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Abstract
Introduction Premature neonates have a high risk of intraventricular hemorrhage (IVH) at birth, the blood products of which 
activate inflammatory cascades that can cause hydrocephalus and long-term neurological morbidities and sequelae. However, 
there is no consensus for one treatment strategy. While the mainstay of treatment involves CSF diversion to reduce intracra-
nial pressure, a number of interventions focus on blood product removal at various stages including extraventricular drains 
(EVD), intra-ventricular thrombolytics, drainage-irrigation-fibrinolytic therapy (DRIFT), and neuroendoscopic lavage (NEL).
Methods We performed a systematic review and meta-analysis to compare the risks and benefits commonly associated 
with active blood product removal treatment strategies. We searched MEDLINE, Embase, Scopus, Cochrane Library, and 
CINAHL databases through Dec 2020 for articles reporting on outcomes of EVDs, thrombolytics, DRIFT, and NEL. Out-
comes of interest were rate of conversion to ventriculoperitoneal shunt (VPS), infection, mortality, secondary hemorrhage, 
and cognitive disability.
Results Of the 10,398 articles identified in the search, 23 full-text articles representing 22 cohorts and 530 patients were 
included for meta-analysis. These articles included retrospective, prospective, and randomized controlled studies on the use 
of EVDs (n = 7), thrombolytics (n = 8), DRIFT therapy (n = 3), and NEL (n = 5). Pooled rates of reported outcomes for EVD, 
thrombolytics, DRIFT, and NEL for ventriculoperitoneal shunt (VPS) placement were 51.1%, 43.3%, 34.3%, and 54.8%; for 
infection, 15.4%, 12.5%, 4.7%, and 11.0%; for mortality, 20.0%, 11.6%, 6.0%, and 4.9%; for secondary hemorrhage, 5.8%, 
7.8%, 20.0%, and 6.9%; for cognitive impairment, 52.6%, 50.0%, 53.7%, and 50.9%. Meta-regression using type of treat-
ment as a categorical covariate showed no effect of treatment modality on rate of VPS conversion or cognitive disability.
Conclusion There was a significant effect of treatment modality on secondary hemorrhage and mortality; however, mortal-
ity was no longer significant after adjusting for year of publication. Re-hemorrhage rate was significantly higher for DRIFT 
(p < 0.001) but did not differ among the other modalities. NEL also had lower mortality relative to EVD (p < 0.001) and 
thrombolytics (p = 0.013), which was no longer significant after adjusting for year of publication. Thus, NEL appears to be 
safer than DRIFT in terms of risk of hemorrhage, and not different than other blood-product removal strategies in terms of 
mortality. Outcomes–in terms of shunting and cognitive impairment–did not differ. Later year of publication was predictive 
of lower rates of mortality, but not the other outcome variables. Further prospective and randomized studies will be neces-
sary to directly compare NEL with other temporizing procedures.

Keywords Intraventricular hemorrhage · Posthemorrhagic hydrocephalus · Premature neonates · Fibrinolytic therapy · 
Ventriculoperitoneal shunt · Neuroendoscopic lavage

Introduction

Intraventricular hemorrhage (IVH) with progressive posthem-
orrhagic hydrocephalus (PHH) remains a significant problem 
in preterm births and may portend long-term neurologic seque-
lae [1]. These include, but are not limited to, cognitive delay, 
visual impairment, motor impairment, epilepsy, cerebral palsy, 
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neurodevelopmental delay, and long-standing hydrocephalus 
[2, 3]. Multifactorial in nature, IVH is dependent on the intrin-
sic fragility of the germinal matrix, fluctuations in cerebral 
blood flow, and coagulation disorders [4]. Together, these 
result in germinal matrix hemorrhage, typically within the 
first three postpartum days, which can then progress to IVH. 
Subsequently, the buildup of intraventricular blood products 
obstructs the arachnoid villi, blocking the main site of cerebro-
spinal fluid (CSF) reabsorption. This can cause the release of 
TGF-ß1 into the CSF resulting in the accumulation of extra-
cellular matrix proteins and glial fibrillary acidic proteins, 
ultimately leading to hydrocephalus and irreversible damage 
to the brain [5].

