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Abstract
Background  An important feature of hydrocephalus is the alteration of the cerebral spinal fluid (CSF) homeostasis. New 
insights in the understanding of production, secretion, and absorption of CSF, along with the discovery of the glymphatic 
system (GS), can be useful for a better understanding and treatment of hydrocephalus in disorders with CSF overproduction.
Case description  A 1-year-old patient was diagnosed with communicating hydrocephalus; ventricle peritoneal shunt (VPS) 
is installed and ascites developed. VPS is exposed, yielding volumes of 1000-1200ml/day CSF per day. MRI is performed 
showing generalized choroidal plexus hyperplasia. Bilateral endoscopic coagulation of thechoroid plexus was performed 
in 2 stages (CPC) however the high rate of CSF production persisted, needing a bilateral plexectomy through septostomy, 
which finally decreased the CSF outflow.
Discussion  New knowledge about the CSF physiology will help to propose better treatment depending on the cause of the 
hydrocephalus. The GS is becoming an additional reason to better study and develop new therapies focused of the modula-
tion of alternative CSF reabsorption.
Conclusion  Despite the current knowledge about hydrocephalus, we remain without a complete understanding of the patho-
physiology of this condition. GS could be more important than conventional concept of reabsorption of CSF in the arachnoid 
villi, therefore GS could be a new key point, which will guide future investigations.
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Introduction

Hydrocephalus is a diverse integration of conditions char-
acterized by a disorder on cerebral spinal fluid (CSF) physi-
ology that usually drives to an abnormal enlargement of 

the cerebral ventricles and is regularly linked with raised 
intracranial pressure [1, 2]. If untreated, hydrocephalus 
could produce brain herniation and subsequent decease [1]. 
In addition, it is a frequent cause of pediatric disease and 
death, representing a foremost monetary burden on health 
care budget [3]. In the pediatric population, hydrocephalus 
acquires complexity in its anatomy and mechanisms [4, 5]. 
Clinical manifestations are linked to the age of onset; children 
in early infancy complain more commonly for headache, usu-
ally associated with progressive macrocephaly and visual dis-
turbances, and older kids present impairment and decreased 
levels of consciousness due to raised intracranial pressure [2, 
5]. Hydrocephalus might disturb cerebral development and 
prompt motor, sensitive, and cognitive deficits [6]. The man-
agement of hydrocephalus aims to relieve the symptoms that 
regularly implicates the placement of ventricle-peritoneal 
shunts (VPSs) which require neurosurgical intervention [3]. 
Current paradigm of impairment in the reabsorption of CSF 
in arachnoid villi could be renewed because of increasing 
knowledge of CSF dynamics. Alternative pathways of CSF 
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drainage are under extensive research, and their relevance in 
the management of hydrocephalus could be higher than we 
think. Besides, management alternatives for hydrocephalus 
remain unchanged during the last years [7]. Nevertheless, 
evidence shows that in order to describe its pathogenesis, 
genetic factors get a relevant role in several types of hydro-
cephalus [8]. Therefore, we report a bilateral hyperplasia of 
choroid plexus (CP) with severe CSF production in a 1-year-
old boy, and we review the underlying physiology of the 
CSF in children and new insights about the relation between 
hydrocephalus and the glymphatic system (GS).

Case description

A 1-year-old patient, product of preterm gestation because 
of premature rupture of membranes, and previously healthy, 
presents with vomiting and irritability. Communicating 
hydrocephalus is evident in computed tomography (CT); 
VPS is placed, and 45 days after surgery, the patient devel-
oped ascites. CT abdomen shows free fluid in the cavity, 
without a solid or hollow viscera lesion. VPS is external-
ized, reporting drainage volumes of 1000–1200 ml/day of 
CSF, without signs of infection. Given such high output, 
magnetic resonance imaging (MRI) is performed showing 
bilateral CP hyperplasia (Figs. 1 and 2). The bilateral endo-
scopic procedure is performed in 2 stages: first, only CP 
cauterization (CPC). Subsequently, CSF flow decreases by 
800 ml/day, and bilateral plexectomy was performed using 
a right frontal approach and performing a posterior septos-
tomy, decreasing CSF outflow to 120 ml/day. It is decided 
to install VPS. A biopsy confirmed the diagnosis of CP 
hyperplasia.

