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Abstract We describe the use of a Monte Carlo Markov
Chain (MCMC) method based on Bayes’ Theorem and
the Metropolis-Hastings algorithm for estimation of
model parameters in a climate model. We use the model
of Saltzman and Maasch (1990). This is a computa-
tionally simple model, but with seven free parameters
and substantial non-linearity it would be difficult to tune
with commonly used data assimilation methods. When
forced with solar radiation, the model can reproduce
mean ocean temperature, atmospheric CO2 concentra-
tion and global ice volume reasonably well over the last
500 ka. The MCMC method samples the multivariate
probability density function of model parameters, which
makes it a powerful tool for estimating not only pa-
rameter values but also for calculating the model’s sen-
sitivity to each parameter. A major attraction of the
method is the simplicity and the ease of the implemen-
tation of the algorithm. We have used cross-validation
to show that the model forecast for the next 50–100 ka is
of similar accuracy to the hindcast over the last 500 ka.
The model forecasts an immediate cooling of the Earth,
with the next glacial maximum in around 60 ka. An
anthropogenic pulse of CO2 has a short-term effect but
does not influence the model prediction beyond 30 ka.
Beyond 100 ka into the future, the model ensemble di-
verges widely, indicating that there is insufficient infor-
mation in the data which we have used to determine the
longer term evolution of the Earth’s climate.

1 Introduction

A considerable amount of information about the past
climate of the Earth is available. The climate proxies
obtained from ice cores and marine, coastal and ter-
restrial sediment cores now provide information on a
wide range of physical, chemical and biological proces-
ses. These data have the potential to aid greatly in the
improvement of existing models of the Earth’s climate
by constraining the values of poorly known parameters
on which a range of climate models depend. However,
for complex numerical models, many well known pa-
rameter estimation methods cannot easily be imple-
mented, due in part to the massive computational
demands of optimal assimilation schemes, and in part to
technical difficulties such as extreme non-linearity and
discontinuities which may prohibit or severely hinder the
application of classical methods.
We address the problem of modelling the Earth’s

climate on the glacial-interglacial time scale. Any model
designed to simulate a number of ice age cycles, must,
necessarily, be numerically very simple in comparison
with the highly sophisticated and computationally de-
manding coupled ocean–atmosphere GCMs which are
widely used today to study the Earth’s climate over time
scales of up to 100 years. Several computationally simple
models have been developed and used to give hindcasts
and forecasts of the Earth’s climate (e.g. Imbrie and
Imbrie 1980; Saltzman and Verbitsky 1995; Paillard
2001). These have, however, generally been somewhat
hampered by the absence of an optimal method of pa-
rameter estimation and a lack of objective validation
and error estimation, which makes it hard to assess their
reliability and accuracy. We present here a method by
which these questions can be addressed. We use the very
simple prognostic model of Saltzman and Maasch (1990,
hereafter SM). The model is highly parametrised and
computationally very fast, lending itself well to a flexible
but computationally demanding data assimilation
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scheme such as the Monte Carlo Markov Chain method
described by Harmon and Challoner (1997). The ad-
vantage of using such an assimilation scheme is that it
can be used to generate a large amount of information
about the model behaviour, and it is powerful enough to
generate the optimal (probabilistic) solution even when
applied to a highly nonlinear model. It is also extremely
simple to implement, in contrast to (for instance) vari-
ational methods based on an adjoint model.
Using this method it is possible to derive the joint

probability density function of the model parameters,
which indicates how well the model can be constrained
by the data. In addition we have used the method in
combination with a cross validation technique to in-
vestigate the accuracy of the model predictions.
The rest of the study is organised as follows. In Sect.

2 and 3 respectively the model and the assimilation
schemes are described. Following this the results of the
assimilation are described with subsections on the
overall results from the ensemble; the probability den-
sities of the parameters; and the analysis of the forecasts.
These sections are followed by the conclusions.

2 The model

The model of SM is a one point global model with three variables
and seven free parameters which has been used to simulate the
glacial–interglacial cycling over the last 0.5 Ma. Fundamental to
the model is the assumption that all three variables (ice mass, at-
mospheric CO2 concentration, and mean ocean temperature) can
be written as a sum of an average value over scales of the order of
millions of years ð�XXiÞ, plus an average over hundreds of years ðX 0

i Þ.
Therefore each variable (Xi) can be represented by the form

Xi ¼ �XXi þ X 0
i : ð1Þ

For modelling climate variation over the last 0.5 Ma, �XXi is taken
as constant, but extending the model for more than 0.5 Ma would
require assumptions be made regarding the slow variation of �XXi.

