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ABSTRACT 

As the second attempt at unifying treatment of atmospheric particle systems, this paper further examines shape 

characterization of atmospheric particles. First, to support the theoretical framework developed in Part !, methods 

for studying non-spherical particles are reviewed. It is argued that these different methods can be unified under 

fractal geometry through the generalized power laws given in Part 1. Empirical power--laws for hydrometeors scat- 

tered in literature since 1935 are summarized and reevaluated in terms of fractals. Second, generalization from 

self -similar to self-affine particles is discussed. Self-affinity of atmospheric particles is exemplified by examining the 

exponents in the power laws between the length along a- and c-axis of ice crystals. It is argued that unlike Euclidean 

and self-similar particles, self-affine particles do not have a simple dimensional relation between original particles 

and their projections; the relation for projection of self-similar particles and Mandelbrot' thumb rules for intersection 

respectively set the lower aiad upper bound. Using published data, self-affine particles are shown to exist in the at- 

mosphere. The existence of self-affine particles in turn calls for instruments that can simultaneously measure mass. 

area and maximum diameter (or their equivalents). 
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I. INTRODUCTION 

Atmospher ic  particles include both  aerosols and  hydrometeors .  Trad i t iona l ly ,  they are 

studied separately. However,  m a n y  a t m o s p h e r e - r e l a t e d  p rob lems  such as global  cl imate call 

for an overall  cons idera t ion  of effects f rom all the a tmospher ic  particles. Moreover ,  since 

these particles interact  with one another ,  it is desirable to describe a tmospher ic  particle sys- 

tems as a whole. Theory  of a tmospher ic  particle systems has two re levant  p roblems that  are 

not  completely unders tood:  particle shape and  n u m b e r  d is t r ibut ion .  Liu (1995, hereafter Par t  

I) addressed both  issues 'within a unified f ramework,  in which particle shapes are unified with 

fractal geometry,  particle n u m b e r  size d is t r ibut ions  are unif ied with the pr inciple  of  m a x i m u m  

Shannon~s ent ropy,  and particle shapes are related to particle n u m b e r  size d i s t r i b u t i o n  

th rough s h a p e - d e p e n d e n t  power - l aws .  

Wi th  three specific objectives, this paper  further  examines  shapes of  a tmospher ic  parti- 

cles and  their character izat ion.  First,  Par t  I only discussed particle shapes theoretically.  How 

to treat n o n - s p h e r i c a l  particles has been explored for a long time. Aerosol  scientists and  

meteorologis ts  treat n o n - s p h e r i c i t y  differently. To provide  observa t iona l  evidence for the po- 

tcntial of  unifying shape t rea tment  th rough  the general ized power laws developed in Part  I, 

previous studies will be reviewed, summar ized  and  r e - cons ide red  in terms of  fractals. Second,  

Par t  I concen t ra ted  on Encl idean and  se l f - s imi la r  particles. However ,  particles of nei ther  

Eucl idean nor  se l f - s imi la r  shapes also exist in the a tmosphere .  A unified scheme therefore 

should have the abil i ty to quan t i fy  more  general  shapes. The second objective is to extend 
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particle shapes from self-similar to self-affine fractals, to demonstrate the existence of 
self-affine particles in the atmosphere. To discuss what new questions the existence of 
self-affine particles poses for future research is the third goal. 

The paper is organized as follows. Section 2 reviews approaches used by aerosol scientists 
and meteorologists to investigate non-spherical particles, and summarizes applications of 
fractal geometry in investigations of aerosol, and empirical power laws for hydrometeors. In 
Section 3, first discussed are dimension concepts and methods for determining fractal dimen- 
sions, then self-similar and self-affine fractals with emphasis on their distinctions. In Section 
4, two methods for studying self-affine particles are discussed, and applied to demonstrate 
the existence of self-aftine particles in the atmosphere. The existence of self-affine particles 
complicates shape quantification and hence raises new requests for instrumentation. These 
implications are discussed in Section 5. Concluding remarks are made in Section 6. 

II. OVERVIEWS AND RE-EVALUATION 

Non-spherical particles have been studied for a long time in many disciplines. However, 
how to treat non-sphericity remains unsolved. Approaches for aerosols and hydrometeors 
are different. As noted in Part I, a unified treatment is necessary for studying problems related 
to atmospheric particles. This section serves to review, summarize and re-evaluate methods 
for treating non-spherical particles, and show these different methods can be unified under 
fractal geometry through the generalized power laws given in Part I. 

1. Studies o f  Non-spherical Aerosols 

For a non-spherical particle, a commonly used term in aerosol science is equivalent 

Fig. 1. Various equivalent diameters and corresponding physical quantities measured (After Baron 
and Willeke, 1993). 
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Fig. 2. Particles that look different can belong to the same set when described by a descriptor: (a) 
~6 99 set of particles that have the same projected area diameter ; (b) set of particles of identicle Stokes 

diameter; (c) set of particles with'same volume. (after Kaye 1981, Fig. 1.2). 

diameter. When a particle is detected by a technique, the measurement  usually corresponds to 
a specific physical property.  An equivalent diameter  is then defined as the diameter  of  a 

sphere having the same value of a specific physical proper ty  as the non-spher ical ly  shaped 
particle being measured. For instance, aerodynamic equivalent diameter  is the diameter  of  a 
uni t -densi ty  sphere having the same gravitational settling velocity as the particle being meas- 

ured. The commonly  used equivalent diameters and corresponding properties are summarized 
in Fig.1. Such equivalent diameter  method has the deficiency that it can hardly differentiate 

between distinct shapes. Fig.2 provides good examples: particles with Very different shapes 
may have the same equivalent diameters. 

