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Abstract Assessing intracranial pressure (ICP) remains a cor-
nerstone in neurosurgical care. Invasive techniques for moni-
toring ICP remain the gold standard. The need for a reliable,
safe and reproducible technique to non-invasively assess ICP
in the context of early screening and in the neurocritical care
environment is obvious. Numerous techniques have been de-
scribed with several novel advances. While none of the cur-
rently available techniques appear independently accurate
enough to quantify raised ICP, there is some promising work
being undertaken.
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Introduction

Early work done by Guillaume and Janny in 1951 [1], follow-
ed by Lundberg’s magnum opus in 1960 [2] laid the founda-
tion for subsequent developments in intracranial pressure
(ICP) monitoring [3–6]. The association between raised ICP
and poor neurological outcome has beenwidely reported, with
distinct clinical and therapeutic implications [7–10]. Though
some reports have questioned the merits of monitoring ICP
[11, 12], the diagnostic and therapeutic role of invasive

monitoring techniques, especially in traumatic brain injury
(TBI), has been well supported [3, 13–17].

The benefits of reliably and non-invasively assessing ICP,
however, have also been described, and while invasive ICP
monitoring remains the gold standard, the development of
accurate, non-invasive alternatives is ongoing [2, 18, 19].
Perhaps the most benefit of a reliable non-invasive technique
lies in early detection, especially where the clinical presenta-
tion of raised ICP may be subtle.

In children, determining the threshold for raised ICP is
complex because of physiological and morphological hetero-
geneity. Lower ICP treatment thresholds for younger children
are often considered appropriate, but there is still a lack of data
to support this. The current recommendation in the guidelines
for acute medical care of severe traumatic brain injury in ne-
onates, children and adolescents suggests an ICP treatment
threshold of 20 mmHg for children, but there are no age-
specific recommendations [20, 21], while age-related ICP
thresholds of 2 to 6 years—6 mmHg, 7 to 10 years—
9 mmHg and 11 to 15 years—13 mmHg have been described
[22]. An ICP threshold of 20 mmHg demonstrated significant
correlation with outcome in children with traumatic brain in-
jury [23]. It therefore remains specifically relevant to interpret
any recommended ICP threshold in the context of clinical
presentation, underlying aetiology, monitoring of physiologi-
cal variables (where appropriate) and imaging findings in an
individual patient.

Monitoring of ICP

There is still no ideal method for evaluating ICP. While the
benefit of continuous, real-time monitoring provided by inva-
sive ICP monitoring is clear, it also comes with distinct limi-
tations. The appeal of non-invasive ICP monitoring lies in
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obviating the need for placement of an intracranial device and
avoidance of the risks associated with these procedures.
Current non-invasive ICP monitoring techniques are, howev-
er, limited by inadequate diagnostic accuracy as most non-
invasive techniques provide qualitative estimates of ICP but
lack quantitative value [19, 24].

The use of invasive ICP monitoring is suboptimal in clinical
practice. Patients being ventilated in a neurocritical care envi-
ronment are good candidates for invasive monitoring, but am-
bulant patients are less suitable, and as a result, ICP monitoring
may not be performed in many patients in whom it is indicated.

Invasive ICP monitoring remains the standard against
which all non-invasive methods of assessing ICP are com-
pared [13, 25]. The gold standard for invasive ICP monitoring
remains measurement via a transduced intraventricular cathe-
ter [14]. The risks and limitations associated with invasive ICP
monitoring have inspired considerable efforts towards the de-
velopment of non-invasive techniques that are reliable, easy to
use, cost-effective and reproducible [18, 19, 24, 26]. Avariety
of non-invasive techniques have been described for assessing
ICP; their widespread use, however, remains quite limited.
The shortcomings of these non-invasive techniques include
the range of cut-off values for detecting raised ICP, inter-
rater variability and qualitative rather than quantitative mea-
surement of ICP [18, 19, 26]. For a non-invasive technique to
be considered reliable, it would have to correlate well with
invasively measured ICP, predict ICP within 2 mmHg in the
0–20 mmHg range, with a maximum error of 10 % for ICP
>20 mmHg, which are the specifications supported by the
Brain Trauma Foundation [27].