The model is driven by the changes in summer insolation
(Milankovitch forcing) at high latitudes caused by precession of
the Earth’s axis, variation in the eccentricity of the Earth’s orbit
and variation of the angle of tilt of the Earth with respect to its
orbit. The precession is caused by the Sun and the other two
variations are caused by the gravitational influence of the other
planets in the solar system. The algorithm used was that of Berger
(1978).

SM use previous analyses and various assumptions to postulate
basic forms for the temporal derivatives of the three model varia-
bles, thus producing the three equations which can be integrated
through time.

The basic assumption for the ice mass equations is that varia-
tions in ice mass depend on the mean summer surface temperature
at high latitudes. The functional form chosen is based on the results
of sensitivity analyses with general circulation models and statis-
tical–dynamical models. The form of the ocean temperature
equation is based on the assumption that the dominant influence on
global mean water temperature is the ice volume in polar regions.
The rate of temperature change is assumed to be linear with ice
volume. The CO2 equation is the most complex of the three
equations being based on previous work (Saltzman and Maasch
1988). The relatively complex functional relationship contains six
constants and is nonlinear in terms of temperature and CO2.

The three equations are reproduced from the SM paper below
as Eqs. (2), (3) and (4). I, l, h are the model variables, ice, CO2 and
ocean temperature respectively.

dI
dt

¼ a1 � a2cl � a3I � a2jhh � a2jhRðtÞ ð2Þ

dl
dt

¼ b1 � ðb2 � b3h þ b4h
2Þl � ðb5 � b6hÞh ð3Þ

dh
dt

¼ c1 � c2I � c3h ð4Þ

jh ¼ ð1=bÞðd~ss=dhÞ,where ~ss is the zonal mean surface air tempera-
ture at high latitude in summer. b and c are constants in the
functional relationship between ~ss and l, and their values have been
estimated by modelling experiments. See SM for more details of the
derivations. The constants a1,2,3, b1,2,3,4,5,6 and c1,2,3 can be distilled
into seven unknowns. After variable substitutions and normalisa-
tion SM produced the following set of equations:

_XX ¼ �X � Y � vZ � uRðt�Þ ð5Þ

_YY ¼ �pZ þ rY þ sZ2 � wYZ � Z2Y ð6Þ

_ZZ ¼ �qðX þ ZÞ ð7Þ

where the model variables are non-dimensional proxies for ice mass
(X ), CO2 concentration (Y ), and deep ocean temperature (Z ); R is
the non-dimensional variation of annual solar radiation at 65�N; (Æ)
= d()/dt* and t* is a rescaled time variable (1000t* = t where t is
time in years). The seven coefficients p, q, r, s, u, v and w are all
constants, defined by SM as 1.0, 2.5, 0.9, 1.0, 0.6, 0.2 and 0.5 re-
spectively. The initial conditions forX,Y andZ are taken to be –1.0,
0.2 and 1.0 respectively. The model is integrated with a time step of
100 years, for which numerical errors are insignificant. As shown by
SM these values produce reasonable agreement with ice mass data
over last 0.5 Ma (taken from the SPECMAP data set (Prentice and
Mathews 1988)) and CO2 concentration measurements over the last
0.175 Ma (from the Vostok ice core). In fact the modelled CO2
concentration agrees fairly well with the more recent extension of
the Vostok core to 420 ka (Petit et al. 1999), which is one reason
why we selected this particular model for our experiments out of the
family of similar simple models proposed by Saltzman and various
co-authors (e.g. Saltzman and Sutera 1987; Saltzman and Verbitsky
1993). For example, the model output generated by Saltzman and
Verbitsky (1995) does not appear to compare so well with the CO2
data which it anticipated. Other independently devised models of
comparable complexity such as that of Imbrie and Imbrie (1980) or
Paillard (1998) could equally be treated by the techniques we des-
cribe here. The review of Paillard (2001) compares hindcasts and
forecasts from these two models and one other, but with an absence
of statistical analysis or confidence intervals it is hard to know how
much credibility they have. For consistency with SM we used the
same proxy data for ice mass and deep ocean temperature that they
described but we also used the recently extended Vostok ice core for
the CO2 data. These data do not perhaps all represent the state of
the art (Shackleton 2000), but are nevertheless sufficient for our
purpose of investigating the potential value of data assimilation
techniques in simple climate models.

