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Chiari malformation and atlantoaxial instability:
problems of co-existence
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Abstract
Background Association of Chiari malformation and atlantoaxial subluxation varies. There is a complex relationship between the
two, bony and soft tissue pathologies.
Methods This is a review of various articles available from the literature on the management of Chiari and its association with
atlantoaxial instability.
Results We have an experience of operating on 86 cases of paediatric atlantoaxial subluxation, of which 12 had Chiari malfor-
mation diagnosed preoperatively (13.95%). Of the 76 children with Chiari malformations operated on by us, 11 had associated
atlantoaxial subluxation diagnosed on imaging (14.47%).
Conclusions Re-alignment and reduction with fixation may be effective in achieving decompression in cases where reduction is
possible from posterior approach. In these cases, posterior fixation is all that is required. If reduction is not possible from posterior
and there is “fixed” ventral compression, anterior decompression needs to be combined with posterior fixation. In most cases,
direct posterior decompression is warranted.
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Introduction

The association of Chiari malformation and atlantoaxial sub-
luxation varies from 26 to 38% in quoted literature [1–6].
While it is easy to postulate why the two pathologies—one a
bony deficiency and the other a soft tissue herniation at the
same level—should occur together, reality makes the associ-
ation more complex to understand.

Development

The craniovertebral junction arises from the occipital somites
and the first three cervical somites [7]. The axis which forms
the central pivot in a bony ring, develops from the second
spinal sclerotome in three stages—pre-cartilaginous stage,
stage of chondrification and finally the stage of ossification.
The defect in the posterior elements of the axis may be caused
by failure of the centres of chondrification, or by failure of the
ossification process [8–10].

There have been significant advances in furthering the un-
derstanding of the development of the CVJ (craniovertebral
junction). There are two families of regulatory genes which
are responsible for the development of the sclerotomal parts of
the somites during their re-segmentation to form the specific
identify of each vertebra [11–14]. These modulate morpho-
genesis by influencing the transcription of specific down-
stream genes. Teratogen-induced disturbance of HOX gene
expression and mutation in the HOX genes may alter the pro-
cess of developments of cervical vertebral somites.
Inactivation of HOX-D3 gene results in mutant mice with
assimilation of the atlas to the basi-occiput [15].
Disturbances of gene expression might prove to be the
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underlying cause of malformations in this region. PAX genes
contribute to the development of the early nervous system.
Control of re-segmentation of the sclerotomes to establish
vertebral boundaries seems to be independently controlled
by regulatory genes in the PAX family [12, 14, 16–19].
Alterations in these genes lead to re-segmentation problems
and fused vertebrae.

Malformation of the chorda dorsalis is one of the causes of
congenital fusion of cervical vertebrae (CFCV) [20, 21]. We
also know that retinoids are one of the key factors responsible
for the genesis of abnormalities in the axial skeleton [22, 23],
and their effect on the formation of the vertebrae is via regu-
lation of the Hox gene [24, 25]. Some studies suggest that
decrease in local blood supply is responsible for the CFCV
[26]. Whatever be the exact mechanism, there is little doubt
that failure of segmentation controlled by a number of envi-
ronmental and genetic factors is responsible for CFCV. Pax 1
gene with Pax 9 gene controls fusion between the first and
second cervical vertebrae, and between the 4th and 5th cervi-
cal vertebrae [27]. TheMeox 1 gene [28, 29] and the Cyp26b1
gene [30] have been shown specifically to cause vertebral
body fusion. Therefore, it is without debate that the process
of embryonic segmentation is a genetically controlled phe-
nomenon with minimal environmental influences, and that
this occurs around the 8th week of gestational age [31, 32].

If there are inadequacies in the formation of the occipital
sclerotomes (between the 4th and 10th weeks of embryonic
life) [4, 33, 34] and this is coupled with a small foramen
magnum and a small posterior fossa, there is no doubt that
the hindbrain may be pushed out of the small posterior fossa
causing the Chiari malformation to develop. Also, vertical
movement of the odontoid relative to the foramen magnum
(the so-called basilar invagination) can further compromise
the space available for the craniocervical junction and impair
the flow of cerebrospinal fluid (CSF) resulting in a Chiari
malformation and a syrinx associated with maldevelopment
of the occipital sclerotomes [35–40].

