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and performance, and in cord vessel morphology. Dur-
ing the first 6 months of life brachioradial pulse wave 
velocity increased more in FGR fetuses, while other 
parameters describing vascular stiffness remained com-
parable between the groups. Fetal growth restriction had 
no detectable adverse impact on cardiovascular dimen-
sions and function at birth. Cardiovascular findings 
also remained comparable during the first 6 months of 
life between the groups except a higher increase in bra-
chioradial pulse wave velocity in the FGR group. Our 
observations suggest that abnormalities that link reduced 
intrauterine growth with premature cardiovascular dis-
eases may commence later in childhood, indicating a 
potential window for screening and prevention.

Keywords Intrauterine growth restriction · Placental 
insufficiency · Echocardiography · Doppler · Pulse wave 
velocity

Introduction

A direct association between fetal growth restriction 
(FGR) and premature cardiovascular disease forms the 
basis of “fetal origins of adult disease” hypothesis by 
Barker [1]. Physiologic adaptations that enable a fetus 
to survive intrauterine deprivation are thought to cause 
permanent reprogramming of developing key organs 
with pathological consequences in later life, including a 
higher risk for cardiovascular morbidity. Indeed, in chil-
dren and adults, low birth weight has been associated 
with increased blood pressure (BP) [2–5], faster heart 
rates (HRs) [6], stiffer, smaller and less reactive sys-
temic arteries [6–9], and with atherosclerosis and coro-
nary artery disease in later life [2, 10]. Several pathways 

Abstract The association between low birth weight 
and premature cardiovascular disease has led to the “pre-
natal origin of adult disease-hypothesis”. We postulated 
that fetal growth restriction is associated with cardiovas-
cular changes detectable at birth and in early infancy. 
Fifty-two appropriately grown fetuses (AGA) and 60 
growth-restricted fetuses (FGR) with (n = 20) or with-
out (n = 40) absent or reversed end-diastolic umbilical 
artery blood flow were prospectively examined by echo-
cardiography before birth, at 1 week and 6 months of 
life. The impact of growth restriction on postnatal blood 
pressure, heart rate, cardiovascular dimensions, and 
function, as well as on vascular morphology of umbili-
cal cord vessels was studied. FGR fetuses displayed 
significant blood flow redistribution and were deliv-
ered earlier with lower birth weights than AGA fetuses. 
After adjustment for gender, gestational age, and weight 
at birth, there were no intergroup differences in blood 
pressure, heart rate, left ventricular morphology, mass, 
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that initiate or predispose FGR to arterial disease have 
been proposed. The fetus responds to decreased trans-
placental nutrient transfer and hypoxemia with a prefer-
ential blood supply to the most essential organs, while 
reducing the perfusion of other organs. Impaired growth 
of the abdominal aorta and kidneys into adulthood [6, 
11, 12] suggest that intrauterine blood flow redistribu-
tion may permanently reprogram the development and 
function of post-ductal organs. Malnutrition and pre-
mature iatrogenic delivery [13] may also have adverse 
effects on defense mechanisms against oxidative stress 
and arterial elastin synthesis, which may lead to the 
early development of atherosclerosis and thrombosis 
and permanent reduction in arterial compliance [10, 14]. 
Finally, other factors have been suggested to play roles 
in the development of cardiovascular diseases, such as 
excessive catch-up growth due to improved nutrition 
after birth [15], hereditary factors [16], smoking, and 
socioeconomic status.

Despite the accumulating evidence on Barker’s hypoth-
esis on children and adults, early postnatal data on car-
diovascular function in human FGR is scarce. Logically, 
Barker’s concept would imply a direct correlation between 
the severity of fetal deprivation and cardiovascular conse-
quences that might already be obvious at birth and early 
infancy. To test this hypothesis, we performed a compre-
hensive longitudinal analysis of the relationship between 
FGR and cardiovascular properties prenatally, at 1 week 
and 6 months of life.

Materials and methods

This prospective study was approved by the Research Eth-
ics Boards of the Hospital for Sick Children and Mount 
Sinai, Toronto (File No. 1000006155 and 08-0057-C). 
Study participation required written maternal consent. All 
clinical investigations were conducted according to the 
declaration of Helsinki.