Non-invasive ICP monitoring

The ideal non-invasive technique should be relatively inex-
pensive, repeatable, portable and radiation-free and allow con-
tinuous monitoring. It could facilitate screening and triage in
the acute care setting, allow easier long-term monitoring in a
neurocritical care environment and augment follow-up assess-
ment in patients with chronic conditions presenting with
raised ICP, e.g. hydrocephalus. The benefits of such a tech-
nique are certainly not limited to a neurosurgical environment
but include medical emergencies, ophthalmology assessment,
anesthesiology and aeronautical health assessment.

Current methods of non-invasive ICP assessment usually
involve evaluating physiological or anatomical characteristics
influenced by increases in ICP. There are a variety of tech-
niques which include both clinical and technological assess-
ment with varying degrees of diagnostic accuracy [18, 19, 26].
These techniques include the following:

i. Clinical assessment
ii. Methods utilising natural bony windows in the skull
iii. Methods assessing cerebral fluid dynamics properties

iv. Electrophysiological methods
v. Imaging methods
vi. Novel methods

Clinical assessment

Clinical neurological assessment remains an important initial
diagnostic and monitoring tool. Careful history taking can be
an invaluable tool in making the diagnosis of raised ICP,
where symptoms suggestive of raised ICP include headache,
impaired level of consciousness, visual disturbance, nausea
and vomiting, developmental delay and failure to thrive (in
younger children).

The nuances of clinical evaluation differ in the paediatric
and adult population. In children with an open anterior fonta-
nelle (AF), where the skull sutures have not yet fused, an
abnormal increase in the head circumference and bulging of
the fontanelle are good indicators of raised ICP [28, 29]. In
severely raised ICP, the sutures may often be separated and
palpable. Distended scalp veins may be visible.

After the cranial sutures have fused, assessment of ICP
becomes more difficult. Finding papilledema on fundoscopy
is a useful but inconsistent finding in raised ICP [30, 31].
Papilledema is usually bilateral and generally develops within
5 days of an abnormal increase in ICP [32, 33]. Fundoscopic
examination can provide significant additional evidence of
underlying raised ICP, which includes papilledema, haemor-
rhage, loss of spontaneous venous pulsation and optic atrophy.
Spontaneous venous pulsation (SVP) is a sensitive marker for
normal ICP but should be interpreted in the context of the
patient’s clinical presentation [34–36].

Cranial nerve palsies, usually the third and sixth cranial
nerves and abnormalities of gaze (usually upward gaze palsy),
are ominous signs that raised ICPmay be present. Bradycardia
and hypertension with abnormal respiration (Cushing’s re-
sponse) may accompany cerebral herniation syndromes, usu-
ally signalling critically raised ICP requiring emergent treat-
ment. The benefit of a thorough history and clinical examina-
tion can therefore not overemphasised.

Methods utilising the natural bony windows of the skull

The most accessible anatomical windows in the bony skull
used to assess ICP are transorbital, auditory canal and AF in
infants (Table 1).

Transorbital methods

i. Pupillometry

Infrared pupillometry has been used to quantitatively mea-
sure subtle changes in pupil size in response to light stimulus.
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Pupillometers have been found to be more sensitive than man-
ual scoring for noting small changes in pupil size [37, 38]. In
normal individuals, the pupil decreases by 34–36 % in size, in
response to a standard light stimulus. This response is reduced
to 20 % in head-injured patients, with a reduction of less than
10 % associated with an ICP >20 mmHg [39, 40]. While
promising, the clinical applicability of this technique requires
further investigation.

ii. Intraocular pressure (IOP)