Some authors have suggested that the assembly of the
odontoid process, anterior arch of the atlas and the clivus
migrated superiorly in unison results in reduction of the pos-
terior cranial fossa volume, and this is the primary pathology
in these patients. The Chiari malformation or herniation of the
cerebellar tonsil was considered to be a result of reduction in
the posterior cranial fossa volume [41].

Radiological features

What are the radiological features which occur in these chil-
dren? Obviously, the fundamental issue is when there is hind-
brain herniation documented on sagittal MR images, one has
to do lateral digital dynamic films to check for instability, prior
to deciding on any management strategy. Failure to pick up an

atlantoaxial instability may have disastrous consequences if
radical posterior fossa decompression is done particularly with
removal of posterior arch of the atlas. A 7-year-old boy with
symptomatic Chiari I type of malformation, and a cervical
syrinx was operated on for minimal hyperreflexia in lower
limbs combined with tingling numbness in his hands, and
4 months later presented to us with spastic quadriparesis due
to a missed atlantoaxial instability (Fig. 1). Occipitocervical
fixation was necessary to reverse (though partially only) his
symptoms.

The following radiological features in association with a
Chiari malformation should alert the physician about the pos-
sibility of instability in the atlantoaxial joint: bifid posterior
arch of atlas, os odontoideum, occipitalized atlas, C2–3, C5–6
fusion, syringomyelia [42]. Other authors have suggested the
following associations with Chiari malformation:
occipitalized atlas and cervical 2–3 vertebral body fusion,
platybasia, basilar invagination, and C2–C3 anterior listhesis
[43]. In Menezes series, atlas assimilation was the commonest
bony anomaly in children with Chiari malformation.
Segmentation defects of vertebrae C2 C3 and median basilar
invagination were also noted [3]. Some authors have sug-
gested an os odontoideum as an associated bony abnormality
in patients with Chiari malformation. However, analysis of
various series where the two pathologies co-exist has shown
incidences which are fairly low (1–8%) [44–47].

Material and methods: Our experience

We have the experience of dealing with 4 children with
missed subluxation, who deteriorated after surgery for
Chiari. All of them improved after posterior fixation sur-
gery at a second stage. However, in 2 cases, the improve-
ment was not satisfactory. It is our practice to routinely
perform dynamic lateral digital films in all children with
Chiari malformation to rule out subluxation prior to de-
compression for the Chiari. In case of doubt, we perform
flexion-extension CT scans, so paranoid are we about

Fig. 1 Worsening of spastic quadriparesis in a child due to missed AAD
and operated Chiari I malformation
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missing subluxation (Fig. 2a and b). We have not encoun-
tered subluxation at surgery where we have not been able
to demonstrate the same radiologically preoperatively.

Out of 86 cases of paediatric atlantoaxial subluxation
operated on by us, 12 had Chiari malformation diagnosed
preoperatively (13.95%). Of the 76 children with Chiari
malformations operated on by us, 11 had associated
atlantoaxial subluxation diagnosed on imaging (14.47%).
We have followed the policy of offering posterior decom-
pression alone if no instability is documented preopera-
tively, and posterior fixation with decompression if insta-
bility is documented preoperatively but this is reducible
by either position or traction (Fig. 3). We have reserved
anterior decompression in addition to posterior decom-
pression and fixation in cases with “fixed” subluxation
and significant anterior compression, e.g. in retroverted
odontoid compressing the cord with Chiari malformation.

Discussion: Treatment

The fundamental debate in the children who have documented
atlantoaxial instability and Chiari malformation revolves
around the following questions:

1. Is it necessary to treat both the problems or only the
instability?

2. If the instability is addressed alone, is it necessary to ad-
dress the Chiari malformation at a second stage?

3. If both have to be addressed together, what is the extent of
decompression and what indeed the extent of fixation?

4. What is the fate of the associated syrinx in this situation?

Fig. 2 a Flexion-extension
dynamic films do not clarify
presence of AAD. b Flexion-
extension CT scans establish the
diagnosis of AAD

Fig. 3 Posterior decompression and fixation in AAD with Chiari
malformation
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We shall endeavour to collect the evidences for each of the
questions.