Sixty growth-restricted (FGR) and 52 appropriately 
grown (AGA) fetuses with normal umbilical artery blood 
flow velocimetry were recruited to this study from the 
High-Risk Pregnancy and the Fetal Cardiac Programs at 
our institutions. FGR was defined as birth weight <10th 
percentile for gestational age and/or an umbilical artery 
pulsatility index (UA PI) >2 SD [17, 18]. Of the 60 FGR 
fetuses, 40 showed continuous antegrade UA flow through 
the cardiac cycle while 20 had absent/reversed end-dias-
tolic UA flow [19]. Other inclusion criteria included the 
confirmation of fetal age <20 gestational weeks, absence 
of major congenital anomalies, delivery ≥26 weeks, and 
≥1 complete postnatal exam. Excluded from analyses were 
studies of critically ill newborns (e.g., mechanical ventila-
tion or vasoactive medication) or with persistent arterial 
duct patency.

Study protocol

Eligible subjects were invited to undergo a series of evalua-
tions before birth to 6 months of life (Fig. 1). This included

Fig. 1  Flow diagram of the 
study (PWV pulse wave veloc-
ity, UA umbilical artery)
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(a) A maternal questionnaire for pregnancy history and 
cardiovascular risk factors,

(b) A fetal echocardiogram by a single sonographer 
(HQ) blinded to gestational age and using a Philips 
iU22 ultrasound system (Philips Medical Systems, 
Andover, MA, USA) with 5–9 MHz transducers. 
Fetal weight was estimated by Hadlock formula [20]. 
Color imaging was used to optimize placement of the 
Doppler gate with the insonation angle <20°. Pulsa-
tility indices were measured in the UA, ductus veno-
sus and middle cerebral artery (MCA) [21]. Doppler 
inflow velocities and the left ventricular myocardial 
performance index (LV MPI) were obtained from the 
cardiac 4-chamber view [21]. Doppler flow velocity–
time integrals (VTIs) and the inner diameters (Ds) of 
the great arteries during systole were obtained from 
cardiac 5-chamber and short-axis views. Left (LCO) 
and right cardiac output (RCO) was calculated as 
π × (D/2)2 × VTI × heart rate and the indexed com-
bined CO as (LCO+RCO)/estimated fetal weight 
[21]. Tissue Doppler velocity curves of the longitu-
dinal wall motion during diastole (E′; A′) and systole 
(S′) were obtained at the lateral base of the mitral and 
tricuspid annulus in the 4-chamber view. Tissue Dop-
pler insonation angle was kept <10°, the frame rate 
>100 MHz and the 1.5 mm sample volume within the 
center of the myocardial wall [22]. LV dimensions 
and shortening fraction were measured by M-mode 
[21]. The mean of 3 measurements was used for each 
variable. z score values were adjusted for gestational 
age [23].

(c) Assessment at birth UA hemoglobin and arterial blood 
gas values were measured. A 2-cm specimen of the 
umbilical cord was obtained from the fetal end. After 
fixation in buffered formalin, it was cut in cross sec-
tions of 4 mm, embedded in paraffin, sectioned, and 
stained with Elastic (Verhoeff’s) Trichrome. Stained 
slides were analyzed with 20–30 times magnification 
using a Leica EZ4D stereomicroscope (Spectronic 
Analytical Instruments) and a standard ruler for cali-
bration. Measurements of the umbilical cord compart-
ments including walls and lumens of blood vessels 
and the area of Wharton’s jelly were performed offline 
from stored images with the Leica statistical software 
(Visiopharm Integrator System for digital image analy-
sis, 3.0.8.0).

(d) Postnatal exams were obtained at a median age of 
9 days (Exam 1 3–17 days; n = 99) and 202 days 
(Exam 2 165–263 days; n = 65) of life. Height was 
measured with a stadiometer to the nearest 0.1 cm and 
the weight with an electronic balance to the nearest 
0.1 kg. BSA was calculated by Mosteller formula. BP 
of both arms and the left thigh was measured by oscil-