The appeal of this technique lies in the anatomical proxim-
ity and direct communication between the eye and the intra-
cranial space [41]. The indirect transmission of ICP to the
orbit via intervening venous anatomy has long been
recognised [42]. The use of handheld tonometers by clinicians
without any specialised training has increased the interest in
IOP as a rapid screening tool for raised ICP [41, 43, 44].
Lehman et al. demonstrated in their study on rhesus monkeys
that a relationship between IOP and ICP did exist, albeit at
rather high mean values of ICP (46.8 mmHg) [45]. Later stud-
ies evaluating the relationship between IOP and ICP provide
mixed results [42, 43]. A meta-analysis by Yavin et al. con-
cluded that the pooled diagnostic accuracy suggested IOPmay
be a useful clinical adjunct in the detection of raised ICP, but
felt the benefit of the technique would be best assessed in
future studies where clinical equipoise exists regarding the
use of invasive ICP monitoring [46]. While there appears to
be a relationship between an increase in IOP and raised ICP,
IOP does not appear sufficiently accurate for predicting indi-
vidual patient ICP measurement [47].

iii. Optical coherence tomography (OCT)

OCT is a technique using broadband near infrared light.
This technology can be used to quantitatively measure and
monitor the thickness of the retinal nerve fibre layer (RNFL)
and the optic nerve head morphology [48], making it a useful,
objective method for distinguishing nerves with papilledema
from normal nerves, and optic atrophy. This application has
been found useful in adults and children with raised ICP and
papilledema [49, 50]. A recent study has also demonstrated
structural changes of the optic nerve head on OCT in a small
group of patients before and after lumbar puncture [51].

iv. Scanning laser tomography (SLT)

SLT uses a laser to produce a 3D scan of the retinal surface.
It can be used as an alternative to OCT when measuring the
RFNL. The technique has been described as being highly
reproducible [52, 53]. Though SLT measurements of the optic
nerve volume and height have been found reliable in quanti-
fying papilledema [54] and have been correlated with CSFT
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pressure measured via LP [55], its value in reliably estimating
ICP has yet to be established.

v. Venous ophthalmodynamometry (vODM)

This method was originally described by Baurmann in
1925 and involves measurement of the retinal venous outflow
pressure (VOP) while observing the retinal vessels with an
ophthalmoscope [56]. The technique usually involves apply-
ing a suction cup to the globe in order to increase the IOP until
the central retinal vein (CRV) collapses and begins to pulsate,
which usually happens at the point when the applied external
pressure nears the VOP, which is an approximate of ICP. The
venous outflow pressure which has a close linear relationship
with ICP [57] is calculated by adding the pressure from the
ophthalmodynamometer to the IOP. The technique requires
the pupils to be dilated and should be performed by an expe-
rienced ophthalmologist. The application of external ocular
pressure could also trigger the oculo-cardiac reflex, leading
to hypotension, which is undesirable, especially if ICP is
increased.

vi. Optic nerve sheath diameter (ONSD)

The optic nerve originates from the central nervous system.
It is surrounded by a CSF-filled, perineural, subarachnoid
space and encased by a dural sheath. Direct communication
with the intracranial subarachnoid space means that an in-
crease in ICP displaces CSF along this pathway, leading to
an increase in CSF within the ONS and subsequent expansion
of this sheath. Changes in the ONSD can be visualised on
ultrasound, magnetic resonance imaging (MRI) and CT scan
[58–64]. Several studies have demonstrated a strong associa-
tion between distension of the ONSD and an increase in ICP
[60, 65–69]. The suggested cut-off value in adult studies
ranges between 4.1 and 5.9 mm and the definition of increased
ICP varies between 14.7 and 30mmHg [24, 60, 65, 67, 68]. In
children, there are age-related differences in ONSD cut-off
values [63, 70, 71]. Recent work suggests that using patency
of the anterior fontanelle is a more useful marker for describ-
ing ONSD cut-off values [72]. ONSD measurements using
higher frequency, smaller footprint ultrasound probes to better
define the borders of the ONS have been larger than historic
values [72, 73]. Comparison to invasive ICP measurements
has allowed the relationship between ONSD and ICP to be
evaluated at different ICP thresholds [72]. The main limita-
tions of ultrasound-based ONSD measurements are
hyperechoic artefacts, inter-rater variability, submillimetric
measurements, variation in optic nerve sheath cut-off values
and heterogeneity of the patient population [63, 65, 70, 71,
74–81]. Despite these limitations, ONSD measurement re-
mains a very promising method for detecting raised ICP [63,
82–84].