Theoretically, methods that involve direct removal of 
blood products may lessen the inflammatory cycle of blood 
breakdown products and address the pathogenesis underpin-
ning of PHH. Unfortunately, intra-ventricular thrombolytics 
followed by drainage and the one clinical trial that employed 
drainage-irrigation-fibrinolytic (DRIFT) infusion did not 
improve short-term outcomes and were associated with 
bleeding risks [3, 6]. However, 2- and 10-year neurodevel-
opmental outcomes were significantly improved for patients 
who underwent DRIFT compared to controls treated with 
traditional CSF diversion, suggesting a positive long-term 
effect after the initial risks of the procedure [6, 7]. More 
recently, several groups have started using neuroendoscopic 
lavage (NEL), which involves direct access and aspiration 
of intraventricular blood products, with fewer bleeding com-
plications and comparable 2-year neurodevelopmental out-
comes to DRIFT [8]. Therefore, we sought to investigate the 
effectiveness of NEL compared to other treatment methods 
involving the removal of blood products that result in PHH.

We aimed to conduct a systematic review of the literature 
with meta-analysis to evaluate and compare the different 
methods involving blood product removal for the treatment 
of PHH. The aims were to estimate and compare rates of 
surgical and developmental outcomes between PHH treat-
ment methods that involve blood product removal: EVD, 
thrombolytics, DRIFT, and NEL. The findings of this study 
will provide an estimate of how NEL performs relative to 
previous attempts at blood product removal. While EVD 
does not involve the active breakdown of blood products, we 
elected to include EVD because there is continuous drainage 
of blood breakdown products and inflammatory substances 
from the CSF while it is in use.

Methods

Search strategy

A systematic review following the Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses (PRISMA) 

guidelines [9] was conducted to investigate treatments 
involving blood clot removal for IVH of prematurity. Pub-
Med MEDLINE, Embase, Cochrane Library, Scopus, and 
CINHAL databases were searched from their inception 
through Dec 2020. Search terms pertained to premature 
infants with IVH, interventions including NEL, EVD, 
thrombolytics, and DRIFT, and outcomes including inci-
dence of VPS placement, infection, mortality, and cogni-
tive disability. Detailed search strategies are delineated in 
Appendix 1.

Selection criteria

Once articles were identified through the search, duplicates 
were removed and non-full text English language journal 
articles including abstracts, conference presentations, edito-
rials, and case reports were excluded. All remaining articles 
were screened based on title and abstract. After title and 
abstract exclusion, the remaining articles underwent full-text 
review. Articles were selected by two authors independently 
(V.K. and L.M.M.) based on the inclusion and exclusion cri-
teria listed in Table 1. Disagreements were resolved between 
the same two authors.

Data extraction

The following information was extracted from studies that 
met all inclusion criteria: number of infants included in each 
study who underwent the specified intervention, mean ges-
tational age (GA), mean birth weight (BW), grade of IVH, 
study design, study duration, treatment method (EVD, 
thrombolytics, DRIFT, and/or NEL), outcomes, and com-
plications. The primary outcome of interest was conversion 
to VPS. Secondary outcomes of interest included rates of 
infection, morality, secondary hemorrhages, and any severe 
cognitive disability as defined by the particular study. A 
summary of all outcomes of interest is detailed in Table 2.

Quality assessment

The quality of evidence was evaluated according to the 
Cochrane ROBINS-I guidelines [10]. The quality score for 
each included study is indicated in Table 2. Egger’s test was 
used to assess publication bias [11].

Statistical analysis

Meta-analyses were performed using Comprehensive Meta-
Analysis v3 (Biostat, Inc.) and other statistical analyses 
performed using R, version 3.5.1. We calculated pooled 
proportions of rates for the five outcomes of interest: rate 
of conversion to VPS, infection, mortality, secondary hem-
orrhage, and cognitive disability stratified by treatment 
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modality subgroup (EVD, thrombolytics, DRIFT, and NEL). 
A random-effects model with 95% confidence intervals (CI) 
was used. Weights were calculated using the DerSimonian 
and Laird method. Between studies, heterogeneity was meas-
ured by the I2 statistic and  Tau2 value. I2 values greater than 
25%, 50%, and 75% were considered low, moderate, and 
high heterogeneity, respectively. To determine the effect of 
treatment modality on outcomes, a subgroup analysis was 
done using meta-regression with treatment as a categori-
cal moderator. Meta-regression was run for each outcome 
measure with and without adjusting for publication year as 
a potential confounding factor. In cases where there was a 
significant effect, the regression was run with each inter-
vention as the designated reference group to compare each 
intervention to the others.