lometry using appropriate sized cuffs (Dinamap, Criti-
con Inc, Tampa, FL, USA) in the supine position, after 
≥30 min of rest and immediately after imaging of the 
aorta. Three recordings were obtained from each site 
and the mean of the lowest two was used in the analy-
ses. Postnatal echocardiograms with a Vivid-7 ultra-
sound system (GE Medical Systems, Wauwatosa, WI, 
USA) and 4–10 MHz transducers were performed by a 
single sonographer (CS) who was blinded to the preg-
nancy history. Pulsed Doppler was used to measure LV 
E/A ratios and MPI. Longitudinal color tissue Doppler 
velocities from the lateral mitral and tricuspid annulus 
were analyzed offline (EchoPAC version 7, GE Medi-
cal Systems). Cardiovascular measurements including 
ventricular dimensions, LV ejection fraction, mass and 
sphericity index, aortic wall distensibility and stiffness 
index, and pulse wave velocity (PWV) were obtained 
using previously described methods [24–29]. PWV is 
inversely related to the square root of arterial disten-
sibility, and the stiffer the arterial wall, the faster the 
pulse wave will be. Central PWV was obtained in the 
suprasternal echocardiographic view from the aortic 
arch by dividing the distance between the two meas-
urement sites in the ascending and descending aorta 
by the transit time [28]. Peripheral PWV of the right 
brachioradial artery was measured by photoplethys-
mography that uses 2 infrared emitting and sampling 
probes placed over the brachial and radial arterial sites 
to simultaneously record the local arterial pressure 
waveforms to offline measure the transit time (Pulse 
Arterial Analysis version 97.01, L.M. Styles, London, 
UK) [29].

Data on the accuracy, precision, and reproducibility 
of the different study methods have been reported by our 
group [22, 26, 29, 30]. Intra- and inter-observer coeffi-
cients of variation of postnatal measurements determined 
in 10 randomly selected study subjects were 2.2–5.4 % 
and 2.8–6.1 % for different cardiovascular dimensions; 2.2 
and 2.6 % for flow velocities; 1.8–4.2 % and 5.5–7.4 % for 
Doppler-derived time intervals; and 4 and 17 % for central 
PWV. The repeatability coefficient of peripheral PWV was 
0.28 m/s with a coefficient of variation of 11.2 %.

Statistical analysis

Results are presented as mean with standard deviation, 
median with interquartile range, and frequencies as appro-
priate. Direct comparisons between study groups were per-
formed using a Student’s t test assuming unequal variance 
between samples and Fisher’s exact test as appropriate. A 
multivariable linear regression model was created to com-
pare the change in outcomes between 1 week and 6 months 
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follow-up between the study groups. This regression model 
included all observations and was adjusted for repeated 
measures per patients through a compound symmetry 
covariance structure, gestational age at birth, birth weight 
percentile, and gender. General estimating equations (GEE) 
were used to determine the within-patient effect, overall 
group effects, and the interaction between change over time 
and study groups. A two-tailed p value <0.05 was selected 
as the level of statistical significance. Analyses were per-
formed with SAS Statistical Software v9.2 (The SAS Insti-
tute, Cary NC, USA).

Results

Pregnancy and delivery

Maternal characteristics did not differ between the FGR 
and AGA groups, apart from a higher proportion of hyper-
tensive mothers in FGR (Table 1). Compared with AGA, 
FGR fetuses displayed decreased MCA/UA PI ratios sug-
gestive of blood flow redistribution towards the brain and 
were delivered earlier with smaller weight percentiles 
and increased placenta/birth weight ratios (Table 1). UA 

Table 1  Pregnancy and birth characteristics of the study cohorts with appropriate growth for gestational age (AGA) and fetal growth restriction 
(FGR)

EST parameter estimate, OR odds ratio, PI pulsatility index, SE standard error, UA umbilical artery, UV umbilical vein

* FGR vs. AGA, adjusted for gestational age at birth, birth weight percentile and gender