Methods utilising the auditory canal The cochlea of the ear
is in direct communication with the intracranial subarachnoid
space via the cochlear aqueduct. Methods investigating dis-
placement of the tympanic membrane and measurement of
sound generated by movement of the ossicles have been de-
scribed as markers of ICP.

i. Tympanic membrane displacement (TMD)

Tympanic membrane vibration is usually transmitted
through the ossicles in the middle ear to the cochlea.
Contraction of the stapedius and tensor tympani muscles is
accompanied by a small, measurable displacement of the tym-
panic membrane from its resting position. As the perilymph
and CSF communicate through the cochlear aqueduct, an in-
crease in ICP is directly transmitted to the footplate of the
stapes leading to a change in the direction and magnitude of
TMD.

Movement of the tympanic membrane caused by stimula-
tion of the stapedial reflex can be quantitatively assessed. This
movement is altered by increased ICP, where inward displace-
ment is suggestive of high ICP, and outward displacement is
suggestive of normal or low ICP [85].While it appears to have
a utility in detecting raised ICP, limited accuracy confines it to
providing qualitative ICP data [86–88]. In the study by
Shimbles et al., no valid measurement of TMD could be made
in about 60% of patients, casting doubt on the clinical value of
the technique [89]. Patency of the cochlear aqueduct, integrity
of the tympanic membrane and strength of the acoustic reflex
influence the TMD, which is further limited by poor inter-
subject reproducibility [90].

ii. Otoacoustic emissions (OAEs)

OAEs are sounds originating frommovement of the senso-
ry hair cells within the cochlea in response to auditory stimu-
lation. These sounds can be recorded by a probe placed in the
ear canal. OAE is often used in clinical practice to test for
hearing deficits in young children where cooperation is poor.

Auditory measurements of OAEs that depend on middle
ear function are theoretically influenced by changes in ICP
[91]. This method has been used as an alternative to TMD;
specifically, a technique called distortion product otoacoustic
emissions (DPOAEs) has been shown to change with ICP [91,
92]. It has the advantage over TMD of not requiring the mid-
dle ear reflex arc, which involves brainstem pathways. Poor
inter-subject variability limits its use in measuring ICP, but it
could be useful for monitoring patients once baseline ICP has
already been measured [24, 93].

Assessment of the anterior fontanelle Palpation of the AF,
measurement of head circumference, shape and palpation of
suture ridges during clinical examination are basic but
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extremely valuable assessments which can be performed by
health-care workers at all levels. Raised ICP in infants almost
always causes a bulging or tense AF, and this should prompt
further investigation. ICP assessment via the AF includes
measuring pulsation of the AF [94–96] and the use of an
applanation transducer, modified Shiotz tonometer [29] and
the Rotterdam Teletransducer (RTT) [97]. None of these have
been widely used in routine practice and are largely of historic
significance. Recently, transfontanelle ICP monitoring using
an existing ICP probe secured against the AFwas described as
an accurate technique for detecting raised ICP in infants [98].
Where the AF is closed or not reliably patent, other non-
invasive techniques are required to assess ICP.

Methods assessing cerebral fluid dynamic properties

Studying dynamic changes in ICP, cerebral blood flow (CBF)
and cerebral compliance can be quite challenging. Reliable
non-invasive techniques for assessing these parameters are
therefore rather limited. Ultrasound, MRI and infrared spec-
troscopy have been used to examine some of these dynamic
alterations (Table 2).