Historic model of CSF physiology

In the last century, the “bulk-flow” model of CSF homeosta-
sis was the standard in which pathogenesis of hydrocephaly 
had the best understanding [5, 9]. In this paradigm, the CSF 
is excreted in the CP in the brain ventricles, then leaves into 

Fig. 1   Preoperative MRI. 
Enlarged ventricles and promi-
nent choroid plexus. (A) Axial 
section; (B) Coronal section

Fig. 2   Postoperative MRI. (A) Axial section showing enlarged ventri-
cles persisted, and prominent choroid plexus tissue disappeared
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the subarachnoid space where it flows and is absorbed by 
the arachnoid granulations in the deep vein draining. This 
model states hydrocephalus is due to the obstruction of CSF 
circulation anywhere along the aforementioned pathway.

Relatively new, another “hydrodynamic model” where 
the role of the atypical intracranial pulsations might cause 
the pathological condition [10]. Better accounts for anno-
tations cannot be explained with the bulk flow model and 
are founded in the following premises:

1.	 Functional arachnoid granulations cannot be found in 
some pediatric populations (infants < 2 years) [11].

2.	 The ependyma and other structures different from CP 
might supply a significant quantity of CSF [12].

3.	 Increasing the intra-ventricular CSF osmolarity is suf-
ficient to cause experimental hydrocephalus [13].

4.	 Despite unobstructed flow and normal mean CFS pres-
sures, increasing intra-ventricular fluid pulsation ampli-
tudes by itself are enough to produce hydrocephalus [14].

Some types of hydrocephalus appear (mostly) in the pedi-
atric population in which pathogenesis has been neglected 
toward CSF production; rather, it is attributed, lastly, to an 
anomalous accumulation of CSF. Nevertheless, pharma-
cological (e.g., acetazolamide) and non-conservative (e.g., 
CPC) alternatives that reduce CSF excretion have demon-
strated effectiveness for particular hydrocephalus types.

CSF secretion and production

The CP is a vastly vascularized capillary bed of fenestrated 
vessels fenced by polarized cube-shaped epithelial cells faced 
through tight junctions [15]. In contrast to the blood–brain bar-
rier (BBB), which is constituted by tight junction, the blood-CSF 
barrier is constituted by the tight junctions of CP epithelia. The 
fenestrated capillaries of the CP have the feature of not being 
completely impermeable and, unlike the brain endothelial cells, 
willingly allow the diffusion of ions and other smalls particles 
[16]. Epithelial cells in the CP have diverse ion channels and 
transporters that are responsible for most of CSF secretion: [17]

1.	 Na/K-ATPase is disposed toward the lumen (apical mem-
brane), is central to CSF production, and prompts the 
hydro-electrolytic gradient for Na+ that is imported uti-
lizing: (a) Na+/H+ exchanger, (b) NHE, (c) Na + /HCO3

− 
cotransporter, (d) NCBE basolaterally

2.	 Co-import of HCO3
− via NCBE and hydration of CO2 by 

carbon anhydrase (CA) increases the concentrations of 
HCO3

− intracellularly, which prompts a hydro-electrolytic 
gradient which modulates the efflux of HCO3

− basolaterally 
situated Cl/HCO3

− exchanger, AE2, and apically expressed 
HCO3

− channels
3.	 The role of AE2 prompts an increment in Cl− concen-

trations intracellularly, modulating the apically Cl− 
exporter employing the NKCC1 and Cl− channels

