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Abstract
Osseous manifestations of neurofibromatosis 1 (NF-1) occur in a minority of the affected subjects but may be because of significant
clinical impairment. Typically, they involve the long bones, commonly the tibia and the fibula, the vertebrae, and the sphenoid wing.
The pathogenesis of NF-1 focal osseous lesions and its possible relationships with other osseous NF-1 anomalies leading to short
stature are still unknown, though it is likely that they depend on a common mechanism acting in a specific subgroup of NF-1
patients. Indeed, NF-1 gene product, neurofibromin, is expressed in all the cells that participate to bone growth: osteoblasts,
osteoclasts, chondrocytes, fibroblasts, and vascular endothelial cells. Absent or low content of neurofibromin may be responsible
for the osseousmanifestations associated to NF-1. Among the focal NF-1 osseous anomalies, the agenesis of the sphenoid wing is of
a particular interest to the neurosurgeon because of its progressive course that can be counteracted only by a surgical intervention.
The sphenoid wing agenesis is regarded as a dysplasia, which is a primary bone pathology. However, its clinical progression is
related to a variety of causes, commonly the development of an intraorbital plexiform neurofibroma or the extracranial protrusion of
temporal lobe parenchyma and its coverings. Thus, the cranial bone defect resulting by the primary bone dysplasia is progressively
accentuated by the orbit remodeling caused by the necessity of accommodating the mass effect exerted by the growing tumor or the
progression of the herniated intracranial content. The aim of this paper is to review the neurosurgical and craniofacial surgical
modalities to prevent the further progression of the disease by “reconstructing” the normal relationship of the orbit and the skull.
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Sphenoid wing osseous dysplasias

Introduction

Neurofibromatosis type 1 (NF-1), also called Recklinghausen
disease, is a neurocutaneous-skeletal autosomal-dominant

common tumor-predisposing disorder that arises secondary
to mutations in the tumor suppressor gene N-F1. It involves
multiple systems, including the skin, eyes, brain, and skeleton.

The incidence of NF-1 is approximately 1:3000 births with
no gender or race predilection [1].

The diagnosis of NF-1 is currently based on the criteria of
the National Institute of Health Consensus Development
Conference published in 1987 [2] which take into consider-
ation the characteristic neurofibromas, “café-au-lait” spots,
axillary or groin freckling, Lisch nodules, optic pathway gli-
omas, and skeletal lesions (Fig. 1) [3, 4].

The clinical presentation of NF-1 is heterogeneous and
deeply related to the formation of tumors in ectoderm and
mesoderm tissues [5].

This phacomatosis is caused by mutations in the NF-1
gene, located at 17q11.2, which encodes the tumor suppressor
neurofibromin [6–10] which acts as RAS GTPase activating
protein (RAS-GAP), thus inactivating Ras pathway.
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In humans, neurofibromin mRNA and protein have been
detected in osteoblasts, osteoclasts, chondrocytes, fibroblasts,
and vascular endothelial cells [1] and its absence or low levels
might account for the occurrence of bone anomalies in NF-1.
Indeed, loss of neurofibromin, in subjects affected by NF-1,
causes a downregulation of osteoblastic activity and an intrin-
sic bone tissue abnormality [11].

Moreover, Ras pathway is essential for the normal growth
of craniofacial structures. Jaws and cranial base are largely
derived from the neural crest cells. Indeed, some authors pro-
pound that NF-1 can be considered as a pathology of neural
crest cells [1].

NF-1-associated osseous lesions or osseous dysplasias
include craniofacial and skeletal anomalies such as short
stature, osteopenia, osteoporosis, short angle scoliosis,
lytic bone lesions, and congenital curving and
pseudarthrosis of the tibia (Fig. 1) [1, 10, 12].
Anyway, it is still unclear why the tendency of NF-1
to produce bone dysplasias results in the apparent prev-
alence of focal lesions that privilege only a few bones.
Among these focal lesions, the absence of the greater
wing of the sphenoid bone is the most common and
almost pathognomonic craniofacial osseous anomaly in
subjects with NF-1.

Craniofacial bone dysplasias

The NF-1 gene is supposed to regulate or influence the growth
of craniofacial bones, thus contributing to the craniofacial
morphology in NF-1 [1, 13–16]. A number of craniofacial
abnormalities in NF-1 have been reported. It includes
macrocephaly, sphenoid wing dysplasia, orbital dysplasia,
maxillary and mandibular deformities, temporomandibular
joint (TMJ) deformities, and dental anomalies [17, 18].