Transcranial Doppler sonography (TCD) TCD measures
the velocity of blood flow through major intracranial vessels
by emitting a high-frequency (>2 MHz) wave and detecting
the frequency shift between the incident and reflected wave.
This difference directly correlates with the speed of blood
flow (the Doppler effect) [99]. TCD as a technique for evalu-
ating cerebral haemodynamics was described by Aaslid et al.
in 1982 [100]. It has since been used to measure the CBF
velocity in the circle of Willis and the vertebrobasilar system,
both diagnostically and to adjust treatment strategies in a va-
riety of neurovascular disorders [101–104]. Insonation of one
of the arteries, usually the middle cerebral artery, produces a
reproducible arterial waveform. The most commonly assessed
parameters using this arterial waveform are the peak systolic
and diastolic velocity, mean velocity, resistance index (RI) and
pulsatility index (PI). The criteria for adequate vessel
insonation include the cranial window used, transducer posi-
tion, angle of insonation, depth of sample volume, direction of

blood flow, relative flow velocity and experience of the inves-
tigator [99, 105].

The measurement is taken over regions of the skull with the
thinnest bony windows (temporal region, transorbital or at the
back of the head). TCD is most suited to providing a qualita-
tive estimate (low, normal or high) of ICP [101, 106].

In an adult study, the PI (difference between systolic and
diastolic flow velocity divided by the mean flow velocity)
correlated well with ICP (correlation coefficient of 0.938,
p < 0.001) [101]. A study in children with severe TBI found
the PI to be a less reliable indicator of absolute ICP values
[107], while a subsequent study also in children found TCD to
be an excellent first-line examination for identifying patients
likely to need invasive ICP monitoring [108].

TCD remains an attractive alternative to invasive ICP be-
cause of its ability to detect cerebral ischemia, relative cost
effectiveness and widespread availability. The main disadvan-
tages are the requirement of a trained and skilled operator to
perform and interpret the measurements and the limited accu-
racy for estimating absolute ICP [107].

Magnetic resonance imaging-based elastance index MRI-
based cine phase-contrast pulse sequences are used to
determine the blood and CSF volumetric flow rates within
the brain. A novel method using the arterial inflow, venous
outflow and CSF flow between the cranium and spinal
compartment to calculate changes in intracranial volume;
these measurements are then used to derive ICP using an
elastance index [109, 110]. Prediction of ICP using this
dynamic MRI technique has demonstrated strong correlation
with invasive ICP measurement. In children with
hydrocephalus, dynamic MRI correlated well with shunt
valve opening pressure and symptom resolution [111, 112].

Near infrared spectroscopy (NIRS) Transcranial NIRS is a
method for assessing regional changes in cerebral blood oxy-
gen saturation (rSO2) and cerebral blood volume (CBV) and
CBF [113]. NIRS works in the infrared spectrum (700–
1000 nm) of light, where low absorption allows it to easily
pass through the skin and bone resulting in deep-tissue pene-
tration. This light is both scattered and absorbed as it passes

Table 2 Methods based on cerebral fluid dynamic assessment

Technique Level of operator
skill required

Quantitative or qualitative
assessment of ICP

Continuous
monitoring

Main advantage Main disadvantage

TCD High Qualitative No Versatile technique with a
wide array of indications

Technical expertise limit
its widespread use

MRI-based
elastance index

Medium Qualitative No Exquisite detail, with potential
for describing new indices

High cost with extensive
infrastructure required

NIRS Medium Qualitative Yes Allows long-term monitoring Readings are influenced
by a number of variables
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through brain tissue. Variations in the absorption of infrared
light by different substances allow the detection of changes in
deoxyhaemoglobin and oxyhaemoglobin concentration. A
significant difference in rSO2 values was demonstrated in a
study of severe TBI patients with normal and raised ICP [114].
Changes in cerebral oxygenation correlated well with
vasogenic ICP slow waves in CSF infusion studies and TBI
[115]. NIRS allows for the calculation of certain indices which
have been correlated with cerebrovascular pressure reactivity
in TBI patients [116]. At present, NIRS does not provide an
estimation of absolute ICP nor does it facilitate the detection
of changes in ICP [19]. The technique is also limited by the
requirement for specialised equipment and the extended
period required to obtain the required indices [116].