The deficiency of "equivalent diameter" method is partially overcome by adding a shape 

factor (Herdan et al. 1960, 25-27pp; 173-180pp). Theory for non-spherical  particles hence in- 
volves a shape factor and an equivalent diameter. For example, drag on a non-spherical  particle 
is often expressed as a function of dynamic shape factor and volume equivalent diameter. How- 
ever, such "shape factor approach"  is unsatisfactory since most shape factors are empirically de- 

termined by comparing two different measurements, and therefore are of uncertainty. 
Thanks  to the application of fractal geometry, a major  breakthrough occurs in aerosol 
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shape characterization (Kaye 1978; see also the references listed in Tables 2a and 2b). Three 
ways have been developed to determine fractal dimension. The standard one, ruler method, is 
to determine fractal dimension by measuring some property (e.g., number  of  sphere N(L)) 
change with the scale of  the ruler (e.g., a length L) for an individual particle. The fractal di- 

mension is determined by the power - l aw between N(L) and L (Mandelbrot  1967, 1983). This 
method has been applied to analyze two-dimensional  projections of  a particle and has two 

variants. The second, correlation function method, is to determine fractal dimension by ex- 

ploring the dependence on distance r o f  the correlation function defined as c(r )  = < p ( x ) p ( x  

+ r ) >  OCr~ where < .>  denotes the spatial average; p ( x )  is the density at a position x of  a 
certain quantity. Fractal  dimension can be determined by a simple relation f l=  E - ~ /  

where E is the Euclidean dimension .of the space in which the aggregate is embedded (Forrest  
and Witten, 1979). The two methods examine a single particle with changing scales. The third 

method,  J~actal measure method, is to determine the fractal dimension by measuring proper- 
ties of  an ensemble of  particles with similar shapes with the same scale (Sreenivasan, 1991). 
This method has a variety of  variants based on different measuresused.  Typical examples are 
Mandelbrotts  a rea -per imete r  power - l aw  and Mandelbrot~s vo lume-a rea  power - law 
(Mandelbrot ,  1983, ch.12). The three major  methods and their various variants are summa- 

rized in Table 1. Table 2a is a summary  of  area fractal dimensions. Table 2b is a summary of  
mass - f rac ta l  dimensions. The terms "mass  fractal dimension and area fractal dimension" are 
used in this paper  generically to connote, respectively, fractal dimensions of  objects embedded 
in three-dimensional  and two-dimensional  Euclidean space. As shown in Table 2b fractal 
measure methods based on power - laws  among different equivalent diameters a n d / o r  dy- 

namic shape factors are commonly  used for studying non-spher ica l  aerosols. 

Table 1. A Summary of Three Major Methods and Their Variants to Obtain Fractal Dimensions 

Methods Symbols  Power-law used Description 

Fractai dimension ,81 is obtained 
Ruler Method RM ! p oc L l - p, by measuring boundary perimeter P 

with length-varying steps. 

Fractal dimension P2 is obtained by 
Ruler Method 2 RM2 ,40CL h measuring projected area A with 

length-varying squares for a particle 

Fractal dimension tic/ is obtained by 
correlation 

CF C(r)OCr E-pc/ measuring c(r) variation with size r for 
function method 

a particle 

Fractal dimensions are obtained by 
Fractal measure 

FM qi oCq#,/ measuring (ql,qj) for an ensemble 
method 

particles with similar geometry. 

FMI q~ = D=e, q/= D~e 

FM2 ql = Dar qJ = M 

FM3 qi =D~162 qj = D~162 

F M 4  q~ = Z, qJ = D~r 

D,e ,Do,, and Dm, are respectively volume, dynamical, and mobility equivalent diameters; X is the dynamic shape 
factor~ see Part I for their definitions. 
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2. Studies o f N o n - s p h e r i c a l H y d r o m e t e o r s  

Meteorologists treat non-spherical crystals in a way different from aerosol scientists. 
First, meteorologists prefer directly establishing relations between physical quantities (e.g., 
mass) for different hydrometeors to using some equivalent diameters and shape factors. Sec- 
ond, fractal geometry has found few explicit applications in hydrometeor shape 
characterization. However, fractal properties of hydrometeors have been implied, long before 
the birth of fractal geometry, in a large number of empirically power-laws. Various power 
laws, with integer or fractional exponents, are mathematical manifestations of physical ob- 
jects as described by fractal geometry (Schroder, 1991). In fact, most fractal measure methods 
for aerosol particles can be related to these empirical power laws through the generalized 
power laws given in Part I. Since 1935, various power laws have been established for 
hydrometeors. A summary of them is desirable for linking hydrometeors with fractal geome- 
try. 

The most extensive power-laws for hydrometeors are established for mass: 

M = CtMD D #M~ . In 1935, Nakaya and Terada obtained mass power laws for five rough cate- 

gories of hydrometeors: graupels, crysta!s with water droplets, powder snow and spatial 
dendrite crystals, plane dendrite crystals, and needles. Since then mass power-laws have been 
dramatically supplemented (Bashkirova and Pershina, 1964; Zikmunda and Vali, 1972; 
Locatelli and Hobbs, 1974; You et al., 1987; Mitchell et al., 1990). A summary is given in Ta- 
ble 3 after Locatelli and Hobbs (1974) and Mitchell et al. (1990). 

Relatively small number of area (A) data have been published (Davis and Auer, 1974; 
Bruintjes et al., 1987; Heymsfield and Kajikawa, 1987); but the number has been increasing 
recognizing the importance of area in both microphysics and radiation transfer (Mitchell and 
Arnott, 1994), and the development of instruments which can automatically sample and ana- 
lyze two-dimensional images such as PMS-2D probes. Recently, the power-law for 

Table 2a. Reported Values of the Fractal Dimensions of Two -Dimensional Projections 

Particle type ,q~ Methods Notes Source 

D: 1.1 to 3.0 #m Forrest & Witten 
Fe, Zn, SiO2, Lab 1.7 to 1.9 RM2 & CF 

Do: 7nm 1979 

Acetylene soot, 1.5 to 1.6 RM I ) <  1.0 #m Samson et al. 

Lab D0:30 nm, 1987 

Acetylene soot, 1.82 RM, D:5.5 to 12 #m Samson et al. 

Lab D0:30 nm, 1987 

Methane soot, 1.72 • 0.10 RM D:I to 5#m Zhang et al. 