3 The data assimilation technique

The general goal of data assimilation is to use data in order to
improve the performance of numerical models. In this context, that
means finding parameter values (and initial conditions) for which
the model output most closely resembles observational data over
the last 0.5 Ma. There are several well established parameter opt-
imisation techniques for this kind of problem based on variational
methods (the use of an adjoint model is common), and at least in
the case of a well posed linear problem, there is a unique solution
which all ‘optimal’ assimilation methods will find (e.g. Lorenc
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1986). However, most data assimilation techniques are designed for
linear dynamics, and may fail to work correctly in the nonlinear
case (Gauthier 1992; Miller et al. 1994). Moreover, since our data
have errors and the truth is imperfectly known, the problem should
be considered as a probabilistic one. That is, the correct solution is
not a unique set of parameters but rather a set of parameter esti-
mates along with confidence intervals (and perhaps even a covari-
ance matrix). Standard variational methods do not naturally
produce this probabilistic information, instead merely generating
the optimum parameter values. They also require significant effort
to implement. In contrast, the Monte Carlo Markov Chain
(MCMC) method based on the Metropolis-Hastings algorithm is
simple to implement, very flexible (including the ability to handle
nonlinear models) and naturally produces an ensemble of param-
eter estimates from which statistical properties can readily be de-
rived and probabilistic forecasts made. The substantial handicap of
this method, which restricts its application to the computationally
cheapest of models, is the massive computational demand which it
imposes. However, this is not a significant restriction for this work
since the SM model is very fast.

We have implemented the MCMC technique as described in
Harmon and Challoner (1997). A more thorough theoretical
background to the algorithm is given by Chib and Greenberg
(1995). The goal of the technique is to sample the joint posterior
probability density function (PDF) of the parameter space given
the observations and any prior information concerning parameter
values. This is achieved by performing a random walk through
parameter space using the Metropolis-Hastings algorithm (Met-
ropolis et al. 1953) described later. This random walk has the im-
portant and useful property that the density of parameter vectors
visited during the walk converges to the joint PDF.

Harmon and Challoner (1997) experimented with the ecosystem
model of Fasham et al. (1990), in which biological equations (with
five or ten rate parameters to be estimated via the MCMC method)
are forced by (and strongly tied to) a seasonal physical cycle in the
ocean. Our implementation of the MCMC technique is very similar
to their method which they describe fully and clearly, so only a brief
summary is given below. We allowed the initial conditions (i.e. X(t),
Y(t) and Z(t) for t= 0.5 Ma BP) to vary, along with the seven free
parameters in the model, giving a total of ten degrees of freedom.
The random walk was continued until the parameter estimates had
converged, which required around 3 · 107 iterations. This is rather
more than the 106 integrations that Harmon and Challoner (1997)
used, but the model we used exhibits much more complex behaviour
than their’s in that it generates five successive cycles which are not
timed by the external forcing but are largely internally generated.
We also used real data in contrast to their ‘identical twin’ set up (in
which a synthetic data set is generated by an earlier model run, with
random noise added to simulate observational error, for the pur-
pose of testing the assimilation technique). The identical twin
technique is widely used as a first test of assimilation methods, but is
rather a weak test since it is virtually guaranteed that a good solu-
tion exists (there is no model error, and the observational errors are
known precisely). However, in our example (as in most practical
applications), the model remains imperfect even after tuning, and
the implications of this are discussed below. It is of course clear from
the large number of iterations required that this assimilation tech-
nique is only suitable for the least computationally demanding
models. However the simplicity of implementation makes it an at-
tractive option for tuning these small models, and it should be noted
that the number of model runs performed is many orders of mag-
nitude lower than would be necessary for a brute force attempt to
map out parameter space. A multifactorial experiment with only 10
values per parameter would require a very costly 1010 model runs
and still be inadequate for exploring parameter space.

The MCMC method is based on a Bayesian approach to pa-
rameter estimation. Given a data setX and a model which requires a
set of parameters F, our goal is to obtain the conditional probab-
ility density function f(F|X) of the parameters given the data. Bayes’
Theorem tell us that this can be expressed in terms of the probability
density function (or likelihood) of the data given the model pa-
rameters f(X|F) and any prior knowledge of the parameters f(F):

f ðUjXÞ / f ðXjUÞf ðUÞ ð8Þ

Working in log-likelihoods for convenience, the likelihood on the
right hand side of this equation can be readily calculated via

ln f ðXjUÞ ¼ � 1
2

X

i

ðxi � x0iÞ
2

r2i
þ K ð9Þ

where the sum is over observations xi and corresponding model
output x¢i. ri are the observational errors (assumed Gaussian and
independent). K is an unknown constant which is not required by
the algorithm. This sum also defines the cost function which
measures the quality of the fit of the model to the data.