Electrophysiological methods

Electroencephalography (EEG) EEG represents spontane-
ous electrical activity of the cerebral cortex recorded through
electrodes placed on the scalp. These electrical signals are then
amplified, filtered and displayed according to the number of
channels required (generally 8 or 16 channels).

The use of a novel technique called EEG power spectrum
analysis has recently been reported by Chen et al. [117].
Power spectral analysis allows a graphical representation of
the EEG readings over time. An index called the intracranial
pressure index (IPI) was derived using the EEG power
spectrum analysis, and this was then correlated with ICP
measurements. The authors concluded that there was a
correlation between the IPI and ICP. Its clinical utility
depends on validation in further studies. Recent
development of both wireless, portable and field deployable
EEG systems has improved the application of this technique
[117].

Visual evoked potentials (VEPs) VEPs are recorded from
electrodes positioned in the occipital scalp and accurately re-
flect disturbances of the visual pathways [118, 119].
Rosenfeld and Owen described a method using flashing light
into the eye and estimating ICP through recordings obtained
from a few occipital EEG electrodes, using the latency of the
second negative-going wave (N2) [119]. A linear relationship
between ICP and the latency of the third positive-going wave
(P3) has also been reported using high-density electrode ar-
rays and independent component analysis extraction [120].
The N2 wave appears to be stable and easily identifiable using
flash-evoked VEPs in healthy control patients. Earlier studies
demonstrated a strong correlation between the N2 latency of
the VEP and ICP in children with hydrocephalus and young
adults with head trauma [121, 122]. The relationship between
a prolonged N2 latency period and raised ICP has subsequent-
ly also been reported in children [123, 124]. A recent study

has, however, demonstrated a high inter-subject variability,
suggesting a limited ability to reliably predict ICP [125].

Ocular vestibular evoked myogenic potentials (oVEMPs)
This technique employs vestibular stimulation of the
extraocular muscles to generate electromyographic activity.
These evoked potentials can be recorded from the contralater-
al eye using surface electrodes. A recent study has suggested
that this technique may have a role in non-invasive ICP as-
sessment [88] (Table 3).

Imaging methods

Radiological imaging has historically been a fundamental tool
in making the diagnosis of raised ICP. Skull X-rays were used
to assess whether chronically raised ICP was present by de-
tecting separation of the skull sutures, ‘copper beaten’ appear-
ance of the skull and erosion of the clinoid [126–128]. This
modality is perhaps less useful in the modern era [129].
Imaging features on CTandMRI consistent with clinical find-
ings of raised ICP have been well described [64, 126,
130–133].

CTscan CT scan still remains the most widely used diagnos-
tic imaging modality when assessing patients with acutely
raised ICP. A variety of findings on CT have been associated
with raised ICP, depending on the underlying aetiology. These
findings include the following:

& Absence/compression of the basal cisterns and/or
ventricles

& Midline shift
& Enlarged ventricles (hydrocephalus)
& Transependymal fluid shift
& Presence of haematoma/space occupying lesion
& Blood in the subarachnoid space
& Size of sulci
& Grey/white differentiation

The benefit of the initial CT scan has been investigated
widely in the context of traumatic brain injury [64, 126, 131,
134]. CT scan still forms the cornerstone of acute imaging in
hydrocephalus, where features depend on the aetiology and
relate to the level of obstruction, presence of transependymal
fluid shift, volume of CSF in the subarachnoid space and
shape of the third ventricle [135–137].

The discussion regarding which of these CT findings and
which correlate best with raised ICP is still ongoing [19, 24,
64, 134].While CTscans remain a valuable diagnostic adjunct
in the acute diagnosis of raised ICP, it must be remembered
that a ‘normal’ CT scan does not rule out raised ICP. In chil-
dren, additional radiation exposure to the susceptible, devel-
oping brain and the compound effect over the lifetime of the
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child should always be considered [135, 138–142]. To this
effect, the ‘image gently’ recommendations for children
should always be kept in mind (www.imagegently.org).