Lab D0:20 nm, 1988 

D:0.79 #m Klingen & Roth 
Diesel soot, Lab 1.12 to 1.2 RMI 

D0:50 to 100 nm 1989 

Carbonaceous 1.35 to 1.89 RM2 D:0.21 to 2.61 #m Katrinak et al. 

aerosol D0:28 +_ 11 nm 1993 

soot 1,70 ~ 0.07 RM2 Cai et al. 1993 

soot 1.57 _+ 0.08 CF Cai et al. 1993 
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Table 2b. Reported Values of Mass-Fractal Dimensions 

Particle type fl Methods Notes Source 

Ag aggregates 2.18 FM D0:7.5 nm Schmidt-Ott i 988a 

Ag aggregates 2.18 FM DO: 7.5 nm Schmidt-Ott 1988a 

Methane soot 1.62 -+ 0.06 FM. D: 1 to 5#m Zhang et al. 

Do: 20 nm, 1988 

Butane soot 1.9 FM D < 20/zm Colbeck et al. 

D0:60 nm, 1989 

PtO 2 1.8 -+ 0.05 FM D0:17 nm, Naumann & Bunz 

1991 

U308 1.8 -+ 0.07 FM D0:36 nm, Naumann & Bunz 

1991 

CuO 1.8 -+ 0.05 FM D0:24 nm, Naumann & Bunz 

1991 

1.9 -+ 0.08 FM Do:46 nm, Naumann & Bunz 
UOz 1991 

Fe203 2.7 + 0.04 FM D0:45 nm, Naumann & Bunz 

1991 

Fe203 2.7 -+ 0.05 FM D0:45 nm, Naumann & Bunz 

1991 

Carbonaceous 1.96 FM Dye:0.56 to 1.41 Wu & Colbeck 

aerosol 1991 

soot 1.71 -+ 0.10 RM2,3D Cai et al. 1993 

soot 1.57 + 0.08 CF,3D Cai et al. 1993 

soot 1.93 -+ 0.08 F M ,  h = 12 mm Cai et al. 1993 

soot 1.72 -+ 0.07 FM, h = 16 mm Cai et al. 1993 

magnesium 1.08 FM D~e:0.63 to 1.58 Wu & Colbeck 

oxide smoke 1991 

Butane soot 1.87 to 2.19 FM D: ~< 10/am Nyeki & Colbeck 

D0:50 nm 1994 

p r o j e c t e d  a r e a  o f  c o m p l e x  p o l y c r y s t a l s  in c i r rus  c l o u d s  was  e s t ab l i shed .  T h e  p r o j e c t e d  a r e a  

was  m e a s u r e d  fo r  pa r t i c l e s  < 2 0 0 / ~ m  by  p h o t o c o p y i n g  r e p l i c a t o r  i m a g e  u n d e r  m i c r o s c o p e .  

F o r  sizes > 200 /am, the  p r o j e c t e d  a r e a  was  d e t e r m i n e d  f r o m  the  ice pa r t i c l e  i m a g e s  o f  the  

2 D - C  p r o b e  by c o u n t i n g  the  o c c l u d e d  pixels .  T e c h n i q u e  de ta i l s  a re  r e f e r r ed  to M i t c h e l l  et  al. 

(1996a,  b). T a b l e  4 is a s u m m a r y  o f  these  p o w e r - l f i w s .  

T e r m i n a l  v e l o c i t y  p o w e r - l a w  V t = ot v D ~' resu l t s  f r o m  the  c o r p o r a t i o n  o f  f r ac t a l  g e o m e -  

t ry  o f  a pa r t i c l e  a n d  f r ac ta l  p r o p e r t i e s  o f  f low a r o u n d  the  pa r t i c l e  ( P a r t  I). E m p i r i c a l  p o w e r  

l aws  h a v e  b e e n  r e p o r t e d  s ince 1 9 3 5  ( N a k a y a  a n d  T e r a d a ,  1935; L a n g l e b e n ,  1954 fo r  p la tes  
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Table 3. Power -Laws  between Mass and Maximum Diameter  of H rdrometeor 

Hydrometeor  Type Power - l aw Notes  Authors  

Lump graupel M = 0.042D 3~ D:0.5 to 2.0 L & H(1974) 

p:0.05 to 0.1 

Lump graupel M = 0.078D 2's D:0.5 to 3.0 L & H(1974) 

/9:0.1 to 0.2 

Lump graupel M ='0.14D z7 D:0.5 to 1.0 L & H(1974) 

p:0.2 to 0.45 

Conical graupel M = 0.073D 2'6 D:0.8 to 3.0 L & H(1974) 

Hexagonal  graupel M = 0.044D 2"9 D:0.8 to 3.2 L & H(1974) 

Graupell ike snow of lump type M = 0.059D 2~ D:0.5 to 2.2 L & H(1974) 

Graupell ike snow of hexagonal type M = 0.021D 2'4 D:0.8 to 2.8 L & H(1974) 

Rimed columns M = 0.033D 23 D:0.8 to 2.0 L & H(1974) 

Rimed dendrites M = 0.015D 2"3 D: l .8  to 4.0 L & H(1974) 

Rimed radiat ing assemblages of M = 0.039D 2'1 D: 1.8 to 2.8 L & H(1974) 

dendrites 

Aggregates of radiat ing M = 0.073D TM D:2.0 to I 0.0 L & H(1974) 

assemblages of dendrites 

or dendrites 

Aggregates of rimed radiating M = 0.037D ~'9 D:2.0 to 12.0 L & H(1974) 

assemblages of 

dendrites or dendrites 

Aggregates of side planes M = 0.047D TM D:0.5 to 4.0 L & H(1974) 

Elementary needles M = 0.0049D l's D:0.6 to 2.7 M(1990) 

Rimed Elementary needles M = 0.0060D z~ D:0.5 to 2.8 M (1990) 

Long columns M =0.0121D I's D:0.2 to 1.5 M(1990) 

combinat ions of Long columns M = 0.017D Ls D:0.2 to 2.6 M(1990) 

side planes M = 0.021D 2"3 D:0.3 to 2.5 M(1990) 

Short Columns M = 0.064D 26 D:0.2 to 0.6 M(1990) 

Combinat ions of short columns M = 0.031D 1'9 D:0.4 to 1.4 M (1990) 

Hexagonal  plates M = 0.028D 2"5 D:0.2 to 1.0 M(1990) 

Radiat ing Assemblage plates M = 0.019D 21 D :0.2 to 3.0 M(1990) 

Fragments  of rimed dendrites M = 0.027D w D:0.3 to 1.9 M(1990) 