The Metropolis-Hastings algorithm generates a chain of
parameter sets {Fi}, i =1, N of arbitrary length. The algorithm
performs a random walk through parameter space based upon a
simple iterative procedure. Each iteration consists of a trial step, in
which a new set of parameters are generated, followed by an
acceptance–rejection step, in which the decision is made whether to
move to the new set of parameters, or to stay with the current set.
Given a current set of parametersFi, a new trial set of parametersF¢
is generated by adding a small random perturbation to each of the
elements of Fi. The acceptance–rejection step is performed

by calculating the ratio of probability densities f ðU0 jXÞ
f ðUi jXÞ (using the

equation described earlier) and comparing this number to a further
single random sample drawn from the uniform distribution over the
interval [0, 1]. If the probability ratio exceeds this last random sam-
ple, then Fi+1 is set equal to F¢ (acceptance), otherwise Fi+1 is set
equal to Fi (rejection). This formulation implies that if the random
perturbation generates an improved set of parameters, this is always
chosen as the next step in the chain, while a worse set of parameters is
accepted with a nonzero probability which decreases as the model-
data misfit increases. The iteration is continued until the distribution
of {Fi} has converged sufficiently. Each iteration requires a single
model run (to calculate the probability density), which dominates the
cost of the algorithm. When convergence has been achieved, the se-
quence {Fi} samples the joint PDF of parameters.

The time taken to converge can vary widely between imple-
mentations, and is hard to predict in advance. The selection of the
random trial perturbation can be a critical step in determining the
efficiency of the algorithm, since large perturbations will almost
always be rejected and small perturbations will take too long to
explore parameter space even when they are usually accepted. A
few preliminary experiments were used to adjust the typical per-
turbation size so as to ensure an acceptance rate of around 25%,
this being a generally recommended figure. This is the only detail of
the algorithm which requires any problem specific tuning, and the
method is otherwise very straightforward to implement.

This assimilation technique is quite similar to simulated an-
nealing (Pincus 1970; Azencott 1992) which has also been applied
to a variety of geophysical problems (Bennet and Chua 1994;
Evensen 1994; Matear 1995). However the MCMC approach starts
from the basic premise that, rather than searching for a unique
optimum as simulated annealing (in its standard form) does, it is
more appropriate to consider the problem as intrinsically prob-
abilistic in nature and to work with the PDF of parameter values
which are consistent with both the data and our prior knowledge.

4 Results

4.1 Ensemble results

The results from the Monte Carlo ensemble are sum-
marised in Fig. 1. In this experiment, all the data were
assimilated, and for interest the model was integrated
forward beyond the present day for 250 ka. The pa-
rameter values derived by SM were used as the first
guess for the run (see Table 1 for the parameter values
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and cost for this run). The figure shows the run with the
SM parameters (green dashed lines), the data (black
dot–dashed lines), the ensemble mean (dark blue lines)
and the one standard deviation width of the ensemble
(light blue lines) for each of the three model variables.
Several conclusions can be drawn. Most obviously,

the model ensemble provides a reasonable fit to the large
time scale variation of the data. However, the model
output is far too smooth to fit the fine detail accurately.
Over the forecast region, it can be seen that the en-

semble width increases, indicating that as we look fur-
ther into the future, the prediction becomes less certain.
In theory, the width of the ensemble should be com-
parable with the model-data misfit, but this is not the
case in Fig. 1; the ensemble is much too narrow. The
fundamental reason for this discrepancy is that the as-
similation technique (in common with many others,
when the model is used as a ‘strong constraint’) makes
the assumption that the model is structurally perfect,
when in fact this is clearly far from the case. This erro-
neous assumption causes false confidence in the ensem-
ble. Therefore the ensemble width cannot be used
directly as a measure of expected error but can still in-
dicate qualitatively where and how the predictability
changes. The ensemble does indicate an immediate and
rapid cooling of the Earth, with a new glacial maximum
occurring around 60 ka into the future. At around
100 ka in the future and beyond, the ensemble width is
growing, indicating a loss of predictability and a de-
generation of the forecast to ‘climatology’. There is no
return of skill, which might be expected if the climate
system was directly controlled by specific events in solar

Fig. 1. Run with 500 ka of data assimilated. The vertical magenta
line shows when assimilation was halted. The red line at the top is
the solar insolation forcing. The green dashed lines are the results
from using the SM parameters. The black dot–dashed lines are the
data. The dark blue lines show the mean of the ensemble and the
light blue lines show the one standard deviations of the ensemble

Table 1. Parameter values: first guess (SM values); mean and inter-quartile range of distributions; best fit run

Parameter SM value Results from parameter distributions

Mean 25% 50% 75% Best fit

X0 –1.0 –0.77 –0.91 –0.74 –0.60 –0.62
Y0 0.2 0.28 0.16 0.25 0.38 0.11
Z0 1.0 0.43 –0.17 0.46 1.03 –0.36
p 1.0 0.79 0.72 0.77 0.84 0.82
q 2.5 4.97 4.24 4.83 5.62 4.24
r 0.9 0.90 0.86 0.89 0.94 0.95
s 1.0 0.57 0.53 0.57 0.62 0.53
u 0.6 0.30 0.27 0.30 0.32 0.32
v 0.2 0.07 0.00 0.07 0.14 0.02
w 0.5 0.83 0.75 0.83 0.91 0.66
a1(kg a