MRI scan MRI provides superb quality images of the brain
but can be time consuming and costly as a first-line diagnostic
modality in the acute care setting. MRI techniques for evalu-
ating ICP are based on the relationship between intracranial
compliance and pressure [109, 143]. Using a motion-sensitive
technique to measure the arterial, venous and CSF flow into
and out of the cranial cavity during the cardiac cycle, Alperin
et al. demonstrated a strong correlation between the MRI-
derived elastance index and invasively measured ICP [109].
These results, however, were found to have poor repeatability
in a subsequent study, due to technical errors in measurement
and intra-individual variation, with the authors suggesting
caution when interpreting individual measurements [144].
Despite these shortcomings, specific MRI sequences appear
promising, both for screening in acutely raised ICP and for
assessment of ICP in other conditions, like hydrocephalus
[145]. MRI has also been used to evaluate the optic nerve
sheath diameter as a marker for raised ICP [146], and appears
to be more accurate than ultrasound in assessing the CSF-
filled subarachnoid space surrounding the optic nerve [78].
The current role of MRI as a diagnostic and monitoring tool
in neurosurgery far outweighs its function as a purely non-
invasive technique for assessing ICP.

Novel methods

Ultrasonic time of flight (TOF) for non-invasive assessment of
ICP is based on measurement of the acoustic properties of
intracranial structures, i.e. dura, brain, blood and CSF.
Using the propagation speed and attenuation of ultrasound
and the respective change within the intracranial compo-
nents in the acoustic pathway, an estimation of ICP was
described [147, 148]. Two-depth transorbital Doppler
(TDTD) is an innovative technique using the principle of
externally applied pressure to the eyeball as a means of
equilibrating the blood flow pulsation parameters
between the intracranial and extracranial segments of the

ophthalmic artery. This technique is based on the assertion
that the external applied pressure is equal to ICP at this
balance point [149, 150]. While initial work described
very high correlation between this method and CSF
pressure measurement on lumbar puncture, subsequent
external validation has demonstrated much lower
accuracy [150, 151]. A method using dynamic imaging of
the ONS to evaluate the stiffness of the sheath in cases of
raised and normal ICP described a novel parameter, the
deformability index (DI), to define the motion of the
ONS as a marker of its stiffness. The DI demonstrated a
significant difference in raised ICP, and the authors
described coupling DI with ONSD to improve our
understanding of the ONS response in raised ICP to
further refine the diagnostic accuracy of this method [152].

Despite a relatively long history of innovative thinking
regarding suitable techniques for non-invasively assessing
ICP, most developments remain in an exploratory phase.
The main limitations are inadequate diagnostic accuracy for
detecting raised ICP, poor quantitative estimation of ICP and
lack of continuous monitoring capability. Most methods
appear suitable to identify subjects with low to normal ICP
or very high ICP, but are poor at detecting moderately raised
ICP, which arguably is the most important group. The idea of
combining selected non-invasive techniques to improve
accuracy in a ‘non-invasive multi-modality model’ is certainly
appealing in principle.

Non-invasive ICP assessment is still most suitable as a
screening tool for patients with suspected raised ICP. Future
development of non-invasive techniques will likely depend on
substantial improvements in the accuracy, ease of use and
potential for continuous monitoring. This need is perhaps
most distinct in the children, where early detection of
increasing ICP has the potential to spare the developing
nervous system unnecessary exposure to radiation from
repeated CT scans or limit the need for invasive monitoring
in certain cases making this quest worthwhile. Promising
developments aimed at improving diagnostic accuracy and
possibly even simplifying the acquisition technique may
contribute significantly towards improving the performance
of these methods [149, 150, 152].

Table 3 Electrophysiological methods

Technique Level of
operator skill
required

Quantitative or
qualitative
assessment of ICP

Continuous
monitoring

Main advantage Main disadvantage

EEG High Qualitative Yes Allows high-quality data that can provide
information about other conditions as
well, i.e. seizures, ischemia

Requires trained personnel to set
up and interpret

VEP High Qualitative Potentially Ability to provide data on a spectrum
of visual abnormalities

Lack of clear evidence to support
correlation with ICP

oVEMP Medium Qualitative No Still unclear Paucity of data
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