Aggregates of fragments of rimed M = 0.034D 2"~ D:0.5 to 4.8 M(1990) 

dendrites 

Aggregates of radiat ing M = 0.023D ~8 D:0.8 to 7.7 M(1990) 

assemblages plates 

Aggregates of side planes, M = 0.022D 2'1 D:0.8 to 4.5 M(1990) 

bullets, and columns 

375 

L & H = Locatelli and Hobbs (1974); M = Mitchell et al. (1990) 
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Table 4. Area Power-Laws of H 

Hydrometeor Type 

Crystal with sector21ike 

branches 

Crystal with sector-like 

branches 

crystal with broad 

braches iikerabbit 

ears, steller crystals 

crystal with broad 

braches like rabbit 

ears, steller crystals 

crystal with broad 

sector-like braches 

crystal with broad 

sector-likebraches 

drometeors 

Power-laws Notes Sources 

A = 0,65D 2 10 to 40, basal Davis and Auer1974 

A = 0.55D t97 41 to 2000, basal Davis and Auer1974 

A ffi 0.65D 2 10 to 90, basal Davis and Auer1974 

A=0.11D I"s3 91 to 1500, basal Davis and Auer1974 

A = 0.65D 2 10 to 100, basal Davis and Auer1974 

A = 0.21D TM 101 to 1000, basal Davis and Auer1974 

solid thick plate A ffi 0.65D 2 10 to 1000, basal Davis and Auer1974 

Solid column, L / W ~< 2 A = 0.65D 2 10 to I000, basal Davis and Auer1974 

Solid column, L / W > 2 A = 0.65D 2 10 to 1000, basal Davis and Auer1974 

Hollow column, L / W ~< 2 A = 0.65D 2 10 to 1000, basal Davis and Auer1974 

Hollow column, L / W > 2 A = 0.65D 2 10 to 1000, basal Davis and Auer1974 

Hexagonal plates A ffi 0.65D 2 10 to 3000, basal Davis and Auer1974 

Double plate with 
A ffi 0.72D 17 D > 200 #m, basal Bruitjes et al. 1987 

branches 

Hexagonal plates 

Hexagonal column 

Hexagonal column 

Bullet rosettes with 5 

branches 

Complex Polycrystals 

Simple polycrystals 

A ffi 0.2395D Lsss D > 15 gm, random Mitchell et al 1996 

A=0.6837D z ~ 1 7 6 1 7 6  1 5 < D < 1 0 0 # m  Mitchell et ai 1996 

A = 0.64590D 1'415 D > 100 #m Mitchell et al 1996 

A = 0.08687D mm D > 200 #m Mitchell et al 1996 

A = 0.2285D t'Ss 20 < D < 450 #m Mitchell et al 1996 

A = 0.4715D z~ 20 < D  < 100 #m Mitchell et a11996 

a n d  c o l u m n s ,  d e n d r i t e s ,  m i x t u r e  o f  d e n d r i t e s  a n d  a g g r e g a t e s  o f  p l a t e s ,  r i m e d  d e n d r i t e s ;  M a -  

s o n  a n d  H u g g i n s ,  1980 fo r  h a i l s t o n e s ;  S a s y o  a n d  M a t s u o ,  1980 f o r  m i x e d  s n o w f l a k e s ;  

L o c a t e l l i  a n d  H o b b s ,  1974 f o r  15 t y p e s  o f  h y d r o m e t e o r s ;  K n i g h t  a n d  H e y m s f i e l d ,  1983 fo r  

h a i l s t o n e s ;  H e y m s f i e l d  a n d  K a j i k a w a ,  1987).  A s u m m a r y  is g i v e n  in  T a b l e  5. B e r r y  (198'9) of- 

f e r ed  a g o o d  d i s c u s s i o n  o n  t e r m i n a l  v e l o c i t y  o f  a e r o s o l  p a r t i c l e s .  

T h e  size o f  a c r y s t a l  is u s u a l l y  b e  c h a r a c t e r i z e d  b y  t w o  l e n g t h s :  l e n g t h  a l o n g  a - a x i s  (a )  

a n d  l e n g t h  a l o n g  c - a x i s  (c). O b s e r v a t i o n s  ( S c h a e f e r ,  1947;  W i e c k m a n n ,  1947; R e y n o l d s ,  1952; 

M a s o n ,  1953;  M a g o n o ,  1954; I s o n o ,  1959; O n o ,  1969,  1970; A u e r  a n d  V e a l ,  1970; H e y m s f i e l d  

a n d  K n o l l e n b e r g ,  1972;  D a v i s ,  1974;  J a y a w e e r a  a n d  O n t a k e ,  1974)  h a v e  s h o w n  t h a t  t h e  t w o  
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Table 5. Power-Laws between Different Characteristic Lengthes of Hydrometeors 

Hydrometeor type Power-laws Range of major axis (/~m) Sources 

Hexagonal plate. E H = 1.41 x 10-2D ~ 10 to 3000 Auer and Veal(1970) 

Crystal with sector-like 
H = 1.05 x 10-2D ~ 10 to 2000 Auer and Veal(1970) 

branches. D 

crystal with broad braches like 
H =9.96 x 10-3D ~ 10 to 1500 Auer and Veal(1970) 

rabbit ears, steller crystals. B 

crystal with broad sector-like 
H = 9.96 x 10-~D ~ 10 to 1000 Auer and Veal(1970) 

braches. C 

solid thick plate, F H = 0.138D ~ 10 to 1000 Auer and Veal(1970) 

Solid column, L / W ~< 2.G W = 0.578L ~ 10 to 1000 Auer and Veal(1970) 

Solid column, L / W > 2.1 W = 0 . 2 6 0 L  ~ 10 to 1000 Auer and Veal(1970) 

Hollow column, L / W ~< 2.J W =- 0.422L ~ 10 to 1000 Auer and Veal(1970) 

Hollow column, L / W > 2.H W = 0.263L ~176 10 to 1000 Auer and Veal(1970) 

dendrites, fernlike crystals, 

dendrites with plates at end, 

Plates with dendrite extensions, 

Four brached crystals, 

dendrites with 12 branches. A 

H = 9.02 • 1 0 - 3 D  0377 Auer and Veal(1970) 