–1 · 1016) 1.63 0.51 1.46 1.52 1.58 1.46
a2 (kg a

–1 · 1016) 1.24 1.24 – – – 1.24
a3 (a

–1 · 10–4) 1.00 1.00 – – – 1.00
b1 + �FF�

l (ppm a–1 · 10–1) 10.6 9.60 9.49 9.60 9.71 9.80
b2(a

–1 · 10–3) 4.27 4.04 3.99 4.04 4.09 4.16
b3(ppm(�C a)–1 · 10–3) 1.89 1.84 1.83 1.84 1.85 1.87
b4((�C a)–1 · 10–4) 2.04 2.04 – – – 2.04
b5(ppm(�C a)–1 · 10–1) 4.61 4.30 4.26 4.29 4.32 4.33
b6((�C2 a)–1 · 10–2) 4.92 4.70 4.67 4.69 4.72 4.67
c1(C a

–1 · 10–3) 1.99 3.97 3.38 3.85 4.48 2.28
c2(�C(kg a)–1 · 10–23) 1.35 2.68 2.28 2.60 3.03 2.28
c3(a

–1 · 10–4) 2.50 4.98 4.24 4.83 5.62 4.24
jh(�C–1 · 10–2) 3.01 1.04 0.08 1.10 2.15 0.27
jR(m

2 W–1 · 10–3) 3.51 5.22 4.75 5.24 5.68 5.63
Cost 473 284 233 241 300 226
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forcing. The forecasting ability of the model is consid-
ered further in Sect. 4.3.

4.2 The probability densities of the parameters

In their paper SM estimated the parameter values (p, q,
r, s, u, v, w) using various physically based arguments

and results from other models. No formal error esti-
mates are provided either for these parameter estimates
or for the parameters of the underlying physical
equations which are subsequently calculated by in-
verting the normalisation and variable substitutions.
There is, therefore, little discussion as to what extent
the parameters could be allowed to vary while still
providing reasonable consistency with the data and no

Fig. 2. Distributions of
parameters p, q, r, s, u, v, w and
of the cost of the ensemble of
runs. The SM values are shown
in red
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indication of which parameters the model is more
sensitive to.
The MCMC method samples the joint PDF of the

parameters so the results obtained here make possible an
assessment of how well the physical quantities in the
original equations are constrained by the model and

data. We do this here by looking at the distributions of
each of the model parameters.
In Fig. 2 we illustrate the PDF of the parameters

obtained by recording every 1000th run of the last 20
million runs (ignoring the initial transient where the
MCMC algorithm forgets the initial guess) and plotting

Fig. 3. Parameter distributions
for the original equations. The
SM values are shown in red
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histograms of the parameter distributions so obtained.
Just as the parameters p, q, r, s, u, v, w were derived
from the original parameters in Eq. (2) (3) and (4) so
the procedure can be reversed and the original pa-
rameters can be recalculated from our distributions (see
the SM paper for the details of this straightforward
algebraic exercise). Figure 3 shows the PDFs obtained
by the MCMC method for the un-normalised param-
eters.
Table 1 compares the results of SM with the results

from our ensemble of runs and the best fit run of the
ensemble. For consistency throughout this study we re-
calculated the SM original parameter values using the
constants and scaling parameters as quoted in the SM
paper. Apart from a couple of typographical errors in
SM [the values of b3 and b6 in Eq. (38) have been
exchanged, and the last part of SM Equation (36) should
read v = (jh/c) (k3k2

–1)] there remain only small differ-
ences in the values of the un-normalised parameter
values we obtain compared to those quoted in SM.
These differences are sufficiently small that it is possible
that the use of more significant figures in the constants
or scaling parameters than those quoted by SM in their
paper may be the cause.
The inter-quartile ranges (IQRs) of the parameter

distributions are shown in Table 1. IQR is preferred
over standard deviation as a more robust statistic for
non-Gaussian variables.
X0, Y0, and Z0 are the starting positions for 500 ka

ago. These values were not quoted in the SM paper since
they are not required for derivation of the physical
parameters. They do, however, provide extra degrees
of freedom for the model so are quoted here. The SM
values were obtained from Saltzman (personal commu-
nication 1999).
SM state that all the parameters (p, q, r, s, u, v and w)

should be positive. In our calculations we did not force
this condition but allowed all the parameters the free-
dom to be negative. As shown in Fig. 2 only parameter v
shows any negative values. A negative value of v in
Eq. (5) implies, rather implausibly, that a cold ocean
causes ice to melt. About one fifth of the runs lie in this
range. This result can be understood by considering the
mathematical consequences of Eq. (5) and (7). Looking
at Eq. (7) and noting that, for our results, parameter q is
always large (see Table 1 and Fig. 2), it can be seen that
the ocean temperature Z relaxes rather rapidly to –X, i.e.
the ocean temperature and ice mass have approximately
equal and opposite magnitudes throughout the model
integration (this can also be confirmed by examining the
various plots of model outputs which are shown). This
means that Eq. (5) can be approximated by