Standard statistical comparisons were performed to 
compare differences between year of publication, GA, and 
BWs across studies for each modality. P values equal to or 
less than 0.05 were considered to be statistically signifi-
cant. Means and standard deviations (SD) are reported as 
mean ± SD.

Results

Of 114 resultant articles, 23 met inclusion criteria (Fig. 1). 
Three articles reported on the same cohort enrolled in the 
DRIFT randomized controlled trial: the first in 2003 [12] 
after the initial end of the trial, the second in 2010 [6] 
at 2-year follow-up, and the last in 2019 [7] at 10-year 
follow-up. Data from the initial report and 2-year follow-
up were combined and considered as one instance. We 
excluded the 10-year follow-up study in this meta-analysis 
due to the fact that developmental outcomes at 2 years 
were more comparable to outcomes reported within a 

similar follow-up period among the rest of the studies. 
Thus, a total of 22 cohorts from 23 articles were included 
in the meta-analysis.

Of the included studies, two were of low quality, 17 
were of moderate quality, and four were of high qual-
ity. Table 2 lists each study, quality assessments, and 
outcomes.

There was significant bias for outcomes of infection 
(T = 4.66, p < 0.001), mortality (T = 3.78, p = 0.001), and 
secondary hemorrhage (T = 4.65, p < 0.001).

IVH treatment modalities

Among the 23 included articles, six reported on EVD 
[13–18], eight on thrombolytics [1, 19–25], one on both 
EVD and EVD + thrombolytics [26], five on NEL [8, 
27–30], and three (representing 2 cohorts) on outcomes of 
the DRIFT trial [6, 12, 31]. Fifteen studies only included 
patients with grade III or IV IVH, and eight studies did 
not report on grade. The average year of publication was 
1995 ± 13 for EVD, 2000 ± 9 for thrombolytics, 2018 ± 2 
for NEL, and 2005 ± 3 for DRIFT (only included the initial 
publication for each cohort). Average GA was 30.7 ± 4.4 
for EVD, 27.8 ± 1.1 for thrombolytics, 27.8 ± 1.5 for NEL, 
and 27.5 ± 0.7 for DRIFT. Average BW was 1280 ± 157 for 
EVD, 1116 ± 217 for thrombolytics, 1350 ± 297 for NEL, 
and 1100 ± 71 for DRIFT.

There was a significant effect of average year of pub-
lication among treatment modalities (p = 0.016). Studies 
on NEL were published significantly later than the stud-
ies on EVD (p = 0.033), DRIFT (p = 0.035), and throm-
bolytics (p = 0.022). There were no significant differences 
between treatment modalities for GA (p = 0.35) or for BW 
(p = 0.21).

Table 1  Systematic review inclusion and exclusion criteria

Inclusion criteria Exclusion criteria

Language English or translated to English Non-English
Time period Inception of databases to Dec 2020 -
Study design Randomized controlled trials; non-randomized trials; controlled 

before-after studies; non-controlled before-after studies; cohort 
studies; cross-sectional studies with comparators

Opinion paper; non-comparative study; qualitative 
studies; theoretical papers; systematic reviews; meta-
analyses

Population Preterm infants with intraventricular hemorrhage Interventions including only population > 2 months of age
Intervention Endoscopic lavage, endoscopic aspiration, ventricular drain -
Comparator Extraventricular drain; thrombolytics; drainage, irrigation, and 

fibrinolytic therapy
-

Context Evacuation of intraventricular hemorrhage in preterm babies -
Outcomes Primary outcomes: long-term shunt placement, development of 

hydrocephalus
Secondary outcomes: rates of infection, mortality, cognitive disability, 

secondary bleeding

-
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Extraventricular drain (EVD)