Solid bullet, L ~< 0.3 ram. K W = 0.153L ~ Auer and Veal(1970) 

Hollow bullet, L/> 0.3 mm.M W = 0.063L ~ Jayaweera & Ontake 
1974 

Elementary needle. L W = 3.05 • 10 2L~ Heymsfield 1972 

Long solid column.N w = 3.53 x 10 2L~ Heymsfield 1972 

l e n g t h s  a r e  r e l a t e d  to  e a c h  o t h e r ,  a n d  t he  size r e l a t i o n s h i p  c a n  b e  wel l  d e s c r i b e d  b y  v a r i o u s  

p o w e r - l a w s .  T a b l e  6 is a s u m m a r y  a f t e r  P r u p p a c h e r  a n d  K l e t t  (1978 ,  40p) .  T h e s e  p o w e r  l aws  

p r o v i d e  o b s e r v a t i o n a l  e v i d e n c e  f o r  t h e  e x i s t e n c e  o f  s e l f - a f f i n e  f r a c t a l s ,  a n d  h e n c e  n e c e s s i t a t e  

t he  s e c o n d  o r d e r  g e n e r a l i z a t i o n  o f  d e s c r i b i n g  p a r t i c l e  s h a p e s .  

II1. FRACTAL DIMENSION, SELF-SIMILAR AND SELF-AFFINE FRACTAL 

1. Fractal Dimension 

F r a c t a l  d i m e n s i o n  is t h e  m o s t  i a n p o r t a n t  s h a p e  d e s c r i p t o r  in  f r a c t a l  g e o m e t r y .  F o r  

c o m p l e t e n e s s ,  t h i s  s e c t i o n  o u t l i n e s  t h e  e v o l u t i o n  o f  d i m e n s i o n  c o n c e p t .  T h e  E u c l i d e a n  d i m e n -  

s i on  o r i g i n a t e s  f r o m  i n t u i t i o n .  W e  k n o w  e m p i r i c a l l y  t h a t  t h e  d i m e n s i o n  o f  a l ine  a n d  a p l a n e  

is 1 a n d  2, a n d  t h a t  we l ive in  a 3 - d i m e n s i o n a l  space .  S u c h  i n t u i t i v e  d i m e n s i o n  c o n c e p t  is gen-  

e r a l i z e d  to  n - d i m e n s i o n a l  v e c t o r  s p a c e  b y  d e f i n i n g  t he  d i m e n s i o n  o f  a v e c t o r  s p a c e  as  t he  
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number o f  independent variables (Datta, 1994). Actually, it is conventional  in mul t i -body  
mechanics to replace the mot ion  o f  m particles in 3 dimensions by the mot ion  o f  one particle 
in 6m-d imens iona l  space by considering each particle's location and m o m e n t u m  as indepen- 
dent. Poincare (1903) gave topological  meanings to such intuitive view in terms o f  
"continuum and cut". The fol lowing is the translation by Mandelbrot (1983, 410p): "If to di- 
vide a cont inuum C it suffices to consider as cuts a certain number o f  distinguishable 
elements, we say that this cont inuum is o f  dimension one .... If to divide a cont inuum it suf- 
fices to use cuts which form one or several continua o f  dimension 1, we say that C is a 
cont inuum of  dimension 2. If cuts which form one or several continua o f  at most  dimension 
two suffice, we say that C is a cont inuum of  dimension three; and so on;... Since curves can be 
divided by cuts which are not cont inuum, they are continua at" dimension one; since surface 
can be divided by cont inuous cuts o f  dimension one,  they are continua o f  dimension two; and 
finally space can be divided by a cont inuous  cuts o f  two dimensions,  it is a cont inuum of  di- 
mension three. " 

Table 6. Summary of  Commonly-used Dimensions 

Name Description 

Dimension of  the Euclidean space in which the 
Euclidean dimension 

observed set is embedded; integral values only 

Integral values onlyj invariant under 
Topological dimension 

homeomorphism 

'Defined for strictly self-similar objects, 
Similarity dimension 

including Euclids 

Defined by most efficient covering and for 
Hausdorff-Bestovish dimension 

any shapes 

Defined by covering with identical Euclids, 
Capacity dimension 

e.g., spheres and cubes 

(a) (b) (c) 

Fractal dimensions Increue from 1 to 2 with figures 
from (a) to (c). 

Fig.3. Objects with the same Euclidean dimension 1, yet different fractal dimensions, Object (a) is 

a smooth line with fractal dimension p -  1.0; object (b) is a Koch flake with fractal dimension ~ 

1.26; object (c) is a plane-filling Brownian motion curve with fractai dimension B ~ 2. 
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The dimension as discussed looks natural  and is favored by common  sense. It, however, 
contaiias serious flaws. First, it cannot  differentiate between simple and complex shapes. For  
example, the objects in Fig.3 have the same Euclidean dimension 1, yet different shapes. Sec- 

ond, there are contradictions for complex shapes. For  example, nearly one hundred years ago, 
Peano described a very strange curve that can be d rawn with a single stroke and tends to 
comple te lycover  a plane (Peano curve, see Mandelbrot ,  1983). Since the location of  a point  

on the Peano curve, like a point on any curve, can be characterized with one real number ,  we 
become able .to describe the position of  any point  on a plane with only one real number.  
Hence both Euclidean and topological dimension of  this curve are 1. This contradicts the e m  
pirical value 2 of  a plane. These difficulties drove mathematicians to a concept breakthrough 

at the early 20th century: from topological notion to metric notion of  dimension concept. 
These metric dimensions are called fractal dimensions by Mandelbrot  (1983) (see Table 6 for 
a summary).  

The simplest fractal dimension is similarity dimension. As discussed in Part  I, it is devel- 
oped for self-similar objects, and closely connected with our intuitive notion of  Euclidean 
dimension. Some key points are repeated here. 

A one-dimensional  objec t ,  for example, a line segment, can be divided into N identical 

D 
parts each of which is scaled down by the ratio D O = ~ (D is length). A two-d imens iona l  ob- 

jects, such as a square, can be divided into N identical parts each of  which is scaled down by a 
D 

factor D O = ~ .  A three-dimensional  object, like a solid cube, can be divided into N little 

D 
cubes each of  which is scaled down by a ratio D O = ~f-~-. 