_XX ’ �ð1þ vÞX � Y � uRðt�Þ ð10Þ

and we see that the influence of v is merely to adjust the
rate at which X relaxes to its mean, with the overall rate
varying between 1 and 1.14 across v’s inter-quartile
range and dropping slightly below 1 for negative v. So,

even though a negative value of v would imply an im-
plausible physical feedback, this model is rather insen-
sitive to this effect.
The other parameter distributions are skewed with

truncation above zero. This is an encouraging result for
the model validity. X0, Y0 and Z0 may be either pos-
itive or negative since these are the initial conditions
for the model run. Of these, Z0 shows a particularly
large range of variability in the model results so its
value is not well defined by the model and data. This is
explained again by the rapid relaxation of Z to –X,
combined with the lack of data for Z in the early part
of the model run.
The last histogram in Fig. 2 which shows the range of

the cost function (normalised sum of squared errors)
over the model runs is of interest since it demonstrates
that more than 50% of the model runs are in the area of
very low cost, below about 250. This means that the
model is spending the majority of the runs close to
minima of the cost function, even though the parameter
values are varying widely. For comparison the run using
the SM parameters gives a cost of 473.
The seven parameters and three initial conditions

define a cost function in 10 dimensions which, due to the
high nonlinearity of the problem, can have a complex
shape and many local minima. This is difficult to visu-
alise, but a typical example is given in Fig. 4. This shows
the cost of the model run with all values at the best fit
value shown in Table 1 but p is varied over its inter-
quartile range. The lowest minimum coincides with the
best fit value in the Table, but this slice through the cost
function has a complex shape with many local minima.
Note that for any value of p in this inter-quartile range,
there is a set of parameter values that has very low cost,
so the joint PDF must be considered in order to draw
meaningful conclusions about any particular parameter,
and there is little point in calculating the ‘best’ value and

Fig. 4. Variation of cost as parameter ‘p’ varies through its IQR.
All other parameters are set to their values at the best fit
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IQR of a single parameter in isolation since these depend
critically on the values of other model parameters, all of
which are imperfectly known. Extending this to 10 di-
mensions makes it clear why sub-optimal methods of
parameter estimation, or those based on linear approx-
imations, may struggle to find good solutions.
Performing a model run using the mean values of

each parameter does not generate output with a low
cost. This is again because of the high complexity of
the surface of the cost function, or equivalently, the
extreme nonlinearity of the model. The output from the
model run using mean parameter values differs greatly
from the mean of the outputs of the model runs in the
ensemble.
As mentioned, when calculating the parameters for

the original (i.e. the un-normalised) equations we took
the quoted SM values for all the constants apart from
those seven parameters (p, q, r, s, u, v, w) calculated by
the MCMC method. In order to produce parameter
distributions which still sample the PDF it is necessary
to transform the parameters for each run and then re-
combine them into distributions. The results from this
procedure are shown in Fig. 3. The mean and IQR of
the parameters are compared with the best fit solution
and the SM original parameters in Table 1.
The secondary peak in a1 and jh is caused by the

similar peak in negative values of v discussed previously,
since the variation of these two parameters depends only
on v. The variation in c1,2,3 all depend only on q which is
why the distributions look very similar to each other,
and to that of q itself. In contrast b1,2,3,5,6 are functional
combinations of r, w, p and s. b3 depends only on w but
the others all depend on combinations of the parameters
which may explain why they appear to have a more
Gaussian distribution (since a linear combination of
non-Gaussian distributions usually tends towards a
Gaussian shape).
Parameters a1, b1,2,3,5,6 are all quite tightly con-

strained although the original SM values still lie outside
the IQRs except for b6. Parameters c1,2,3 and jh,R are less
well defined, and the means of the distributions diverge
more greatly from the SM values. For example 1/c3 is
the time constant for the dissipation of the global
properties of deep water which SM specified ‘arbitrarily’
to be 4 ka. Our IQR gives a value of between 1.8 and
2.4 ka. SM state that there has previously been debate
over the positivity of c2. Our results indicate that a
negative c2 is implausible given that this feature did not
arise in any of the model runs. Note that we placed no
specific bound upon this parameter. A positive value of
c2 means that a rise in ice mass causes ocean temperature
to decrease.
The two values jh and jR are related to the change in

air temperature associated with the change in ocean
temperature and Milankovitch forcing respectively. If
we assume that the parameter b is 18� as quoted by SM
then the ratio of the change in air temperature to ocean
temperature is not well constrained by the model with an
IQR between 0.01 to 0.4, compared to the SM value of

0.6. With the same assumption of b, the ratio of the
variation of air temperature change to Milankovitch
forcing varies between 0.09 and 0.1 �C(W m2)–1 which is
lower than the SM value of 0.2 �C(m2)–1.