Seven articles reported on the use of EVDs. All were ret-
rospective observational studies. Pooled rates of outcome 

were 51% (95% CI 42.3–59.6) for conversion to VPS, 
15.4% (95% CI 10.4–22.1) for infection, 20% (95% CI 
14.1–27.5) for mortality, 5.8% (95% CI 3.0–10.8) for sec-
ondary hemorrhage, and 52.6% (95% CI 31.8–72.5) for 

n=6869 duplicate records
removed

n=10398 abstracts
screened for full-text review

n=114 full-text articles
assessed for eligibility

n=10284 records excluded
for lack of relevance

n=23 records included in
qualitative synthesis
� n=7 studies evaluated

extraventricular drains
� n=8 studies evaluated

thrombolytics
� n=5 studies evaluated

neuroendoscopic lavage
� n=3 studies evaluated

drainage, irrigation, and
fibrinolytic therapy

n=91 records excluded
� n=18 excluded for lack

of access to full text
� n=30 excluded for 

wrong population
� n=15 excluded for 

wrong publication type
� n=11 excluded for text

not available in English
language

� n=8 excluded for 
context

� n=5 excluded wrong
outcomes

� n=3 excluded for wrong
intervention

� n=1 excluded for 
incorrect study design

n= 17267 abstracts
identified in total

n=4431 records
identified through
Scopus

n=671 records
identified through
CINAHL

n=97 records
identified through
Cochrane Library

n=5939 records
identified through
MEDLINE

n=6129 records
identified through
Embase

Fig. 1  Flow chart describing the results of the literature search and study screening process

244 Child's Nervous System (2022) 38:239–252



1 3

cognitive disability. There was significant heterogeneity 
in cognitive disability outcomes (Q = 15.05, I2 73.4%, 
p = 0.005,  Tau2 = 0.69).

Thrombolytics

Eight articles reported on the use of thrombolytics. All 
were retrospective cohorts except one [21] which was 
a case–control trial. One used recombinant tPA, three 
streptokinase, three urokinase, and one used either tPA 
or urokinase. Three studies employed intermittent throm-
bolytic infusion [20, 22, 24] and five studies employed 
continuous infusion [1, 21, 23, 25, 26]. Pooled rates of 
outcome were 43.3% (95% CI 24.6–64.2) for conversion 
to VPS, 12.5% (95% CI 6.3–23.5) for infection, 11.6% 
(95% CI 9.9–17.1) for mortality, 7.8% (95% CI 3.6–16.0) 
for secondary hemorrhage, and 50.0% (95% CI 38.0–96.2) 
for cognitive disability. There was significant heterogene-
ity in conversion to VPS (Q = 21.77, I2 67.8%, p = 0.003, 
 Tau2 = 0.95) and cognitive disability (Q = 4.11, I2 75.7%, 
p = 0.043,  Tau2 = 4.20).

Drainage‑irrigation‑fibrinolytics therapy (DRIFT)

Results from three articles described findings from DRIFT 
treatment. Two articles described the same cohort and were 
pooled into one instance [6, 12]. Pooled rates across the two 
cohorts were 34.3% (20.5–51.3) for conversion to VPS, 4.7% 
(95% CI 0.8–22.8) for infection, 6.0% (95% CI 2.5–16.3) for 
mortality, 20.0% (95% CI 4.2–58.8) for secondary hemor-
rhage, and 53.7% (95% CI 40.4–66.5) for cognitive disabil-
ity. There was significant heterogeneity in rates of secondary 
bleeding (Q = 4.76, I2 = 80.0,  Tau2 = 1.13).

Neuroendoscopic lavage (NEL)

Five studies reported on the use of NEL. All were retro-
spective cohorts and used a similar protocol consisting of 
insertion of the endoscope into the lateral ventricle, septo-
stomy, and continuous irrigation with lactated ringers with 
passive outflow until the CSF cleared. One study did not 
leave a reservoir or EVD after lavage [30], three studies left 
a ventricular reservoir for possible later CSF aspiration [8, 
27, 29], and one left an EVD for possible later drainage [28]. 
Pooled rates of outcome were 54.8% (95% CI 46.7–62) for 
conversion to VPS, 11.0% (95% CI 5.6–20.6) for infection, 
4.9% (95% CI 2.4–9.7) for motility, 6.9% (95% CI 3.6–12.7) 
for secondary hemorrhage, and 50.9 (95% CI 38.1–63.6) for 
cognitive disability. None of the outcomes had significant 
heterogeneity.