Fig. 3   CSF production. Amiloride (K-save diuretic) reduces CSF 
production by 50%. Ouabaina inhibits K/Na ATPase and can reduce 
CSF production near to 50–60%. NKCCl can send sodium, clorum, 
and potassium inward cell for the remaining intracellular equilib-

rium: Na/Cl/HCO3:18/15/3. These NKCCls are associated to a spe-
cial protein named SPAK which is sensitive to changes in intracel-
lular clorum level, osmotic stress, and inflammation
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The ending outcome of the aforementioned procedures at the 
CP epithelial cells is a net flux of Na+, HCO3

−, and Cl−, from 
the vascular compartment through the epithelial cells of the cer-
ebral ventricles, which prompts the hydro-electrolytic gradient 
that induces water diffuse across AQP1, thus generating the CSF 
(Fig. 3).

The transcellular pathway is the main transporter for CSF 
[18], and ending solute concentrations of the CSF are care-
fully modulated and persist quite unchanged [19].

The terminal membrane of CP epithelial cells has vast 
water leak [20], and the passive movement of water through 
the transcellular way from the vascular compartment to the 
ventricles is performed mostly through AQP1 [21]. That is 
demonstrated thanks to animal studies with AQP1 knockout 
mice where the permeability of CPE is reduced by 80% [21]. 
However, an increase in AQP1 expression does not always 
lead to a rise in the excretory capacity of the CPE by itself, 
given that water movements require a driving force (osmotic 
force made by Na/K ATPase and others) [1].

CSF absorption

The CP epithelium (CPE) produces about 80% of CSF, while 
the remaining 20% is generated from brain interstitial fluid 
(BIF) [22]. The CPE is between the main competent excretory 
epithelium in the human organism. It generates a rate of 0.4 ml/

min/g of tissue and an excretion rate that is just matched by the 
proximal tubule of the nephrons and the canals of the exocrine 
pancreas [19]. The entire amount of CSF is around 150 ml; 
nevertheless, it is calculated that 500–600 ml is excreted 
daily. Then, the CSF is reabsorbed by arachnoid granulations. 
Nonetheless, several of the non-human models which attain to 
study hydrocephalus [23] and early infancy [24] do not appear 
to express functional arachnoid granulations. So, there must 
be other factors, such as BIF, which generate approximately 
20% of CSF volume, as aforementioned [25]. The flow of the 
BIF is estimated between 0.1 and 0.29 μg/g of tissue/min [25]. 
Besides, BIF is dynamic; it pursues a mostly periventricular 
pathway and crosses the intricate microanatomy of Virchow-
Robin spaces (VRS) [22]. It has been demonstrated that the 
circulation of BIF is not in a single direction and might influ-
ence equally the net CSF excretion and absorption. Therefore, 
there is persistent intercommunication among BIF and CSF 
[17]; the makeup of this dynamic system is termed glymphatic 
system (GS), which is a paravascular path which eases the flow 
of subarachnoid CSF into BIF and, thus, out through the deep 
vein draining [17] (Fig. 4).

These paravascular networks are attached by astrocyte 
feet expressing Aquaporin 4 (AQP4) [26], which, once it 
is dysfunctional, can influence or worsen the progression 
of hydrocephalus [26]. The CP owns the maximum rate of 
water and ion diffusion of any epithelia in humans [19].

Fig. 4   Neurovascular unit. The “neurovascular unit” is constituted by 
astrocytes, pericytes, microglia, and even neurons. Contrary to early 
assumptions, the endothelial barrier carries no AQP4 transporters. 

Instead, water may cross the endothelium by diffusion, vascular trans-
port, and even against osmotic gradients by means of co-transport 
with ions and glucose. CSF, cerebrospinal fluid; AQP, aquaporin
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Microscopic anatomy of the Virchow–Robin space

The pia covers the artery unlike on the vein, which is uncov-
ered by pia in the VRS (Fig. 5). The pia sheathes the arteries, 
but not venous vessels extend into the VRS. In studies of 
rodents, the VRS space is filled by fluid, electron-micro-
scopic–dense material [27] macrophages, and other blood-
borne inflammatory cells [28]. The pia in humans is a bar-
rier constituted by a seemingly continuous stratum of cells, 
which are united by desmosomes and gap junctions but 
have no apparent tight junctions [29]. Notably, the injection 
of tracers into the brain shows no drainage throughout the 
perivenous canals except if there is a distraction of circu-
lation in cerebral amyloid angiopathy when entering some 
tracer through the perivenous spaces [30].