Facial and skull growth can be affected in NF-1 [1, 13, 19].
The first cephalometric study was carried out on a Finnish
cohort of NF-1 subjects by Heervä et al. in 2011 [1] and then
repeated on a larger white American population including
both adults and children with NF-1 by Cung et al. in 2015
[20]. The authors recorded a shorter maxilla, mandible, cranial
base (especially anteriorly, p = 0.0001), and diminished facial
height in adults. Interestingly, these alterations were not de-
tected in children. Cung and colleagues concluded that the
cephalometric differences in adults depended at least in part
on the cranial base shortening and accounted for the shorter
face, mid-face hypoplasia, reduced facial projection, and
smaller jaw. They also suggested that the sphenoid bone short-
ening could be related to an intrinsic NF-1 bone cell defect,
which made the bone more vulnerable to a possible “second
hit” in leading to sphenoid wing dysplasia. Indeed, the sphe-
noid wing dysplasia becomes commonly evident on the clin-
ical examination only in the first 2 years of age.

The role of plexiform neurofibromas in affecting the facies
growth and symmetry was stressed by Friedrich et al. in a
study based on lateral cephalometry published in 2017 [21].
The authors pointed out on the large deviations of facial mea-
sures in patients with NF-1. They did not find significant
variations in subjects with NF-1 with only disseminated cuta-
neous lesions whereas detected significant differences from
healthy volunteers in patients with plexiform neurofibromas.
These differences depended clearly on the number of trigem-
inal nerve branches involved by the tumor. The authors also
confirmed the necessity of considering the possible presence
of a plexiform neurofibromas in all the NF-1 patients present-
ing with facial asymmetry as they had suggested in a previous
study in which they reported jaw malformations in 28 out of
48 NF-1 patients with plexiform neurofibromas originating
from the branches of the trigeminal nerve [22]. Facial asym-
metry concerns about 10% of patients with NF-1 [1, 16].
Neurofibromas involving the articular disc of the temporo-
mandibular joint have been also reported [23]. Indeed, the
presence of plexiform neurofibromas has been associated with
a variety of facial bone anomalies such as numerical aberra-
tions and retention of teeth, deformed alveolar ridge, early
primary tooth eruption, impacted teeth, supernumerary teeth,
missing or displaced teeth, overgrowth of the alveolar process,
osseous defects in the alveolus, and periapical cemental dys-
plasia in women with NF-1 [15, 16, 22, 24–28]. Even

Fig. 1 Skeletal lesions. aX-ray of a tibia showing congenital curving and
pseudarthrosis. b X-ray of a spine showing short angle scoliosis
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increased dental caries has been attributed to NF-1, though
this association is debatable [15, 18].

The clinical and radiological examinations of adult NF-1
subjects show a decreased antero-posterio diameter of the
maxilla in 75% of NF-1 patients, in whom the maxilla is also
often retrognathic due to the shortened anterior cranial base
when compared with controls [1, 20].

Elongated coronoid process with a deep sigmoid notch
[29], notching of the posterior border of the mandibular ramus
[30], hypoplasia of the condyle and zygomatic processes [31]
have been reported. Lorson et al. suggested to include the
elongated coronoid process as a pathognomonic sign of NF-
1 [17]. Radiologically, a wide, branching, and enlargement of
inferior alveolar canal, enlargement mental foramen, and a
decrease in the mandibular angle have been described [15,
16, 18, 22, 24, 25, 32–34].

In spite of the shorter than normal skull base, the volume of
the skull vault in NF-1 is generally larger than in healthy
persons in a significant proportion of the cases.
Approximately 25% of patients with NF-1 tend to have a large
head circumference and macrocephaly (occipito-frontal
circumference > 2 SD above the mean) [35]. The brain vol-
ume is also larger in subjects with NF-1 compared with con-
trols [1]. However, it is not clear whether the large skull
growth is the primary cause of the macrocephaly or
macrocephaly is secondary to the enlargement of the brain
[10, 36]. In some cases, the presence ofmild ventriculomegaly
makes the physiopathogenetic interpretation of the phenome-
non more difficult.

Calvarial defects have been reported in some patients with
NF-1 too (Fig. 2) [37].