Comparison of outcomes

Meta-regression showed a significant interaction between 
treatment modality and secondary hemorrhage (Q = 19.61, 
p < 0.001) and rate of death (Q = 16.15, p = 0.001). However, 
after adjusting for year of publication, treatment modality 
was predictive of secondary hemorrhage only (Q = 19.91, 
p < 0.001) but not death (Q = 4.05, p = 0.2560). Later year 
of publication on its own was also associated with lower 
death rates (Z =  − 3.48, p = 0.0005), but not when treat-
ment modality was also entered into the model (Z =  − 0.63, 
p = 0.5264). Year was not associated with secondary hem-
orrhage in either model (p = 0.6984 and 0.8984). DRIFT 
had higher rates of secondary hemorrhage compared to 
NEL (z =  − 3.5, p < 0.001), EVD (z =  − 3.9, p = 0.001), and 
thrombolytics (z =  − 2.9, p = 0.004), but the others did not 
differ among each other. Prior to correction for year, NEL 
had lower mortality compared to EVD (z = 3.67, p < 0.001) 
and thrombolytics (z = 2.48, p = 0.013). DRIFT also had 
lower mortality compared to EVD (z = 2.26, p = 0.024).

There was no significant overall interaction between 
treatment modality and rate of conversion to VPS 
(Q = 4.05, p = 0.256; Q = 5.16, p = 0.1605 adjusted), infec-
tion (Q = 2.11, p = 0.549; Q = 2.04, p = 0.5648 adjusted), 
and cognitive disability (Q = 0.69, p = 0.8753; Q = 1.38, 
p = 0.7113 adjusted). Year of publication was neither associ-
ated with VPS (z =  − 0.27, p = 0.7908; z =  − 1.10, p = 0.2716 
adjusted), infection (z =  − 0.82, p = 0.4140; z =  − 0.83, 
p = 0.4076 adjusted) nor cognitive disability (z =  − 0.71, 
p = 0.4781; z =  − 1.13, p = 0.2575 adjusted), see Figs. 2, 3, 
4, 5, 6.

Discussion

We studied interventions that reduce blood products involved 
in the pathogenesis of PHH, rather than treating sequelae of 
increased ICP. While temporizing measures such as lumbar 
puncture, fontanelle taps, Rickham or Ommaya reservoir 
placement, and subgaleal shunts also withdraw blood break-
down products along with CSF, we defined active interven-
tion aimed at the blood products as the intervention of inter-
est. We included EVD into this definition due to continuous 
drainage of blood and inflammatory products while it is in 
use, though it could fall halfway in this spectrum since there 
is no active break down of a blood clot. To our knowledge, 
this is the first study to critically investigate the literature 
and perform a meta-analysis to provide updated information 
regarding the risks and benefits of NEL compared to previ-
ously attempted means of blood product removal.

Meta-analysis demonstrated that rate of second-
ary hemorrhage for NEL was significantly lower than 
DRIFT and not different from the other modalities. This is 
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reassuring since the use of DRIFT was discontinued and 
the trial terminated early due to substantial numbers of 
infants experiencing secondary hemorrhage [31]. None of 
the modalities compared in our analysis showed any sig-
nificant differences in rates of conversion to VPS, infec-
tion, and cognitive disability. After adjusting for year of 
publication, none of the modalities showed differences 
in mortality as well. Thus, NEL is at least as effective as 
the other modalities but with an improved safety profile 

compared to DRIFT. NEL may consequently provide a 
safer controlled means for removal of blood clots than 
earlier attempts with fibrinolysis. NEL has benefits over 
DRIFT and thrombolytics because it allows direct visual 
access to the location and burden of clots while aspirating 
rather than the passive infusion of thrombolytics, which 
act indiscriminately throughout the entire ventricular 
system. For EVD without thrombolytics, the duration to 
allow for normal physiology to clear the hematoma is 

Fig. 2  Forest plots of outcomes associated with conversion to VP shunt placement for different IVH treatment modalities
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much longer, exposing the brain to inflammatory sub-
stances for a longer period of time.

Although the DRIFT trial was terminated early, sub-
sequent follow-up of children treated with DRIFT dem-
onstrated improved 2- and 10-year neurodevelopmental 
outcomes relative to traditional CSF diversion (namely, 
reservoir taps) [7]. Thus, although no direct compari-
son with CSF diversion methods were made; compara-
ble cognitive outcomes to DRIFT may translate to better 

outcomes between NEL and CSF diversion methods. 
Since none of the blood product removal techniques 
included in our meta-analysis differed in cognitive out-
comes compared to DRIFT, it may be that the active 
removal of blood products may decrease the duration 
of inflammatory processes and reactions the brain is 
exposed to, leading to improved long-term outcomes. 
However, this remains to be speculative. A randomized 
controlled study to directly compare NEL against 

Fig. 3  Forest plots of outcomes associated with development of infection for different IVH treatment modalities
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CSF diversion will be required to make more concrete 
conclusions.

