV) distribution described
by Zwiers et al. (1998) to calculate the 10, 25, 50 and 100
year return values of Tmax. Return values for two very
different climates (Pau and Cherbourg) are shown in
Table 9. During the validation phase (using NNR), the
analogue values match the observed. This remains valid
when the SM is applied to GCM outputs in the return
values in most cases only slightly under-evaluated
(within 0.5 �C of value calculated from observation).
However most differences with GCM control run raw
data are around 4 to 8 �C.

4 Downscaling of GCM climate change scenarios

The observations recorded from 1958 to 1998 show a
significant warming of 1.1� (0.9 �C) for Tmax (Tmin) in
the annual mean. This was calculated by applying a
linear regression fitted to each individual station and
then averaged over the 17 locations (Table 10). The re-
constructed series using the analogue technique repro-
duces between 70% and 90% of this trend for Tmax. The
difference between a large warming in summer and a
smaller one in autumn is also reproduced. A smaller part
of the trend on Tmin is reproduced by the analogue
technique. These results were obtained using MSLP and
T850 as predictors; when PWTR is also used all per-
centages of reproduced trend drop by approximatively
the analogue technique is more successful in reproducing
these probabilities. Note that a large spread exists be-
tween the two GCMs used. This spread is, however,
smaller than with direct GCM rainfall. Finally, Mont-
pelier (top diagram) is typical of a Mediterranean cli-
mate with long dry spell in summer: spells longer than 20
days are seen 6% of the time, 10 times more than in

other locations. The analogue technique reproduces this
behaviour but with a large spread amongst models. Raw
GCM outputs are even more spread and far from ob-
servations. If anything, DSDs are rather underestimated
in all cases, Montpelier excepted. This illustrates for
extremes cases the underestimation of the conditional
dry–dry probability dPd;dPd;d which varies from north to
south. In Dunkerque observeddPd;dPd;d is 0.75 but the ana-
logue technique only gives a value of 0.72 while in
Montpelier the analogue technique reproduces the
higher observed value: 0.87.

The strength of the analogue technique is its ability to
reproduce not only the mean state of a variable but also
the details of its probability distribution function (PDF).
The statistical model successfully reproduces the varying
shapes from one station to another (Fig. 14 for Tmax in
summer in four locations). Royan, Dunkerque and
Perpignan exhibit a rather narrow peak of maximum
probability around the mean (the mean rising from
north to south) typical of a maritime influence, and
asymmetrical tails toward extreme temperatures. Bour-
ges exhibits a more continental climate with a broader
peak and symmetrical tails. Downscaled GCMs Tmax

(light grey shapes) show differences with observations as
they tend to concentrate on the central values, leading to
fewer extreme cases. This is consistent with the previ-
ously noted reduction of variance for Tmax. However,
results are close to observed PDFs and the differences
between using BMRC and CSIRO control runs are
small. In contrast, raw GCM outputs (dark grey shapes)
show 20%–30%. This must be kept in mind when ana-
lyzing the sensitivity of the SM model to climate change
for Tmin in particular for which PWTR was found to be
a useful predictor (see earlier discussion).

The interannual variability of the observed time series
is also of interest. The correlations between recon-
structed series using the analogue SM and observed se-
ries are, for all seasons and stations, above 0.8 for Tmax,
0.7 for Tmin and 0.6 for rain days (Table 11). Although
generally better for Tmax and in winter, the SM shows
coherent inter-annual skill, across all the predictands
and throughout the year. At station level (Fig 15:
Beauvais in winter), year to year variations are much
larger than anticipated climate change: about 7 �C for
Tmax, 5 �C for Tmin and about a factor 2.5 for total rain
days per season. The reconstructed series reproduce a
large part of these extremes, which reinforces our con-

Table 9 Difference (in �C) in Pau and Cherbourg of GEV return
value for Tmax in summer between observed and reconstructed
series: using the NNR (1st column), applying the SM to BMRC
and CSIRO outputs (2nd and 3rd columns); and using Tmax as
modelled by the same GCMs using the nearest grid point value (4th
and 5th columns)

BMRC
SM

CSIRO
SM

BMRC
GCM

CSIRO
GCM

10 –0.2 –0.5 –13.1 –4.9
Pau 25 –0.3 –0.6 –8.5 –5.1

50 –0.3 –0.5 –4.0 –5.2
100 –0.1 –0.6 4.3 –5.2
10 0.1 –0.2 –6.2 –7.7

Cherbourg 25 0.1 –0.1 –5.8 –8.2
50 0.2 –0.2 –4.7 –8.6
100 –0.1 0.5 –3.6 –8.8

Table 10 Linear warming trend (�C) deduced over the 1958 to 1998
period for both Tmax and Tmin observation; percentage of this trend
reproduced by the analogue technique

Tmax Tmin

Observation SM Observation SM

DJF 1.15 77% 1.04 42%
MAM 1.15 69% 0.82 26%
JJA 1.73 89% 1.52 47%
SON 0.39 74% 0.52 23%
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fidence in the applicability of the technique to modified
climatic conditions. The ratio of inter annual variability
between reconstructed series and observed is usually
between 40 and 90% (43, 72 and 56% for Tmax, Tmin and
rain days in Beauvais). It is worth noting that, although
the analogue technique reproduced the observed
warming trend for Tmax better than for Tmin, the inter-
annual variability in the reconstructed time series re-
sembles the observed one more closely for Tmin than for
Tmax (Fig. 15 illustrates this for a particular station and
season).