AGA (n = 52) FGR (n = 60) p Adjusted EST (SE)/OR (95 % CL)* Adjusted p*

Mother

 Gestational age at echo (weeks) 32 ± 3 31 ± 3 0.07 – –

 Age (years) 33 ± 5 33 ± 6 0.92 +0.87 (1.45) 0.55

 Gravidity (n) 2 (1–5) 2 (1–7) 0.30 +1 (0.5) 0.20

 Parity (n) 1 (0–2) 0 (0–3) 0.85 +0.2 (0.2) 0.33

 Arterial hypertension (%) 4 25 0.002 +0.05 (0.00–0.91) 0.04

 Insulin-dependent diabetes (%) 2 7 0.37 +1.74 (0.04–79.27) 0.78

 Gestational diabetes (%) 8 7 1.00 +0.24 (0.02–2.89) 0.26

 Hypercholesterolemia (%) 0 2 1.00 – –

 Smoking (%) 8 9 1.00 +0.24 (0.02–2.39) 0.22

 Previous preeclampsia (%) 2 10 0.21 +0.13 (0.00–15.35) 0.40

 Prenatal steroids (%) 37 50 0.18 +0.66 (0.16–2.64) 0.55

Fetal-placental flow

 UA PI 1.04 ± 0.17 1.61 ± 0.78 <0.001 +0.42 (0.15) 0.006

 UA PI >95th percentile (%) 6 63 <0.001 +0.05 (0.01–0.42) 0.01

 Absent/reversed UA flow (%) 0 34 <0.001 – –

 Mid cerebral artery PI 1.59 ± 0.35 1.47 ± 0.40 0.10 −0.15 (0.10) 0.16

 Cerebro–placental PI ratio (%) 1.58 ± 0.51 1.12 ± 0.60 <0.001 −0.40 (0.16) 0.01

 Ductus venosus PI 0.50 (0.27–0.79) 0.64 (0.37–2.26) 0.06 +0.34 (0.23) 0.14

Delivery

 Cesarean delivery (%) 47 73 0.009 +0.72 (0.21–2.51) 0.61

 Gestational age (weeks) 37 (30–41) 34 (27–39) <0.001 – –

 Birth weight (kg) 3.03 (1.10–3.91) 1.34 (0.72–2.85) <0.001 – –

 Birth weight percentile 35.0 (13.0–84.0) 4.0 (0.5–17.0) <0.001 – –

 Male gender (%) 48 45 0.85 – –

 UA pH 7.29 ± 0.07 7.28 ± 0.07 0.42 −0.02 (0.02) 0.44

 UA base excess −3.63 ± 2.67 −3.04 ± 2.91 0.32 +0.36 (0.83) 0.67

 UA hemoglobin (g/dl) 173 ± 30 168 ± 20 0.52 +14 (9) 0.10

Umbilical cord

 Placenta/birth weight ratio (%) 17.9 ± 11.6 19.0 ± 9.6 0.63 −6.4 (2.8) 0.02

 Cord diameter (mm) 8.2 ± 1.6 6.8 ± 1.7 <0.001 −1.01 (0.57) 0.07

 UA wall thickness (mm) 0.70 ± 0.18 0.60 ± 0.18 0.02 −0.09 (0.06) 0.14

 UV wall thickness (mm) 0.48 ± 0.12 0.40 ± 0.15 0.01 −0.08 (0.05) 0.10
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blood gas and hemoglobin values at birth were comparable 
between the groups (Table 1). Table 2 shows the fetal echo-
cardiographic findings. FGR was associated with smaller 
LV and aortic diameter compared to AGA. Other fetal car-
diac findings did not differ among the cohorts.

Neonatal and infant data

Table 3 describes the evolution of clinical and echocar-
diographic parameters from the neonatal to the infant 
period. The study cohorts differed significantly in weight 
z scores and body surface areas. At 1 week, FGR was asso-
ciated with lower mitral A′ and tricuspid S′ velocities, and 
smaller descending aorta z scores compared with AGA. 

Other cardiovascular parameters were largely comparable 
between AGA and FGR infants with no intergroup differ-
ences in left ventricular (LV) morphology, shape, mass, 
and myocardial performance. Table 3 also illustrates the 
results of the multivariable regression model, assessing the 
interactions between change over time and study groups, 
adjusted for gestational age at delivery, birth weight per-
centile and gender. After these adjustments, the FGR group 
continued to display a higher increase in mitral A′ and tri-
cuspid S′ velocities. Brachioradial PWV increased in both 
groups between 1 week and 6 months, but this increase was 
greater in the FGR group compared to AGA. Other parame-
ters describing vascular function did not differ between the 
study groups.

Table 2  Fetal echocardiographic findings of the study cohorts with appropriate growth for gestational age (AGA) and fetal growth restriction 
(FGR)

CO cardiac output, EST parameter estimate, LV left ventricle, LVED left ventricular end-diastole, RV right ventricle, SE standard error