The fixers

In his article, Dr. Goel describes how all patients were treated
with atlantoaxial plate and screw fixation. He concluded that
atlantoaxial stabilization without bone decompression and
without duroplasty is the main treatment form for symptom-
atic tonsillar herniation, whether or not the condition is asso-
ciated with BI (basilar invagination) or syringomyelia.
According to the author’s new theory, patients with BI had
instability even when it was not demonstrated by dynamic
changes. The same theory was applied to CM (Chiari
malformations)—all patients had atlantoaxial instability.
They have postulated that syringomyelia in CM is primarily
because of the C1–2 instability, either subtle or apparent [48].
The resultant tonsillar herniation is the result of a compensa-
tory protective phenomenon, acting as natural “air-bags” that
protect the spinal cord from the effects of the atlantoaxial
instability [49]. However, the author claimed that in all these
cases, he was able to discern instability intra-operatively.
Finally, it was reported that CM with or without BI is always
associated with atlantoaxial instability even when it is not
demonstrable on radiological imaging and that foramen mag-
num decompression was unnecessary and actually harmful
[48]. The hypothesis suggested by Goel et al. is interesting
but does require randomization as well as carefully conducted
studies to prove its value. It is also limited by significant
ethical issues, such as not performing a foramen magnum
decompression and/or duroplasty in patients in the presence
of a symptomatic tonsillar herniation.

The decompressors

The opinion is challenged by Joaquim AF et al. According to
them, routine atlantoaxial fixation without posterior fossa de-
compression for patients with tonsillar herniation, with or
without syringomyelia, and no evident CVJ instability may
not be recommended until further evidence is available.
Furthermore, fixation of the atlantoaxial complex may result
in restriction of the cervical rotation and increase morbidity
[50]. Also, this new theory cannot explain the clinical im-
provement seen in patients in the previously reported series,
who underwent posterior fossa decompression alone for
treating CM, even though Goel et al. emphasize that the im-
provement which occurs is due to release of compression by
the “air bags-tonsils”, and that the neurological improvement
that occurs following posterior fossa decompression is a tran-
sient improvement as it does not tackle the primary cause,
which is instability at the C1–C2 joints [48].

As has also been stated by many other authors, Joaquim
also suggested that a congenital shallow posterior fossa is well
documented in CM and is the most accepted pathogenic phe-
nomenon for explaining the symptoms in CM [51–53]. Their
opinion is supported by Rahman et al. The author pointed out
that the tonsils are not “air-bags” since they cause more com-
pression of the neural structures than CSF, suggesting that
AAD is not the cause of symptoms in CM [54]. This conven-
tional approach to treatment of Chiari malformations has
stood the test of time, but there is no doubt a group of patients
deteriorated after posterior fossa decompression. Could under-
lying undiagnosed instability be the cause?

The fixers and decompressors

Arnold Menezes emphasized that it was the ventral decom-
pression which allowed re-establishment of CSF pathways in
fixed dislocations. Patients with irreducible ventral bone ab-
normalities compressing the medulla and cervicomedullary
junction underwent ventral decompression via a transoral or
a transpalatopharyngeal route and a dorsal occipitocervical
fusion. In reducible craniocervical junction abnormalities,
dorsal decompression was performed as needed (foramen
magnum-posterior atlas arch) and a limited occipitocervical
fusion (occiput to C1 to C2). The presence of syringomyelia
and hindbrain herniation did not change this decision [55].

The cause of deterioration after posterior decompression in
patients with ventral CVJ abnormalities who undergo a pri-
mary PFDD has been investigated by many authors. It is pos-
sible that deterioration is due to angulation that takes place at
the cervicomedullary junction from the offending ventral pa-
thology during the operation in a prone position, and the fact
that instability at the atlantoaxial joint has not been detected
[56]. Delayed worsening may be due to a gradual appearance
of instability and cranial settling. This latter condition is at-
tributed to the so-called cantilever effect of the cranium. This
leads to development of delayed instability [57]. The evidence
for this is the significance of the syrinx disappearing after
ventral CVJ decompression in the face of hindbrain hernia-
tion. It is more than likely that this results from removal of the
CSF block at the level of the foramen magnum and also from
restoration of the posterior fossa volume. It is possible that
there is a reversal of the CSF craniospinal pressure after de-
compression. However, a combination of events most likely
takes place to provide for the significant clinical as well as
radiographic improvement [55].