The orbital deformities have been considered uncommon
in NF-1 but with the refinement of clinical and radiological
diagnosis; nowadays, they are regarded to be relatively com-
mon. In 2003, Jacquemin et al. retrospectively reviewed CT
and MR imaging abnormalities of the orbit in 31 NF-1 pa-
tients, mean age 14 years, and found orbital abnormalities in
24 patients [38]. The most frequent cause was plexiform neu-
rofibromas within the orbit or in relation to the anterior skull
base detected in 20 cases; in 13 patients, the orbital abnormal-
ities were due to a distortion of the posterior wall induced by
encroachment from an expanded middle cranial fossa; six pa-
tients harbored an optic nerve glioma with enlarged optic ca-
nal. Enlargement of the orbital rim was noticed in 18 subjects.
Other changes such as focal decalcification or remodeling of
orbital walls adjacent to plexiform neurofibroma were detect-
ed in 18 patients and enlargement of cranial foramina resulting
from tumor infiltration of sensory nerves in 16.

Actually, the orbital abnormalities in NF-1 recognize three
main causes: the development of an optic nerve glioma, the
congenital defect of the sphenoid wing, and the presence of a
plexiform neurofibroma. While the orbital deformities associ-
ated to optic nerve glioma are nearly always stable due to the

absent or slow progression of this tumor, the bone lesions due
to plexiform neurofibromas and sphenoid bone dysgenesis are
frequently progressive [38]. When a surgical therapy is taken
into account, the orbital deformities should be regarded as the
combined effect of a primary dysplasia and the secondary
response of bone to an expanding mass that can be
counteracted only by an appropriate management. In some
instances, especially in infants and young children, the orbital
abnormalities can regress after the removal of the causative
occupying space lesion or the skull base reconstruction.

Sphenoid wing dysplasia

Sphenoid wing dysplasia is the most distinctive craniofacial
anomaly in NF-1. It occurs in 5–12% of the cases. Complete
agenesis is, however, very rare [39–41]. In most cases, the
defect of the greater wing of the sphenoid bone is isolated,
partial, and unilateral, involving more frequently the left part
of the bone, a feature that has been believed to reinforce the
hypothesis of its primary and congenital nature. Over 50% of
patients who have sphenoid wing defects are NF-1 subjects.
Only rarely the sphenoid wing dysgenesis is associated to
extensive dysplasia of the skull base [42]. It is congenital
though becoming generally clinically apparent post-birth, usu-
ally before the age of 2 years [10, 12, 43]. Two main
physiopathogenetic interpretations have been propounded. In
cases without concurrent causes, the dysgenesis of the sphe-
noid wingwould result from a primary ossification defect with
poor mesodermal development and bone formation [10, 20,
41, 44]. In cases with concurrent causes, nearly always plex-
iform neurofibromas, a multifactorial genesis of the sphenoid
wing defect has been hypothesized [41]. According to such an
hypothesis that would also explain the progression of the dis-
ease, the sphenoid bone dysgenesis would develop secondar-
ily from plexiform neurofibromas in the orbit or in the super-
ficial temporal fossa which would erode or deform the adja-
cent bony orbit together with local vascular abnormalities due
to the tumor itself which can increase the orbital blood circu-
lation and expand the superior orbital fissure. This may devel-
op before birth, in utero, or early childhood [12, 41, 45].

The partial or complete absence of the greater wing of the
sphenoid is associated with a prolapse of the temporal lobe in
the orbital cavity resulting in progressive facial asymmetry,
progressive proptosis, pulsating exophthalmos, restriction of
extraocular movement, conjunctival inflammation, and pres-
sure on the optic nerve with risk of blindness [12, 42, 44].

Indeed, the partial absence of the greater wing of the sphe-
noid or an anterior displacement of the greater sphenoid wing
is associated to a widening of the orbital apex and
anteroposterior enlargement of the middle cranial fossa
(Fig. 3) [41]. An anterior temporal pooling of cerebrospinal
fluid, often wrongly reported as an associated arachnoid cyst
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[41], is usually present and participates to the bone dysplasia
progression by its hammer effect that is by amplificating the
mechanical effect of CSF pulses. In other words, the presence
of the sphenoid wing defect creates a local functional dynamic
situation which is similar to that accounting for the progres-
sive herniation of meninges and brain parenchyma in cases of
growing cranial fractures. The adjacent bone undergoes thin-
ning and remodeling. Finally, the sphenoid bone defect can
become large enough to allow the progressive herniation of
the temporal lobe structures. A pulsatile exophthalmos is also
created with increasing deviation of the ocular globe and sec-
ondary alteration and displacement of the entire orbit. The
orbital deformation is usually slow and well tolerated from
an ophthalmological point of view. The optic nerve can elon-
gated enormously without a significant impact on the visual
function. However, when the proptosis becomes severe, pal-
pebral occlusion may become incomplete leading to potential
corneal exposure and damage.