AGA (n = 52) FGR (n = 60) p value Adjusted EST (SE)* Adjusted p value*

 Gestational age at echo (weeks) 32 ± 3 31 ± 3 0.07 – –

 Heart rate (beat/min) 141 ± 10 144 ± 10 0.18 +6 (3) 0.01

Cardiovascular dimensions

 Cardio-thoracic area ratio (%) 32 ± 7 33 ± 11 0.37 +0.01 (0.03) 0.88

 Interventricular septum (mm) 2.4 ± 0.4 2.6 ± 0.6 0.31 +0.29 (0.16) 0.07

 LVED, z score 0.4 ± 1.0 −0.7 ± 1.8 <0.001 −1.04 (0.49) 0.03

 Aortic valve, z score −0.1 ± 1.2 −1.2 ± 1.1 <0.001 −0.94 (0.32) 0.003

 Pulmonary valve, z score 0.2 ± 1.2 −0.6 ± 1.2 0.002 −0.17 (0.33) 0.60

Left heart function

 Mitral E wave (cm/s) 37 ± 8 35 ± 7 0.29 +0.30 (2.23) 0.89

 Mitral A wave (cm/s) 49 ± 9 46 ± 10 0.08 +0.48 (2.58) 0.85

 Mitral E/A ratio 0.77 ± 0.16 0.82 ± 0.18 0.21 +0.03 (0.05) 0.59

 Mitral E′ wave (cm/s) 5.5 ± 1.4 5.1 ± 1.3 0.18 −0.37 (0.43) 0.38

 Mitral A′ wave (cm/s) 7.8 ± 2.9 6.9 ± 2.3 0.13 −1.23 (0.84) 0.14

 Mitral E′/A′ ratio 0.78 ± 0.34 0.79 ± 0.28 0.89 +0.03 (0.10) 0.77

 Mitral E/E′ ratio 7.1 ± 2.7 7.0 ± 1.8 0.96 +0.31 (0.78) 0.69

 LV myocardial performance index 0.32 ± 0.04 0.32 ± 0.05 0.93 −0.004 (0.015) 0.79

 LV shortening fraction (%) 34 ± 11 35 ± 6 0.63 −0.36 (2.93) 0.90

 Left CO (ml/kg/min) 169 ± 75 177 ± 83 0.62 −8.12 (22.42) 0.72

Right heart function

 Tricuspid E wave (cm/s) 37 ± 7 39 ± 8 0.41 +1.91 (2.23) 0.39

 Tricuspid A wave (cm/s) 51 ± 9 51 ± 12 0.98 +3.22 (3.04) 0.29

 Tricuspid E/A ratio 0.75 ± 0.17 0.78 ± 0.11 0.38 +0.005 (0.045) 0.92

 Tricuspid E′ wave (cm/s) 5.6 ± 1.7 5.4 ± 1.0 0.45 −0.35 (0.45) 0.44

 Tricuspid A′ wave (cm/s) 8.2 ± 2.3 7.9 ± 1.9 0.52 +0.07 (0.71) 0.93

 Tricuspid E′/A′ ratio 0.71 ± 0.21 0.72 ± 0.24 0.83 −0.04 (0.07) 0.59

 Tricuspid E/E′ ratio 6.9 ± 2.3 7.1 ± 1.7 0.62 +0.06 (0.71) 0.93

 RV myocardial performance index 0.29 ± 0.06 0.29 ± 0.08 0.88 +0.004 (0.024) 0.86

 RV shortening fraction (%) 34 ± 5 33 ± 4 0.80 +0.86 (1.61) 0.59

 Right CO (ml/kg/min) 262 ± 80 306 ± 127 0.04 +48 (32) 0.13

Combined CO (ml/kg/min) 437 ± 128 493 ± 189 0.09 +46 (49) 0.34
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Discussion

In this study, we prospectively evaluated the effect of FGR 
on a comprehensive portfolio of cardiovascular outcomes 
from fetal life to infancy. Our findings demonstrate no sig-
nificant changes in cardiovascular performance at birth that 
can be correlated with FGR, suggesting that later postna-
tal changes play an important role in the development of 
early cardiovascular morbidity in adulthood. Indeed, during 
the follow-up period to the age of 6 months, the increase in 
brachioradial PWV was higher in FGR infants, but no other 
differences in cardiovascular properties between AGA and 
FGR groups were detected.

Our unexpected findings cannot be explained on the 
basis of the severity of FGR or its hemodynamic conse-
quences in our study population. The FGR cohort presented 
obvious signs of blood flow redistribution related to pla-
cental malfunction (increased UA PI; decreased MCA/UA 
ratio) and also included a severely affected subgroup with 
absent/reversed UA flow, cardiomegaly and elevated ductus 
venosus pulsatility [21, 31–33]. Similar to the observation 
by Kiserud [34], we found that ventricular outputs were 
maintained, indicating that FGR was not associated with 
ventricular failure at the time of fetal investigation.