4.3 Forecasting

4.3.1 Cross-validation testing

In general terms, the skill of a model forecast can often
be directly measured by making the prediction, and
then comparing to observations as they are made. By
repeating over several forecasts (either through the
passage of time or over different spatial sub-domains),
a statistically reliable estimate of their accuracy can be
calculated. However, this approach is impossible when
forecasts are being made for many thousands of years
into the future, and averaged over the entire Earth. In
the identical twin scenario, it is also possible to gen-
erate many hypothetical data sets on which to test
model performance, but we have already seen that our
experimental setup is far removed from the identical
twin case (ie the model contains substantial unknown
structural errors) and so this approach is likely to be of
limited use.
Instead, we use a standard cross-validation approach

and test the ability of the model, when tuned on an
initial subset of the data, to forecast the remainder. By
using initial segments with lengths from 100 ka to
450 ka length (in 50 ka steps), a set of eight forecasts can
be evaluated. Since the data are rather sparse in time and
the model evolves quite smoothly, the RMS errors of the
model are calculated in 50 ka width bins.
A typical output from the cross-validation exercise is

shown in Fig. 5. In this example, only the data prior to
350 ka BP were assimilated. The model appears to
generate a reasonable forecast for around 50 ka, and
beyond 100 ka the fit between model and data is very
poor. It is encouraging to see that the ensemble is also
spreading by this point which indicates that the model
forecast here is not well constrained by the data that
was assimilated. This figure also shows that the model
is not merely controlled by the Milankovitch insola-
tion, as around the present day and beyond it is
completely out of phase with the previously shown
model output. Instead, the model contains its own in-
ternal dynamics which may be excited by the forcing
but are not timed by it. Figure 1 in contrast shows the
abilities of the model to hindcast data to which it is
tuned (both by ourselves and SM) but contains no
element of forecasting.
A summary of the nine cross-validation results are

shown in Fig. 6. Each line indicates the error associated
with a particular forecast interval as a function of the
duration of data assimilated. So, for example, the blue
circles indicate the RMS error when forecasting in the
range 50–100 ka past the end of the assimilated data set
(this cannot be calculated for the case in which 450 ka of
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data were assimilated as this time interval is still in the
future). Also shown for comparison are the RMS errors
of the hindcasts. When very little data is assimilated, the
forecast results are very unreliable (note that an RMS
error of

ffiffiffi
2

p
’ 1:4 indicates a complete lack of skill since

both data and model forecast have a standard deviation
of 1). As the volume of assimilated data increases, so
does the forecast skill which is encouraging as it suggests
that the parameters are being increasing tuned to ‘good’
values and not merely (over-)fitting the data which has
been used. As the assimilation interval increases, the
forecast skill for the 0–50 ka range appears to be con-
verging to close to the hindcast skill, and there is also
some indication of skill in the 50–100 ka range too.
Longer range forecasts are clearly worse, although it is
hard to evaluate their skill reliably since this can only be
calculated when a short interval of data was assimilated.
However the ensemble widths also increase beyond
100 ka forecasts which suggests that they will have low
reliability.
This figure suggests that the skill of the forecast over

0–50 ka is hardly any worse than the hindcast, and there
is some skill even as far as 100 ka into the future.
Therefore, to the extent that we consider the hindcast in
Fig. 1 to be a reasonable approximation to the truth, we
should also believe that the forecast of the next glacial
maximum is reliable.
The use of such simple climate models for generating

forecasts is of course not new (e.g. Imbrie and Imbrie

1980; Saltzman and Verbitsky 1995), but in contrast to
these previous papers, the use here of an optimal data
assimilation method and an ensemble of model runs
allows us for the first time to evaluate critically and
objectively both the potential accuracy and also the
useful duration of such forecasts.