The SM skill in representing interannual variability
and observed trends shows the sensitivity of the tech-
nique to changing climatic conditions. It remains to be
determined whether future realizations of climate can be
drawn from daily situations observed for present con-
ditions. A simple test is to compare the Euclidean dis-
tance used to define the matching analogue (Barnett and
Preisendorfer 1978). This is a measure of the closeness of
the analogue with the matching situation for both the
control and transient simulations and shown without
units since it is a normalized value (Table 12). The same
predictors over the same domains were used for all ap-
plications of the SM to GCM outputs, therefore all
distances are comparable. The distance increases be-
tween control and transient runs for all three GCMs.
These differences are small: from 2% for the BMRC

Fig. 14 Probability distribution
functions for Tmax in summer in
four different locations. The
black line is the observed PDF,
the dark grey shape is derived
from two GCM surface
temperatures and the light grey
shape is obtained by applying
the downscaling technique to
the same two GCMs. Both
shapes are an envelope of the 2
GCM responses

Table 11 1958 to 1998 correlation between reconstructed series
using the analogue technique and observations for Tmax, Tmin and
Rain days

Tmax Tmin Rain days

DJF 0.89 0.85 0.75
MAM 0.88 0.74 0.69
JJA 0.86 0.78 0.60
SON 0.82 0.78 0.69

Fig. 15 Interannual variability observed (solid line) in Beauvais, in
winter, for Tmax (top), Tmin (middle) and rain days (bottom)
compared with the reconstructed series using the analogue based
method (dashed line). Correlation between the two curves (corr),
ratio of the variance of the analogue series over the observed one
(var) and linear trend (slope) observed versus analogue are given on
each graph
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model to 7% for the LMD model and remains below the
spread amongst the models. By contrast, the same
measure was applied to an LMD run stabilized at the
4 � CO2 level, and showed an increase larger than 30%.
The results seem to indicate that actual climate has en-
ough variability to contain a range of situations wide
enough to encompass future possible situations due to a
doubling of CO2 concentration. However, for more
drastic climate changes such as 4 � CO2climate, the ap-
plication of the analogue technique is questionable.

Seasonal local warmings averaged over the 17 stations
are shown for bothTmax andTmin, in both the downscaled
and direct model projections (Fig. 16). As the LMD
model does not incorporate the diurnal cycle it only
provides the mean daily temperature, which has been
used for both Tmax and Tmin. This makes the direct LMD
estimate somewhat inconsistent with the other estimates.

A striking feature of Fig. 16 is a general reduction of
the expected local warming with downscaled projections
compared with the direct GCM output. This reduction is
large (up to 2 �C in some cases), significant (e.g. in
winter, downscaled projections show only half the
warming predicted using direct model outputs) and
consistent across all cases (apart for Tmax in autumn
with the BMRC model). Uncertainties related to the

warming obtained with the downscaling technique were
assessed by using several sets of variables. It was found
that the spread was small and the signal robust. The
warming obtained for Tmin is larger when PWTR is used,
while it was found earlier that including PWTR had a
negative effect on the reproduction of observed trend for
both Tmin and Tmax (the returns are smaller than ob-
served trends). This suggests that although the statistical
relationship does not explain fully the observed variance
and reproduces only part of the observed trend, this may
not link directly with the ability of the technique to re-
produce future trends and therefore does not explain the
reduced warming in the downscaled projections.

Another important difference between direct and
downscaled projections concerns the annual signature of
the warming trend. Warming tends to be smaller in
winter (in all three downscaled cases) and peaks in
spring and summer with the LMD scenarios or in au-
tumn, with the CSIRO scenario. In the BMRC model
warming peaks in both transition seasons, spring and
autumn. In all three models the annual cycle in the
warming is quite large. The warming in autumn for
Tmax, for example, is about three times the winter value
in the BMRC scenario and this tends to enlarge the
control annual cycle. This annual cycle of the warming,
in the direct GCM outputs, is only seen with the LMD
model (amid a much larger estimated warming), and is
not apparent in the two other direct GCM projections.
Observed trends in the past 40 years (Table 10) shown
earlier also suggested an annual cycle in the warming
trend, but although summer stands out as exhibiting the
largest warming, winter warming in recent decades was
not the smallest in the other three seasons.