Despite significant differences in fetal circulatory 
responses between the groups, we detected no pathologic 
vascular abnormalities immediately after birth. Highly dis-
tensible arterial walls are important determinants of a nor-
mal cardiac output and ventricular-vascular coupling [35]. 
It is well established that increased arterial pulse pressure 
and circumferential wall stress promotes collagen synthe-
sis by arterial smooth muscle cells and leads to thickening 
and stiffening of the arterial wall, which in turn promotes 
atherosclerosis and LV hypertrophy. Previously, cardiovas-
cular abnormalities, including increased abdominal aortic 
thickness [36], myocardial hypertrophy, and abnormal LV 
shape were observed in younger FGR children [24, 37, 38]. 
In a recent small study on 20 term-born FGR and 20 AGA 
babies, FGR was associated with increased intima media 
thickness and stiffness in the abdominal aorta and lower car-
diac function parameters between 2 and 5 days of life [39]. 
We elected to not quantify arterial wall dimensions in this 
study, as the resolution of conventional vascular ultrasound 
imaging is insufficient to obtain accurate measurements in 
young children [26]. However, our data showing no signifi-
cant cardiovascular functional alterations in FGR infants are 
supported by the microscopic analysis of the cord vessels, 
which showed no increase in arterial wall thickness between 
FGR and AGA. Umbilical arteries represent fetal muscu-
lar arteries that are accessible at birth, and therefore offer 
a unique opportunity to study pregnancy-related vascular 
remodeling.

The ventricular wall dimensions, mass/shape and 
most other cardiac function parameters, including rates 
of changes to 6 months of life, were largely comparable 
between the study groups. These findings as well as coun-
ter-intuitive findings of higher myocardial mitral A′ and 
tricuspid S′ velocities are contradictory to previous reports 
that suggested cardiac dysfunction, myocardial hypertro-
phy, and abnormally shaped LVs in FGR children [24, 37, 
38]. However, children in earlier studies were significantly 
older (≥5 years) than our subjects. During the postnatal 
6-month follow-up period, with the exception of a faster 
increase in brachioradial pulse wave velocities in FGR, all 
parameters describing vascular stiffness showed no signifi-
cant differences between FGR and AGA groups.

Previous studies [37, 40] showing no inverse effect of 
FGR on neonatal BP are in line with our results. Reports 
on BP of children and adolescents with FGR are vari-
able. Crispi [24] reported increased systole-diastolic BP in 
2-year old, while Brodski [6] did not detect BP differences 
in adolescents born growth-restricted. Moreover, 24-h BP 
and renal function tests did not differ between 8-year old 
AGA and FGR cases [41]. A large American study on 
30,641 mothers and 3145 FGR offspring suggested that it 
is not intrauterine growth restriction per se but rather child-
hood weight and body mass index trajectory that may influ-
ence BP [42]. Indeed, associations between FGR, catch-up 
growth during infancy and risk of adult cardiovascular dis-
ease have been reported [43], while individuals with nor-
mal postnatal growth had comparable cardiovascular find-
ings to adults without FGR [44]. We did not observe a more 
rapid growth/weight trajectory in our infant cohort with 
FGR and thus are unable to comment on the potential effect 
of later catch-up growth.

The relatively small study cohorts and unexpectedly 
high loss in postnatal follow-up at 6 months are acknowl-
edged as study limitations. However, the loss-rate was 
similar in AGA and FGR groups (1 week: 6 vs. 10 %; 6 
months: 32 vs. 35 %). The prospective longitudinal study 
design from fetal period to infancy did not permit match-
ing for gestational age, as preterm delivery to avoid fetal 
demise is a common outcome of severe FGR. However, 
statistical adjustments for gestational age and weight were 
used where appropriate. Due to the small sample size of 
FGR fetuses with severe placental insufficiency, the results 
of FGR fetuses with abnormal and normal umbilical artery 
Doppler findings are presented as one group. However, no 
statistical differences in postnatal outcome parameters were 
observed between these two FGR groups (data not shown). 
Longitudinal follow-up of this cohort to later childhood 
might reveal the role of postnatal changes in the develop-
ment of cardiovascular morbidity.

In conclusion, we were unable to demonstrate signifi-
cant cardiovascular consequences of FGR in neonates and 
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young infants. This not only implies that the later postna-
tal adaptation plays a significant role in the development 
of cardiovascular morbidity in FGR but also suggests that 
there may be a therapeutic window prior to the emergence 
of overt abnormalities, during which time interventions 
could modify cardiovascular risk factors.
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