Based on our results, NEL appears to be a viable treat-
ment strategy to pursue in further careful study for infants 
with IVH of prematurity. However, we underscore the 
importance of considering all aspects of a patient’s medi-
cal condition (including severity and burden of disease, 
comorbidities, clinical condition) and tailoring treat-
ment to the individual before selecting the best treatment 
protocol.

Blood product removal and shunt rates compared 
to CSF diversion

While our meta-analysis was limited to comparison of inter-
ventions that had a primary focus on blood product removal, 
other temporizing approaches—ventriculosubgaleal shunt 
(VSGS) implants, ventricular access devices (VAD)–that 
rely on CSF diversion are currently more commonly uti-
lized. A previous meta-analysis published in 2015 reported 
that only 13.9% and 17.5% of patients treated with VSGS 

Fig. 4  Forest plots of outcomes associated with mortality for different IVH treatment modalities
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and VAD survive without conversion to VPS [32]. A sub-
sequently published retrospective study comparing VSGS 
and VAD performed at a single institution (n = 46 and 
44) found a VP shunt rate of 76.1% for VSGS and 77.3% 
for VAD [33]. Then in 2017, the Hydrocephalus Clinical 
Research Network reported on a multi-centered prospec-
tive cohort with a permanent shunt rate of 86% and 69% 
for VSGS and VAD [34]. While VSGS and ventricular 
reservoirs are commonly heralded as the mainstay treat-
ment for IVH of prematurity, these high rates compared 
to our pooled estimate of 54% for NEL and the 34% for 
DRIFT–though not significantly different than the control 
group in the trial–suggest that removal of blood products 
compared to CSF diversion may have greater efficacy in 
treating the underlying pathophysiology of IVH to prevent 
development of permanent PHH. DRIFT did have a non-
significantly lower rate of shunting in our meta-analysis; 
however, the risks associated with DRIFT preclude further 

use or study of this intervention. Again, studies that directly 
compare between NEL and CSF diversion will need to be 
conducted.

Limitations

This review only included published studies that had full-
text manuscripts, which renders the results to publication 
bias and an overestimation of the number of positive and 
significant study results. Furthermore, only studies writ-
ten in or translated to English were included, potentially 
excluding successful interventions and studies from other 
areas of the world. Additionally, the overall quality of 
evidence reviewed was moderate since most studies were 
retrospective cohorts. Statistical limitation with the meta-
analysis included the heterogeneity among the studies. 
Since there is no standardized management guideline, each 
institution adapts their own protocol in terms of when to 

Fig. 5  Forest plots of outcomes associated with development of cognitive disability for different IVH treatment modalities
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intervene, how to intervene, and when to shunt patients 
with PHH. Another limitation is that many of the studies 
were conducted nearly two decades ago. Medical therapy 
and biomedical technology have improved drastically since 
then, so it is also feasible that the mentioned interventions 
might prove to be more efficacious when implemented 
with the current standard of care. We found significantly 
higher rates of mortality in publications published earlier 
and higher rates of mortality for EVD and thrombolytics 
before controlling for year of publication, methods that 
were more commonly employed earlier (average 1995 and 

2000 versus 2018 for NEL) and now generally not used as 
first line treatment. Indeed, the effect of treatment modal-
ity on mortality was no longer significant after controlling 
for year of publication.

Conclusion

We present a systematic review of the treatment options tar-
geting intervention in the disease pathogenesis for IVH of 
prematurity, comparing the risks and benefits of a recent 

Fig. 6  Forest plots of outcomes associated with development of secondary hemorrhage for different IVH treatment modalities
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strategy of blood product removal (NEL) to previous modal-
ities including EVD, thrombolytics, and DRIFT. We found 
that NEL was associated with statistically significant lower 
rates of secondary hemorrhage compared to DRIFT, and 
similar rates of death, infection, conversion to permanent 
VPS, and cognitive outcome. While shunting rates were 
numerically the lowest for DRIFT, this form of intervention 
carried a significantly high risk of secondary hemorrhage. 
The impact on cognitive outcomes, neurological implica-
tions, and functional status remain unclear. Further study 
regarding the optimal treatment modalities in the acute 
phase of IVH of prematurity is needed.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00381- 021- 05400-8.
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