Observed trends indicate a slightly larger warming for
Tmax than for Tmin in the past half century over western
France, in the annual mean. Similar findings are ap-
parent using the downscaled projections. However dif-
ferences arise when seasons are considered. Projected
warming is larger for Tmax in summer and autumn (up to
0.7 �C) while Tmin is predicted to rise slightly more in
winter (up to 0.2 �C). There is an overall agreement
between the three downscaled projections when com-
paring Tmin and Tmax warmings. Such agreement was
not seen for direct GCM scenarios with the BMRC
model indicating larger warming for Tmax, whereas the
opposite is true in the case of the CSIRO model.

Overall, the consistency in the detailed estimates of
future warming amongst downscaled scenarios increases
confidence in such estimates. Another advantage is the
ability of the downscaling technique to provide more
detailed scenarios from one location to another. Some
interesting features appear when results are analyzed
station by station. We only discuss here the features that
are consistent amongst all models and therefore more
reliable; direct GCM outputs are not considered since
their poor horizontal resolution prevents them from
providing a detailed estimate at the local scale. The large
warming seen for Tmax in spring, summer and autumn is
maximum inland and tends to be reduced along the

Table 12 Euclidean distance between days and their analogue av-
erage over 20 year-periods for control and transient runs

BMRC CSIRO LMD

1 � CO2 3.17 2.82 2.63
2 � CO2 3.24 2.96 2.81
4 � CO2 3.52

Fig. 16 a Estimated warming for Tmax and b Tmin, for each season,
using the downscaled projections (left 3 bars) and direct GCM
outputs (right 3 bars)
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English Channel, the Atlantic Ocean and the Mediter-
ranean Sea (not shown). This reduction increases with
the mean warming: in the BMRC scenario which shows
an average warming of 1.5 �C, the warming along the
coast is 50% less than inland while in the CSIRO model
the difference is about a factor one and a factor of two in
the LMD model where the warming inland exceeds 4 �C
and remains below 2 �C along the coast. Such behaviour
is not observed for Tmin, where the strongest warming is
observed in the south near the Pyrenees and decreases to
a minimum in the north. The north-south gradient re-
mains below 1 �C.

Tmax in winter shows differences amongst the pro-
jections (Fig. 17). In the CSIRO and LMD model, the
warming is very small along the north-west coast (Ro-
yan, Rennes, Cherbourg and Dunkerque) but increases
rapidly when moving inland: e.g. it doubles between
Royan and Bordeaux or Angoulême, only 50 km in
land. In the BMRC model, the oceanic influence extends
across the whole western part of France. Thus the
warming is only slightly larger inland than near the
coast. The BMRC climatology in winter was shown to
be too zonal (Fig. 2), although this tendency was re-
duced in the transient experiment (Fig. 5). It is antici-
pated that this strong zonal influence could limit the
warming trend expected over western France. This
therefore limits the confidence one would place in this
particular case. Another sharp differences in warming
trends between nearby stations is seen between Pau and
Toulouse, 100 km apart. Situated in the foothills of the
Pyrenees, Pau’s response to large-scale forcing is 50%
higher in all three projections than in Toulouse, which is
located further into the Garonne Plain.

The analogue technique itself cannot infer what might
happen to record-breaking temperatures since future
realizations are drawn from the current climate. How-
ever, the modification of PDFs can be analyzed. There is
a general tendency for the PDFs (not shown) to shift
towards warmer temperatures. It is only in the case of

stronger warming (such as in summer) that there are
changes in the shape, with more frequent very warm
days. The GEV technique, which was shown earlier to
give realistic estimates of 10, 25, 50 and 100-years return
period temperatures, shows a general upward trend when
applied to downscaled projections. This trend varies
from north to south with some negative values near the
English Channel to large positive values near the Medi-
terranean Sea. Values from two extreme stations, Bor-
deaux and Dunkerque, are shown for both downscaled
projections and direct model outputs (Table 13). Only
results from one GCM (the CSIROmodel) are shown for
clarity; but similar behaviour was evident in the other
models. The warming trend is smaller using the down-
scaled projections compared with direct GCM outputs
which show some extremely large values (up to 10 �C for
the 100 year return value in Bordeaux). The estimates
provided by applying the GEV to analogue reconstructed
time series are conservative but still large enough to have
significant impact (e.g. the 100-year return value in-
creases by 3 �C, a figure larger than the mean warming in
Bordeaux and most of the southwest of France).