Management

The management of sphenoid wing dysplasia complicated by
ocular globe proptosis is surgical. Currently, there are no clear
guidelines. However, as the condition is progressive, an early
operation is suggested, preferably to be carried out by a double
team that combines neurosurgeons and maxillofacial sur-
geons, are necessary to prevent further progression of the bone
“dysplasia” and further herniation of cerebral structures to
prevent or reverse, if present, functional impairment (vision)
and to correct cosmetic deformity. The plastic surgeon may be
required post-operatively to deal with the exceeding palpebral
tissue and to assure the best facial cosmetic result. The surgical
procedure aims at reconstructing the cranial and orbit defect

and also restoring a barrier between the orbit and the middle
cranial fossa without damaging the neural structures. In most
severe cases, it could be necessary to repair a excessively thin
dura mater and excise damaged nervous tissues encroached in
the bone lacuna or an associate plexiform neurofibroma. The
many surgical techniques described in the literature [44,
46–52] might be subdivided in two main approaches: the lat-
eral orbital approach and the intracranial approach. The lateral
approach consists of a lateral orbitotomy to enter the orbital
cavity and dissect the dura of the temporal lobe off of the
periorbita in order to reconstruct the skull base from an ante-
rior view. The procedure may be assisted by an intraoperative
computed tomography or neuronavigation to check the posi-
tioning of the interposing material used to reestablish the del-
icate anatomy of the region [44, 46–48, 53].

The intracranial approach allows reconstructing the skull
base from the interior of the skull allowing a better view of the
operatory field and consequently a safer management of the
bone defect. With this approach, the retraction of the temporal
lobe and the separation of dura from the periorbital tissues are
easier than using the orbital approach, and the preservation of
the optic nerve is safer [47]. A transient CSF diversion may be
needed in order to reduce the intracranial pressure to perform
the extradural retraction of the temporal lobe safely and reduce
the volume of the CSF pooling usually present at the pole of
this lobe [44]. Furthermore, the intracranial approach favors,
when necessary, the excision of herniated gliotic temporal
lobe tissue and dural grafting, as well as the placement of
the material used to create the interposition between the orbital
and cranial cavities.

The defect of sphenoid dysplasia can be repaired by using
bone grafts, titanium meshes, high-density porous polyethyl-
ene implants, or a combination of them [44, 50, 52, 54, 55].

Fig. 2 CT scan imaging. a CT
scan showing lytic bone lesions of
the vertebrae and mandibular
asymmetry. b CT scan of a skull
showing calvarial defects
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The success of the operation is based on the accurate
modeling of the implant utilized to reconstruct the skull base
and posterior orbit wall, its stable anchoring, and the correct
choice of the implant material.

Traditionally, split bone grafts from iliac crest or calvaria or
ribs were used to repair sphenoidwing dysplasia in NF-1. It was
for several years the standard technique for craniofacial recon-
struction in many cases. Bone grafts have the advantage of
being completely tolerable. Ribs have the advantage of being
malleable and able to integrate with the surrounding bone tis-
sue; split calvarial bone grafts are easily harvested in the re-
quired size and are hard and less absorbable than bone from
other sites. However, both types of grafts share the same limi-
tations. Their use increases the operative time and is weighted
by the morbidity of the donor site and their reabsorption in a
significant percentage of the cases besides the risk of infection
[47]. Out of 14 patients with pulsating exophthalmos described
by Snyder and coworkers, 11 patients were treated with bone
graft only and 4 suffered from recurrence because of implant
resorption [48]. In addition, to reabsorption, the bonematerial is
rigid and difficult to sculpt to reconstruct the curved shape of
the greater wing of sphenoid and the bony orbital skeleton.

To solve the problem of bone resorption, allogenic mate-
rials were introduced namely methyl methacrylate, vicryl, hy-
droxyapatite, demineralized bone, and titanium (Table 1).
Their use has the advantages of avoiding donor site morbidity
and graft resorption, reducing surgical time, and the absence
of spontaneous remodeling that is a high stability of the con-
struct. Titanium meshes are malleable and can mimic the con-
tour of the anterior and middle cranial fossae floor; their use
reduces operative time [49] and prevents recurrence of herni-
ation and proptosis in many cases. Titanium meshes can be
also used in association with bone implants or other allogenic
materials. Wu et al. described its use with computer-aided
design/computer-aided manufactured (CAD-CAM) method
[50], and Friedrich et al. utilized a computed cone-beam com-
puted tomography system during the surgery to check the
good position of the implant [51]. However, allogenic material
carries a risk of infection and development of adhesions; dural
herniation or meningoencephalocele through the mesh holes
has been reported [44, 47, 49]. In case of revision, it could be
risky and challenging for the surgeon to separate titanium
mesh and soft tissues [49, 52]. Another drawback is interfer-
ences during radiological CT and MRI follow-up [53, 54]. In