The glymphatic system

The dense distribution of lymph vessels is proportional to 
the rate of tissue metabolic function in each tissue [31]. 
While the brain and spine are differentiated by a dissimilarly 
great metabolic rate [32] and the synaptic transmission is 
finely susceptible to variations in their situations, these lack 
of traditional lymphatic vessels. CSF is drained into the con-
ventional lymphatic system (lymphatic nodes) by efflux via 
the olfactory bulb and throughout peripheral nervous fibers 
[33]. Lately, the relevance of arachnoid granulations in CSF 
reabsorption has been interrogated [34]. Therefore, efflux 

throughout peripheral nerve fibers and the olfactory path can 
signify the most important efflux ways for CSF [33].

The discovery of the glymphatic system

A lymphatic drainage percentage of 50% was calculated 
based on injections of radio-iodinated albumin (RISA) in the 
brain of rabbits. Remarkably, considerable RISA presented 
a draining through the brain perivenous spaces along with 
that by the route from the subarachnoid space of olfactory 
lobes into the submucosal spaces of the nose (therefore to 
the lymphoid vessels) [35].

The dynamics of the glymphatic system

CSF flows into the tissue, then it diffuses by convection 
through BIF within the tissue on the way to the perivascular 
space and flows out of the brain into the cervical lymphoid 
structures [33].

In 2012, employing two-photon microscopic was char-
acterized for the first time in vivo in a mouse model [34]. 
Moreover, using injected fluorescent tracers in the CSF 
within the cisterna magna, a study demonstrated CSF 
quickly arrives at the brain via pial blood vessels situated in 
the cortex. This penetration was followed by influx into the 
VRS throughout penetrating arterioles. It was obvious that 
CSF tracers, instead of being widely and randomly spread in 
the tissue, arrived at the tissue via periarterial route neigh-
boring the muscle cells in vessels united by perivenous 

Fig. 5   Virchow-Robin space 
microanatomy. VRS, Virchow-
Robin space; SAS, subarachnoid 
space; A, artery; C, capillary; V, 
vein; ECS, extracellular space
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astrocytic end-feet, and ex vivo suggestion demonstrated 
that tracers quickly left the brain mostly throughout the cen-
tral deep vessels and the anterolateral caudal rhinal veins 
[34]. The paravascular glymphatic route guided by AQP4 
bulk flow-dependent represents a foremost elimination route 
of interstitial fluid substance from the nervous tissue [36].

AQPs and other models of water transport

It is well-known that diffusion transportation lacks specific-
ity and is a very low way to move; in contrast, water canals 
such as the AQPs confer a quick way to diffuse and own a 
great competence and a high selectivity to transport mol-
ecules [37]. There are five different types of AQPs [5]. Trials 
assessing the structure and function of AQPs showed data 
suggesting that whether the AQP channels are permeable or 
not might be modulated and can also present compromise 
in pathologic states of the brain [38]. Remarkably, AQP1 is 
found in cells of endothelium along with the organism but 
cannot be found in the BBB, except in the structures adjacent 
to ventricles. AQP1 is expressed in the cells disposed into 
ventricles of CP epithelia, signifying an important role in 
this structure for CSF production.