An estimate of the total rainfall variation under
warmer conditions was not attempted since the tech-
nique was shown to provide reliable estimates for rain
occurrence only. However, information regarding rain
days are relevant to impact studies. Downscaled pro-
jections tend to show a slight reduction of total rain days
all year round (Table 14) similar to direct GCM outputs
(not shown), but based on a more reliable estimate of
total rain days in the control run (see previous section).
This reduction rarely exceeds 10%, except when using
the LMD model. Summer, which is considered the most
critical season (since any rainfall diminution would have
greater consequences) shows contrasting results. There is
a small decrease in rain days in both the BMRC and
CSIRO models but a large increase with the LMD

Fig. 17 Geographical repartition of the expected warming trend on
Tmax in winter. Results for each location are obtained using
downscaled scenarios with the BMRC/CSIRO/LMD models

Table 13 Differences for 10, 25, 50 and 100-year return values for
Tmax in summer between control and transient simulations using
the downscaling technique applied to the CSIRO GCM and using
direct model outputs at two locations

Bordeaux Dunkerque

Analogue GCM Analogue GCM

10 0.8 6.3 0.0 4.1
25 1.2 7.5 0.1 4.3
50 2.3 8.9 –0.2 5.2
100 3.3 10.4 0.1 4.9

Table 14 Ratio of total wet days between control and transient
simulations, using the downscaling technique applied to the GCMS

BMRC CSIRO LMD

DJF 0.89 0.96 0.88
MAM 0.96 1.05 0.85
JJA 0.93 0.94 1.22
SON 0.95 0.97 0.89
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results. For wet and dry spells, no large or coherent
differences were found between control and transient
scenarios. In most seasons, there were more uncertain-
ties between the three models available than between
control and transient scenarios. In the light of the small
signal obtained with rain days and without further in-
formation on rain amount no strong conclusions could
be drawn on estimates of future rainfall.

5 Conclusions

A statistical downscaling model previously developed
for Australia has been used to provide projections for
future climate change in western France. The technique
complements dynamical approaches for climate change
studies performed with regional coupled models and
allows finer time and spatial resolutions. It has been used
to provide projections for daily temperature extremes
and rain occurrence, which are particularly critical for
impact studies. Data from 17 high quality stations have
been used. The data quality was carefully checked and
historical jumps were reduced using a homogenization
procedure. The homogenization method was originally
designed to apply to monthly values. By applying the
statistical model (SM) to both raw and homogenized
daily values, it was shown that the homogenization
method has positive impacts on daily values. Predictors
were chosen according to their predictive skills and their
suitability as GCM outputs. The most effective domain
for the predictors is rather small and varies between the
most southerly and northerly coastal stations and the
rest of the inland stations, reflecting local influences. It
was shown that the quality of the dataset used influences
the skill of the statistical model, stressing the need for
further improved observations and reanalyses.

The reconstructed time series shows good agreement
with observations: the mean is well reproduced and local
probability functions are realistic for all stations. How-
ever, a general tendency toward smaller variance was
noted for temperature. Wet and dry occurrences were
reproduced with some skill but not rain amounts. The
analogue technique has skill throughout the year to re-
produce Tmax and Tmin. An important aspect of this
study was to apply the SM to several coupled GCM
simulations for both control and transient scenarios.
The ability of coupled model control runs to reproduce
the main large-scale features of present-day climate has
been carefully checked for the main predictors used
(MSLP, T850 and PWTR). Although the models show
large biases, daily variability was found to resemble
observed modes. No particular model appears to out-
perform the others. The three models produced mark-
edly different climate change scenarios for the main
atmospheric predictors. This helps to quantify uncer-
tainties associated with both future large-scale climate
changes and model sensitivities.

The SM applied to the control simulation of the
models provided reliable estimate of local predictands

series: unbiased but with a reduced variance. The char-
acteristics of the reconstructed time series based on ana-
logues are much more realistic than those obtained
directly from the nearest GCM grid point. Added value
when using this downscaling approach is particularly
visible when dealing with extreme events (anomalous
spells or return period of record events). The technique
reproduces partially recently observed trends and inter-
annual variability. These two elements support the idea
that this technique is robust for altered climatic condi-
tions. Although results suggest a possible limitation due
to the incomplete explained variance by the statistical
technique. It was further noted that there was no signifi-
cant increase in the difficulty of finding suitable analogues
when the SMwas applied to 2 � CO2 scenarios. However,
the technique might fail for more drastic climatic change
such as a 4 � CO2 increase, as the pool of observed situa-
tions used does not seem to be fully representative of the
conditions encountered in this latter case.

However, one must keep in mind that the method
relies on GCM large-scale projections and therefore may
not be a reliable estimate of future climatic change if
very large errors are present in coupled model predic-
tions. Possible alterations of the statistical link between
predictors and predictands cannot be completely ruled
out neither. However, within the largely accepted
framework of dynamical prediction of climate changes
using coupled GCMs, the downscaling technique pre-
sented here has been shown to provide detailed local
climate change projections.
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