To generalize, a /~-dimensional self-similar  object can be divided into N smaller parts 
each of which is scaled down by a factor 

D 
D O - ~ , ( la)  

o r  

The similarity dimension is given by 

N = ( lb)  

/ 3 -  log(N) (lc) 

log( ) 
Do 

Similarity dimension overcomes the difficulties of  the Enclidean dimension when an ob- 

is self-similar,  and conforms to Euclidean dimension when an object is a Enclid ject 

(Mandelbrot ,  1983). 

A more general fractal dimension, Hausdor f f -Bes tov ish  dimension, was introduced by 
Hausdor f f  in 1919, completed by Bestovish and finally manipulated to study physical objects 
by Mandelbrot  (1983). Hausdorf f -Bes tovish  dimension is defined as follows by a method of  
coverings. 

Let r > 0 and 6 > 0 be real numbers.  Cover  a set f~ by countable spheres whose diame- 
ters are all smaller than ft. Denoting the radii of  the spheres by r l , r  2 . . . . .  r k , the i -d imens iona l  
Hausdorf f  measure is defined by 
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He (f~)= Lim i n f ( ~  k rk r ) ,  (2a) 
d~O r t '~6 

where inf .)  means the infimum. 
For any given set t'l, this measure is proved to jump from zero to infinity at a critical 

value ~, denoted by ~h. This critical value defined as Hausdorff-Bestovish dimension. 
Mathematically, we have, 

oo if ~</~h (2c) 
so that He (f~) = ~t 0 if r > p, 

Hausdorff-Bestovish dimension equals to similarity dimension for self-similar fractals, and 
to Euclidean dimension for regular objects (Appendix A).. The practical ruler method is de- 
veloped from the covering idea. 

2 .  Self--similar and Sel f--a fflne Fractals 

Self-similar models enhance our ability of particle shape characterization by quantifying 
some irregular shapes. Nature, however, also produces neither Euclidean nor self-similar 
shapes. As a consequence, a unified treatment should be able to include more complex shapes. 
The self-affine model is obviously a good choice. A self-affine fractal is the natural generali- 
zation of a self-similar fractal. Their main distinction is that self-similar fractals scale 
isotropically ( the same in all directions) whereas self-affine fractals scale anisotropically 
(differently in different directions). In other words, a self-affine fractal is directionally 
self-similar. Mathematically, a function is self-affine if it satisfies (3a) 

fx, Xl, X f' ""C" / x l ,  x, , '",  Xn), (3a) 

where H; is called the Hutst exponent; the symbol means that (3a) holds statistically 
(Mandelbrot, 1983). When f is  a function of one independent variable, equation (3a) reduces 
to a simple form: 

f2x )  ~ 2 tt f ix )  . (3b) 

Equation (3b) expresses the fact that the function is invariant under the following scaling: en- 
larging along the x-axis by a factor of 2, followed by scaling the function value by a different 
factor 2 H . More about self-similarity and self-affinity are given in Appendix B. 

However, the practical part of the generalization from self-similar to self-affine fractals 
is not as simple as the concept. Unlike self-similar fractals which have such nice properties 
that only a single fractal dimension is needed to quantify shapes, and that methods for deter- 
mining fractal dimensions are well established, characterization, of self-affine fractals still re- 
mains unsolved (Mandelbrot, 1985; Lovejoy and Schertzer, 1987). In the following section, 
we will demonstrate the self-affinity of atmospheric particles, and address problems involving 
their shape characterization. 
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IV. JUSTIFICATION FOR S E L F - A F F I N E  PARTICLES 

1. Power- laws between Lengths o f Di f~rent  Directions 

An obvious feature of  a self-affine fractal is that it scales differently in different direc- 
tions. Suppose a fractal scales differently in the x and z direction (Lojevoy and Schertzer, 
1987: Matsushita and Ouchi 1989): 

L x oc). nx , (4a) 

L z oc2  u "  , (4b) 

where L~ and L~ are the lengths along x and z direction respectively, 2 the scale factor, H x 

and H z the corresponding exponents. 
A combination of (4a) and (4b) yields a power law between the two lengths: 

Lz OCL ,x , (Sa) 

H Z 

#=x - H ,  (Sb) 

Equation (5b) shows that the exponent flz= does not equal 1 i f  an object is self-affine (scales 
differently in the x and z direction) and equals 1 if it is self-similar. For  crystals x and 
z correspond to the a-axis  and c-axis respectively. Therefore, self-'similarity or self-affinity 
of  crystals can be investigated by examining power laws between lengths of  the a-axis  and 
c-axis. Simple calculation of the exponents given in Table 5 yields a spectrum of f l~ ,  from 
0.377 to 2.288. The degree of self-affinity of  crystals becomes more evident in Fig. 4. 

2. Dimensional Relation between Sel f - a  fflne Fractats and Their Projections 

Atmospheric particles exist in the three-dimensional  space. However, most shape ana- 
lyses are usually performed for their two-dimensional  projections. A relationship between 

2.5 

1.5 
c 

o t~ 

1 

0.5 

0 I I L l 1 I I l I I I I I 

A B C D E F G H I J K L M N 
Crysta l  T y p e  

Fig. 4. Degree of  Self-affinity of  hydrometeors, the inverse of  the exponents in Table 5 is taken 

wherever necessary. 



382 Advances in Atmospheric Sciences Vol.14 

mass and area fractal  dimensions is therefore desirable. Two equations are in common use. 
First, for Euclidean particles, it is obvious that dimension of projections depends on both 
projected particles and projection subspace. A plane-projection of a three-dimensional and a 
two-dimensional particle has dimensibn two whereas a plane-projection of a one-  
dimensional curve still has dimension one. When a projection subspace is one-dimensional, 
either a three-dimensional, or a two-dimensional,  or a one-dimensional object has a projec- 
tion of dimension 1. This is readily generalized to a self-similar fractal (Part I): 

•projeetion - -  min(fls ,fl) �9 (6a) 

Equation (6a) indicates that the projection dimension/~proi.cUo, will be the minimum between 
and fls when a self-similar particle of dimension fl is projected onto a subspace of dimen- 

sion fls. A rigorous demonstration of  (6a) was provided in Falconer (1991, Ch.6). 
The other method inferring mass fractal dimension from area-fractal  dimension is based 

on Mandelbrogs rule of thumb for intersection (Mandelbrot, 1983). Mandebrogs rule of 
thumb for intersections states that an E,  -dimensional section of a fractal set embedded in 
E-Euclidean dimensional space (E > E s , integers) satisfies equation (7) 

# -- #im,r~ao. + (E - E,  ) (6b) 

Equation (6b) has been widely used for obtaining fractal dimension of an isotropic turbulence 
from its cross-sections, and adopted for cloud surface analysis assuming (6b) is valid for pro- 
-jections as well (see Malinowski and Zawadzki, 1993 and references therein). 