Controversially, literature stated that extrachoroidal CSF 
secretion was notably higher than CSF generated in CP, 
rather be the most important producer of CSF [39]. The 
posterior concept is reinforced by the comment that after 
its intravenous administration, the infiltration and stable 
concentration of H2

17O are markedly decreased in ventricu-
lar CSF in AQP4 but not in AQP1 knockout mouse mod-
els. The authors comment that in conclusion, AQP4 is a 
higher CSF producer than AQP1 [40]. AQP4 is vastly found 
in astrocyte foot processes located in the BBB, glia limits 
with brain surface and VRS, ventricular ependymal cells 
and subependymal astrocytes [41], and astrocytic end-feet at 
the presynaptic space of nerve cells and is expressed in the 
olfactory epithelial cells [42]. Nowadays, it is well known 
that water penetrates the endothelial cells by simple diffu-
sion and vesicular transport and through the astrocyte foot 
processes mainly via AQP4 channels [43].

Implications in hydrocephalus

Clinical presentation

The rhythms of CSF secretion and reabsorption have to be 
balanced. The excess of production can be seen in:

(a)	 CP hyperplasia [44] (our case)

It is also named diffuse villous hyperplasia or villous hyper-
trophy. It is a rare congenital disorder that yields enlarged 

and hyper-secreting CSF. There is an increase in the number 
of CPE cells [1], which denotes an increase in blood flow to 
choroid plexus, a wider surface of filtration, and, therefore, a 
higher rate of production of CSF. As we detailed in this case, 
once ascites were reported, EVD quantified an output rate 
as high as 1000–1200 ml per day, which doubles the normal 
production and saturates the drainage systems of CSF we 
aforementioned. To note, rates of arachnoid villi drainage are 
pressure-dependent essentially following a kind of first-order 
kinetic model of reabsorption. When intracranial pressure 
is 0, 10, 20, or 30 mmH2O, then reabsorption rate is up to 
0, 1.52, 6.44, and 18.04 ml/min, respectively. This rate of 
reabsorption was even more sensitive to changes in pressure 
in the glymphatic drainage system, which results in a more 
pronounced reabsorption activity in hydrocephalus [45]. 
This data reinforces the idea that possibly, the glymphatic 
pathway becomes even more relevant than arachnoid villi in 
reabsorption of CSF when there is intracranial hypertension, 
and therefore, in the onset of communicating hydrocephalus, 
the modulation of the glymphatic system could be a potential 
therapeutic target in the management of this disease.

(b)	 CP papilloma (CPP) [46]

It represents 1–4% of all cerebral neoplasm in children. It 
is a different bulk separated from the CPE and is regularly 
seen within 2 years of birth [1].

The diagnosis of hydrocephalus with CPP or CP hyper-
plasia origin is decisive given that the standardized man-
agement for them is not a VP shunt; in contrast, tumor 
or excessive CPE should be resected [44]. The diagnosis 
is challenging and usually can be confirmed when a per-
formed shunt fails or there is development of ascites, and 
if the shunt is externalized, the excessive amount of CSF 
makes the diagnosis [1]. The normal secretion of CSF is 
500 mL/day. If CPP or CP hyperplasia appears, then the 
rate could be as high as 5000 mL/day, and a higher rate is 
associated with worse hydrocephalus [44]. After surgery 
(CP cauterization or tumor resection), the rates of CSF 
production decrease [44], and in some cases, there was no 
further need for a shunt [46].

Management

Conservative treatment of hydrocephalus 
by targeting CSF production

Diuretics are the medications more frequently used [1]; how-
ever, these drugs are regularly non-effective, develop adverse 
effects, and have off-target properties in the kidney [1].

3526 Child's Nervous System (2021) 37:3521–3529



1 3

(a)	 Sulfonamide-type acetazolamide generates about 
30–60% reduction in CSF rate and 24-h excretion [47]. 
The fractional result of this inhibitor is described by 
the expression of a group of CAIII receptors which are 
not sensible to acetazolamide. This subtype of recep-
tors has been isolated in normal persons and different 
species models [48].

(b)	 Loop diuretics: There is evidence showing that furo-
semide as a KCC inhibitor and bumetanide as an 
NKCC1 inhibitor, single or combined with the afore-
mentioned, reduce the CSF rate of output in dog and 
cat models [49].