Fig. 3 Case of a 3.5-year-old boy referred for a sphenoid wing dysplasia
due to NF-1 causing pulsating exophthalmos. Magnetic resonance and
CTscan imaging showing a partial dysplasia of the greater wing of the left
sphenoid with an expansion of the temporal fossa. A herniation of

temporal brain through the sphenoid dysplasia is noted, inducing the
exophthalmos (a, d axial view, b, e sagittal view, c, f coronal view).
Please note that the use of CT scan in such background of NF-1 should
be limited
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order to avoid adherence between tissues and titanium mesh
or meningoencephalocele through its holes, some techniques
have been described using mixed implants. Friedrich et al.
described the use of titanium mesh associated with iliac
spongiosa bone graft through a lateral orbitotomy under nav-
igator guidance. The defect was therefore repaired
extracranially. But it required a revised surgery 6 months later
because of turned mesh and resorption of bone graft. More
extended mesh was implanted, and iliac spongiosa bone graft
was placed on both sides [55]. High-density porous polyeth-
ylene implants (MEDPOR®) were also utilized with stable
results and without secondary displacement or resorption
[49, 56]. Niddam et al. used a 0.85-mm titanium-reinforced
porous polyethylene implant sheet, which was modeled intra-
operatively according to the orbital cavity anatomy. Porous
polyethylene sheet reduces the risk of adhesions and brain
herniation through the mesh holes. No screw fixation is nec-
essary, and it decreases the risk of radiologic interference and
infection. These implants are biocompatible, resilient, radio-
lucent, and non-resorbable [49].

Finally, another material that can be used to easily reshape
the contour and avoid any adherence is methyl methacrylate
that we use in our craniofacial unit to reconstruct the greater
wing of the sphenoid in such cases.

All the authors have underlined the use of malleable material
apt to create implants that mimic the contour of the anterior
temporal fossa and posterior wall of the orbit in the assumption
that the shape of this type of implants would assure a better
stability. Even a preformed computer-created implants based
on preoperative CT scan to better fit with the bone lacuna in
the single subject have been considered in this direction.
Another technique was described by Di Rocco et al. who, rather
than a concave construct covering the skull base defect, use a
curved a titanium mesh covered by lyophilized dura with the
convex surface against the retracted temporal pole in order to
oppose its anterior displacement and compensate for its pulsa-
tions [44]. Indeed, the CSF pulses had blamed to favor the reab-
sorption of the bony implants and further erosion of the margins
of the lacuna. This C-shaped titanium mesh covered with
liodura, with its posterior convexity over the temporal lobe, will
accommodate the CSF pulses because of its elasticity; its lateral
borders implanted on lateral and mesial walls of the temporal
fossa, the volume of which progressively diminishes in postero-
anterior direction, will undergo a self-anchorage under the pres-
sure exerted by the brain over its convex central part. Thus, no
screw fixation is necessary and dislocation of the implant result-
ed to be impossible [44]. The techniquewas successfully utilized
in 4 NF-1 subjects, in two children to correct the malformation
and prevent its progression and in two advanced adolescent cases
that subsequently could undergo the intervention of the maxillo-
facial surgeon for correcting the orbit and facial cosmetic abnor-
malities. Such concave shape can be also obtained with other
materials (methyl methacrylate for instance).

Conclusion

Early diagnosis of NF-1 and a multidisciplinary treatment is
important for young patients. The article reviews the cranio-
facial bone alterations in patients with NF-1. Facial bones in
patients with NF-1 are short in the anteroposterior direction.
Typical craniofacial characteristics of NF-1 are short mandi-
ble, maxilla, and cranial base compared with healthy controls.
Sphenoid dysplasia is the most distinctive feature of this syn-
drome. Repair of the great sphenoid wing using a transcranial
approach has become more practiced even if lateral orbital
approach has been described. Bone graft material may be tak-
en from the skull or iliac crest. And the bone graft is wired,
plated, or screwed into the position of the defect.

Unfortunately, resorption of bone grafts has been a key
limitation in the reconstruction of sphenoid wing dysplasia.
For such a reason, other techniques have been described such
as titanium mesh used alone or in combination with bone
grafts or tissue, methyl methacrylate, and high-density porous
polyethylene implants.
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