Kohno reported on a case where successful treatment of
“adult Arnold-Chiari malformation with associated basilar im-
pression and syringomyelia” used the anterior transoral route.
This patient underwent an anterior fusion together with the
transoral decompression. Postoperative MR imaging showed
that the cerebellar tonsils had ascended and the syringomyelia
had regressed; no dorsal decompression was conducted [58].
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Klekamp J studied Chiari patients with and without basilar
invagination although his series included adult patients. His
study presents surgical results for patients with Chiari I mal-
formation with and without additional basilar invagination.
Patients with (n = 46) basilar invagination in addition to
Chiari I malformation were separated into groups: those with
(n = 31) and without (n = 15) ventral compression by the
odontoid in the foramen magnum. All craniospinal operations
included a foramen magnum decompression with arachnoid
dissection, opening of the fourth ventricle and a duroplasty. In
all patients with ventral compression, craniospinal stabiliza-
tion was performed with the foramen magnum decompres-
sion, except for 4 patients with mild ventral compression early
in the series who underwent posterior decompression only. In
the group with ventral compression, 9 patients with caudal
cranial nerve dysfunctions underwent a combination of
transoral decompression with posterior decompression and
fusion. They conclude that Chiari I malformations without
invagination and those with invaginations but without ventral
compression could be managed by foramen magnum decom-
pression alone. The majority of patients with ventral compres-
sion however needed treatment by posterior decompression,
re-alignment and stabilization, reserving anterior decompres-
sions for patients with profound, symptomatic brainstem com-
pression [59].

SW Hwang suggests an anterior and posterior circumfer-
ential decompression with C1C2 arthrodesis in patients with
Chiari malformation and AAD [60]. Jea adopted the middle
path [61]. Neurological status scores of patients with Chiari I
malformation with irreducible AAD who underwent single-
stage transoral decompression with posterior stabilization
were significantly better than those patients who underwent
the posterior procedure alone. In the presence of CM-I with
reducible atlantoaxial dislocation, reduction and stabilization
of the joint produced better results. He argued that patients
with Chiari I malformation should be investigated for the
presence of atlantoaxial dislocation. In case atlantoaxial dislo-
cation co-exists, priority must be given to relieving anterior
cervicomedullary compression [60].

In the series by Hankinson, posterior decompression alone
was sufficient in the majority of cases but where anterior de-
compression was required this was always supplemented by
posterior fixation [62].

Conclusions: The decompression/fixation
summary—our philosophy

So, here is a summary of the problem:

1. The children have an atlantoaxial instability and a hind-
brain herniation with or without a syrinx.

2. There is no doubt that the CSF circulation is impeded by
the herniation as well as the anterior compression caused
by the AAD.

3. What is clear is that, for symptomatic improvement, CSF
circulation at the foramen magnum needs to be re-
established.

4. Re-alignment and reduction with fixation may be effec-
tive in achieving decompression in cases where reduction
is possible from posterior approach. Here, posterior fixa-
tion is all that is required.

5. If reduction is not possible from posterior and there is
“fixed” ventral compression, anterior decompression
needs to be combined with posterior fixation, although
some authors have advocated anterior fixation.

6. There is enough evidence including our own data to sug-
gest that if atlantoaxial subluxation is missed, and poste-
rior decompression alone is done, these children deterio-
rate and require fixation. Hence, the question of two-stage
approach to this problem cannot arise.

7. Authors have reported using ultrasound to assess CSF
flow across the foramen magnum. If one were to belong
to the Goel school, one would need to demonstrate evi-
dence of CSF flow after re-alignment and fixation alone.
If this was in doubt, additional posterior decompression
should be the sensible approach. Moreover, whether de-
compression should be bony or dural can also be decided
on the basis of ultrasound evidence of flow.

Perhaps if one looks at the literature dispassionately, there
is less disagreement among the groups than it would seem at
first look.
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