	   Animal information also exposes the result of furo-
semide in interrupting ion transport along the blood-
CSF barrier, which decreases the rate of CSF excretion 
[50]. Given that the outcomes of these drugs were also 
described in animal-based models in which nephrec-
tomy was performed, there was reported likely second-
ary diuretic or hemodynamic alterations prompted by 
renal hydro-electrolytic dysregulation as well as the 
apparition of acid-base disorders, which uncertainly 
explicate the reduction in CSF secretion [51].

	   Even with the theoretical success and hopeful out-
comes from animal models, furosemide and acetazola-
mide have been administered in patients where the pos-
terior period of hemorrhagic hydrocephalus has been 
reached (n = 177). The outcome unexpectedly showed 
a representative crossover to the shunt surgery and an 
augmented rate of neurological manifestations in this 
group [52]. The literature stated that a representative 
fraction of the pediatric population progressed into 
nephron-calcinosis as a consequence of the adminis-
tration of this drug [53].

Then, according to the Cochrane review, the combination 
of acetazolamide + furosemide is not effective and nei-
ther safe in managing post-hemorrhagic hydrocephalus.

Modulation of CSF production by the surgical 
intervention of the CP

Surgical procedures that compromise targeting CSF are 
widely defined by several authors in the last century. Dandy 
[54] illustrated the first surgery for managing hydrocephalus 
by ablating the CP.

Current techniques are:

(a)	 Plexectomy: Some authors informed 37% of successful 
cases, as dodging of CSF deviation interventions [55]. 
The first animal study was performed by Milhorat et al. 
[56], and it was done on monkeys and demonstrated a 
reduction of CSF production near to 37–40%.

(b)	 Cauterization (CPC): The study of Pople et al. demon-
strated that 36% of the cohort did not crossover to shunt 
surgery in the mean follow-up period of 10.5 years; the 
best outcome was in those cases that developed com-
municating hydrocephalus and in cases with deceler-
ated evolution of ventriculomegaly [57].

Warf et al. [58] in Uganda have used ETV (endoscopic 
third ventriculostomy) and CPC surgery using an elastic 
endoscope and monopolar cautery to coagulate the whole 
CP through both lateral ventricles; they emphasize that ETV 
might serve as a pulsation absorber.

In comparison with single-ETV, ETV-CPC generated 
greater outcomes in infants < 1 year of age [58] and in all 
mentioned etiology subtypes [59–61]. The efficacy of ETV-
CPC is related to the quantity of CP cauterized [62] and 
does not harmfully affect cognition in comparison to shunt 
placement or single-ETV [63]. Physiological adjustment to 
a modification in the regular secretion of CSF could suggest 
compensation by the residual CP tissue not cauterized in 
typical procedure or by upregulation of secondary mecha-
nism of production.

Conclusions

There are several types of hydrocephalus, and its differential 
diagnosis is a major concern, such as what happens in CP 
hyperplasia and CPP diagnosis. This kind of hydrocephalus 
commonly leads to high rate of CSF production. The best 
mechanism of diagnoses is the MRI; the ideal treatment 
according to our experience corresponds to total plexectomy 
followed by total CPC. Despite the current knowledge about 
hydrocephalus, we remain without a complete understanding 
of the pathophysiology of this condition. GS could be more 
important than conventional concept of reabsorption of CSF 
in the arachnoid villi; therefore, GS could be a new key point, 
which will guide future investigations. The new concepts of 
AQPs 1 and 4 are involved in the physiology of the CSF 
production and open the possibilities of new pharmacologi-
cal approaches. It is even possible that disorders in AQP1 on 
endothelial cells in specialized circumventricular organs like 
subcommisural structure might be associated with congenital 
hydrocephalus. There are few cases like ours written in the 
literature; we believe this kind of example switches on the 
alarms and should be taken into account always in the mind 
of the neurosurgeons. Further studies are required to cor-
roborate these premises and elucidate the pathophysiological 
mechanisms underlying CSF circulation diseases.
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