4.3.2 Anthropogenic pulse

We have also integrated the model ensemble (generated
by assimilating the entire data set) forward for 250 ka
but added an extra source term to the atmospheric CO2
equation corresponding to anthropogenic forcing. We
have assumed that the anthropogenic influence consists
of a large pulse of CO2 generated by the burning of all
available reserves of fossil fuels over the next few hun-
dred years. The precise nature of the input does not
influence our results, as we are not attempting to model
short-term effects and the effects beyond one thousand
years are ominated by the total carbon mass burnt
(Lenton 2000).
The model forecasts are shown in Fig. 7. It can be

seen that the initial transient decays rapidly, and has
converged to the unperturbed case within 30 ka. The
timing and strength of the next glacial maximum is not
affected. By examining the dynamical equations, we can

Fig. 5. 500 ka run with 350 ka of data assimilation. Key as for
Fig. 1

Fig. 6. RMS errors for hindcasts and forecasts when different
amounts of data are assimilated
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explain why the timing of the next transition is so
robust. With atmospheric CO2 and ocean temperature
both at peak values, the flux of CO2 into the ocean is
very large (according to the SM formulation, with either
their original parameters or our optimised values). Al-
though a warm ocean temperature would tend to reduce
CO2 solubility, their hypothesis (explored more fully in
the earlier paper by Saltzman and Maasch 1988) is that
changes in circulation patterns will offset and indeed
outweigh this effect. When a large additional pulse of
anthropogenic CO2 is added, the dominant effect is to
increase the negative flux of CO2 until the unperturbed
solution is reached.
Of course these results should be taken with a de-

gree of scepticism: the perturbation takes the model
variables well outside the range over which they are
calibrated, and at such extremes other processes which
have not been included may start to dominate. For
example, the derivation of the ice mass equation ap-
proximated tanh(0.004l) by 0.004l, where l is atmo-
spheric CO2 concentration in ppm. This approximation
becomes increasingly inaccurate for l > 350 ppm.
However, similar criticisms could probably be levelled
at all efforts to predict the future climate, given the
current unprecedented anthropogenic perturbation to
the climate system, and this does not (and should not)
stop people from trying. Moreover, at least this simple
model has proved itself capable of hindcasting, and
forecasting (via the cross-validation exercise) with a

meaningful degree of skill over intervals of order 50–
100 ka.

5 Conclusions

The long time series of geological data sets are poten-
tially highly valuable for use in combination with models
to advance the understanding of the evolution of the
paleoclimate. We have presented a form of data assim-
ilation based on Monte Carlo principles and imple-
mented it for the three variable model of Saltzman and
Maasch (1990) using the Vostok ice core and two
SPECMAP cores as proxies for CO2, ocean temperature
and global ice mass respectively.
Optimal data assimilation techniques are generally

highly CPU-intensive, and this method is no exception
to the rule. For this reason, large-scale GCMs generally
rely on more limited tuning and parameter estimation
methods. The simple SM model provide a good test
case for experimenting with advanced techniques, and
provides some useful evidence on the plausible ranges
of various poorly known parameters. One particular
advantage of the method used here is the ease with
which it can be implemented.
Despite the large number of free parameters in the

SM model, the MCMC method converged successfully
and was stable and well-behaved in application. The
previous application of this technique by Harmon and
Challoner (1997) had not used experimental observa-
tions but rather concentrated on identical twin experi-
ments, so this result was encouraging in itself.
Since the MCMC method samples the PDFs of the

model parameters, we have been able to rederive the
physical parameters underlying the model and also cal-
culate the extent to which these parameters are defined
by the model.
The predictive capability of the model was investi-

gated using cross-validation and we have shown that
the model can make useful predictions for approxi-
mately 50–100 ka. The very short time scale events
(<1000 years) are not present in the model dynamics
so remain unmodelled and therefore unpredictable, but
the broad shape of the ice age fluctuations is replicated
reasonably well. Our implementation uses the model as
a strong constraint, but model error creates a sig-
nificant problem in interpreting the ensemble width.
The ensemble has ‘false confidence’ in itself, having
insufficient width in comparison to the true errors. We
intend to develop the method in the future to allow for
model errors by considering the model dynamics as a
weak constraint.
The model predicts a new glacial maximum to occur

at around 60 ka into the future. The input of an an-
thropogenic pulse of CO2 was found to not affect this
event significantly, although it had a larger influence
over the short term. However, such a large pulse does
take the model out of the range of its calibrated
applicability so this result is most probably more

Fig. 7. Run with 500 ka of data assimilation and an anthropo-
genic pulse of CO2. Key as for Fig. 1
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illustrative of the stability of the model rather than the
stability of the climate.

Acknowledgements We are grateful to NERC for supporting this
research, and also John Shepherd, Hyungmoh Yih and two referees
for helpful comments on the manuscript.

References

Azencott R (1992) Simulated annealing. John Wiley
Bennet AF, Chua BS (1994) Open-ocean modelling as an inverse

problem: the primitive equations. Mon Weather Rev 122: 1326–
1336

Berger A (1978) A simple algorithm to compute long term varia-
tions of daily or monthly insolation. Tech Rep 18, Universitè
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