However, when an object is self-affine, dimensional relationships are complicated. It will 
involve both (6a) and Mandelbrot '  rule of thumb for intersections because of their anisotropic 
properties. For example, Malinowski and Zawadzki (1993) argued that satellite images of 
clouds are not cross-sections but rather horizontal projections. Particles exist in different 
orientations in the atmosphere; such orientational variability of atmospheric particles further 
compounds the problem. Assume that given an area-fractal dimension, the corresponding 
mass-fractal dimension lies between curves determined by (6a) and (6b). In other words, for 
self-affine particles, we can no longer predict mass-fractal dimension from area-fractal di- 
mension from either (6a) or (6b). On the other hand, a combination of (6a) and (6b) sets the 
domain where mass-fractal dimensions locate. In practice, the common situation is that a 
particle embedded in the three-dimensional space is sampled onto a two-dimensional 
subspace, i.e.,/~s -- E~ = 2, and E - 3. Then (6a) and (6b) become (7a) and (7b) respectively. 

/~2 = min(2,/~) , (7a) 

f l - - r2  + 1 , (7b) 

where ~2 is the measured area-fractal  dimension representing either flpromUo, o r  ~]intvrsection �9 

If  our new proposal holds, then inferring mass-fractal dimension from area fractal di- 
mension has a uncertainty of as large as 1. Knowledge of both mass fractal dimension and 
area fractal dimension is required to demonstrate (7a) and (7b). Unfortunately, to the 
authors ~ knowledge, very few studies have been performed which measure mass-and 
area:-fractal dimensions simultaneously. Mitchell et al. (1996) provided 19 pairs based on 
previous studies for hydrometeors; Rogak et al. (1993) determined 12 pairs for aerosols. We 
plot these data in Fig.5. It is evident that the measurements fall within the domain set by (7a) 
and (7b). The preliminary agreement supports our assumption and suggests the existence of 
self-affine particles in the atmosphere. It also cautions that special care is needed to infer 
mass fractal dimension from area fractal dimension. 



No.3 Liu Yangang 383 

2.5 �9 

. ... 
2 t �9 

~ 1.5 

1.2 1.4 1.6 1.8 2 2.2 
Axea Frac~ Dimemioe 

Fig.5. Relationship between mass fractal dimension and area fractal dimension. The squares rep- 

resent the data for crystals from Table l of Michell (1994), and crosses represent the data for 

aerosol particles from Table 2 of Rogak and Flagan (1993). The thin solid curve represents 

flo = min(2,fl~); the thick line respresents tim = ~a + 1. 

V. IMPLICATIONS FOR SHAPE CLASSIFICATION AND I N S T R U M E N T A T I O N  

A variety of particle shapes exist in the atmosphere. Dependence of various properties 
(e.g., scattering and dynamical) on particle shapes makes particle shape classification more 
important. The traditional way to describe the shape is to use a metaphor or to compare the 
shape to a known geometry. For example, the British Standards Institute prepared a standard 
glossary of terms in the description of fine particle shapes (Kaye 1980, 338p). The most 
widely-used systematic classification of ice particles is that by Magono and Lee (1966), in 
which about 80 categories are identified. Obviously, these qualitative classifications hardly 
meet the needs of quantitative calculation such as numerical models. 

Fractal theory offers a way to quantitatively classify particle shapes. However, practical 
application needs further examination. First, above discussions demonstrate that atmospheric 
particles can be characterized by a power-law: 

(quantity)j = prefactor(quantity)~ xp~ (8) 

The exponent, which is related to fractal dimension, is an important shape descriptor. 
For example, mass-fractal dimensions of atmospheric particles may range from 1 (needle 
crystals or straight chainlike aerosols), to 2 ( regular planar crystals and aerosols), further to 3 
( Euclidean 3-dimensional solid such as spherical particles), with various fractional dimen- 
sions in between. So far, most aerosol studies have emphasized the importance of fractal di- 
mension; Information on prefactors has been overlooked. However, as pointed out by 
Mandelbrot, the prefactor cannot be neglected; it includes important information on particle 
texture. Furthermore, for atmospheric particles, the prefactor contains information about not 
only the common texture (characterized by a new term, lacunarity, defined by Mandelbrot, 
1983) but also the particle material. Without knowing fractal ge6metry, meteorologists have 
reported a large number of empirical power laws. The importance of prefactor in character- 
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izing particle shapes can be clearly seen from these empirical power-laws. For example, in 
Table 3, hydrometeors of graupelike snow of lump type, rimed radiating assemblages of 
dendrites, rimed elementary needles, radiating assemblaged plates, and aggregates of side 
planes, bullets and columns, all ha.ve exponents around 2.1 whereas their shape differences are 
reflected by the differences in their prefactors. This suggests that exponent-and prefactor 
should be measured and studied simultaneously as the first and second shape descriptor 
respectively. 

Our second concern is for self-affine particles. As discussed above, we cannot definitely 
know mass-fractal dimensions from measuring two-dimensional images for self-affine par- 
ticles. Quantifying self-affine particles requires at least a pair of power-laws that describe 
three physical properties. The existence of self-affine particles therefore calls for instruments 
which can measure both mass-and area-fractal dimensions together with prefactors. Devel- 
oping such kind of instruments lies in the front of understanding atmospheric particle systems 
and their various effects. Recall Table 2 of Part I. determining terminal velocity or other 
dynamical quantities at least requires mass, area and maximum diameter. An optical example 
is ~ a t  the determination of effective distance, the representative distance a photon travels 
through a particle, also requires mass, area and maximum diameter (Mitchell et aL, 1996). Ef- 
forts have been recently made in this respect. Maloney et al. (1995) developed an instrument 
to measure solid particle length, width, cross-sectional area, extermal surface area and vol- 
ume by rotating particles using a set of directed gas jets ang recording image data for succes- 
sive video fields as a function of rotation angle. Arnott et al. (1995) proposed a method to 
measure two-dimensional images and masses of cloud particles by recording successive im- 
ages and the evaporation time. 

VI. CONCLUDING REMARKS 

Methods for studying non-spherical particles are reviewed. Examination is made of the 
differences in methods for aerosols and for hydrometeors. Various fractal dimensions and 
practical methods to determine them are discussed. Characterization of aerosol particles in 
terms of fractal dimensions is reviewed. Empirical power-laws for hydromcteors are summa- 
rized and re-considered in terms of fractal. It is argued that methods for aerosols and 
hydrometeors can be unified in terms of fractal through the generalized power laws as dis- 
cussed in Part I. 

Generalization from self-similar to self-affinc particles is addressed. The degree of 
self-affinity of atmospheric particles is studied by examining power laws between lengths of 
different directions. It is shown that hydrometeors exhibit a spectrum of self-affinity, from 
self-similar to flat. It is further argued that unlike Euclidean or self-similar particles, 
self-affine particles have no'definite dimensional relationship between real particles and their 
projections. We propose that the relationship for projections of self-similar particles and 
Mandelbrot rule of thumb for intersections respectively set the lower and upper limit to the 
mass-fractal dimensions given measured area-fractal dimensions. The preliminary cvidence 
supports such relationship. Discussed is potential usefulness of power-laws in quantifying 
particle shapes. Exponent (or, fractal dimension) and prefactor in a power-law arc suggested 
to be respectively the first and second index of a particle shape. Instruments are highlighted 
that cansimultaneously measure both mass fractal dimension and area fractal dimension be- 
cause of the existence of self-affine particle in the atmosphere. 
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Appendix A. Generality of Hausdorff-Bestovish Dimension 

F a l c o n e r  (199,0, 29p) gave m a t h e m a t i c a l  d i scuss ions  a b o u t  genera l i ty  o f  H a u s d o r f f -  

Bestovish d imens ion  as fol lows.  

I f  a set is s m o o t h  m - d i m e n s i o n a l  surface  o f  space  E n then  H u a s d o r f f - B e s t o v i s h  d imen-  

sion equals  m. In  pa r t i cu l a r  s m o o t h  curves  have  H u a s d o r f f - B e s t o v i s h  d imens ion  1 a n d  

s m o o t h  crves have H a u s d o r f f - B e s t o v i s h  d imens ion  2. F o r  example ,  let F be a f lat  disc o f  uni t  

rad ius  in E 3 . F r o m  fami l ia r  p rope r t i e s  o f  length,  a r ea  and  vo lume,  the i r  H a u s d o r f f  measu res  

are  

H l (F)  = l eng th(F)  = oo , 

1 
0 < H 2 (F)  = ~ 7rarea(F) < 

4 
H 3 (F)  = ~ r rvolume(F)  = 0 . 

( A l . l a )  

( A l . l b )  

( A l . l c )  

Thus,  A c c o r d i n g  to Eq.2,  H a u s d o r f f - B e s t o v i s h  d imens ion  flh = 2, equals  the Euc l idean  di- 

mens ion  o f  the disc. 

Appendix B. Self-similarity and Self-affinity 

This  append ix  is af ter  M a n d e l b r o t  (1983, Ch.39).  

B1. Self-similarity 

In the Euc l idean  space R E , a real  r a t ion  r > 0 de te rmines  a t r a n s f o r m a t i o n  cal led simi- 

lar i ty.  I t  t r ans fo rms  the po in t  x = ( x l , x 2  . . . . .  x e ) i n t o  the po in t  r ( x ) = ( r  x 1, r •  . . . . .  

r • E),  and  hence t r ans fo rms  a set S in to  the set r(S).  A b o u n d e d  set S is s e l f - s imi l a r ,  with 

respect  to r and  an in teger  N, when S is the un ion  o f  N n o n - o v e r l a p p i n g  subsets,  each o f  

which is congruen t  to r(S).  " C o n g r u e n t "  means  ident ica l  except  for  d i sp l a c e me n t  and  or  rota-  

t ion. 

B2. Self-affinity 

In the Euc l idean  space R E , a col lec t ion  o f  posi t ive  ra t ios  r = (r 1 , r 2 . . . . .  r e )  de te rmines  

an aff ini ty.  I t  t r ans fo rms  each  p o i n t  x = (x 1 ,x 2 . . . . .  x e )  in to  the  p o i n t  r ( x )  = ( r  1 x 1, r 2 

x 2 . . . . .  r e • E), hence t r ans fo rms  a set into the set r(S).  A b o u n d e d  set S is se l f -a f f ine ,  wi th  

respect  to the ra t io  vec tor  r and  an in teger  N, when S is the un ion  o f  N n o n o v e r l a p p i n g  

subsets,  each o f  which is cong ruen t  to r(S).  

Appendix C. Corrections to Part I 

( D y e ) 3 b - l / b  (Dve)3b-l/b 
Page 425, Tab le  2.3( = pp \Dae , not  g = Pp \Dst 

N X 
Page  430. E q u a t i o n  (14b) should  be e x = ~ ,  ins tead  o f  e x = ~ .  C o r r e s p o n d i n g l y ,  the 

fo l lowing line "whe re  ex represents  the average  X per  pa r t i c l e "  is c ha nge d  as " w h e r e  e x rep- 

resents  n u m b e r  o f  par t ic les  per  uni t  X. 

Page  435. equa t ion  (A 1) shou ld  be 
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~ oo 

L ( p ( x ) ,  q l ,  q 2) = -- p ( x ) l n p ( x )  + .... not 
o 

L ~ ( x ) ,  q 1, q2 )  = - p ( x ) l n ( x )  + . . .  
o 

The main idea took shape when Liu Yangang was in the Chinese Academy of Meteorological Sciences, PRC 

(CAMS) under the support of National Natural Science Foundation. Special thanks to Professors You Laiguang, Hu 
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