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ABSTRACT 

This paper introduces a new consistent dissipation operator. It is based on the explicit square conservation 

scheme and the theory of consistent dissipation. The operator makes full use of the advantages of the Leap-frog 

scheme, i.e., its second order time precision and its explicit solution manner. Meanwhile, it overcomes the fatal disad- 

vantage, the absolute instability in computations, of the scheme. When it is applied to the explicit square conservation 

scheme, the time precision of the scheme reaches to third order. Especially, the computational stability of this scheme 

is as good as the third order explicit Runge-Kuna scheme. The CPU time required in computations by the scheme is 

less than that required by the explicit square conservation scheme with the consistent dissipation operator constructed 

from the Runge-Kutta method. Therefore, the new operator is an economical one. The application of the operator to 

the improvement of the dynamical model of the L 2 IAP AGCM shows its time-saving property and its good effects. 
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I. INTRODUCTION 

The t heo ry  o f  cons is ten t  d i s s ipa t ion  o p e r a t o r  is pu t  f o r w a r d  by W a n g  et  al. (1994). I t  im- 

proves  the p rec i s ion  and  the c o m p u t a t i o n a l  s tab i l i ty  o f  the expl ic i t  square  c onse rva t i on  

scheme ( W a n g  et al . ,  1990) and  m a k e s  the scheme prac t i cab le .  A class o f  h i g h - p r e c i s i o n  con- 

sistent  d i s s ipa t ion  o p e r a t o r  is cons t ruc ted  by  us ing  the classic expl ic i t  R u n g e - K u t t a  m e t h o d  

( W a n g  et al. ,  1994), which  p lays  i m p o r t a n t  roles  b o t h  in i m p r o v i n g  the s imu la t i on  effects and  

saving c o m p u t a t i o n a l  t ime,  o f  some  real  numer i ca l  s imu la t i on  p rob l ems .  C a n  an  e c o n o m i c a l  

cons i s ten t  d i s s ipa t ion  o p e r a t o r  be cons t ruc t ed  based  on  the a fo re sa id  theory?  A f t e r  a careful  

s tudy  on  this p r o b l e m ,  we can  say  tha t  the  answer  is a f f i rmat ive .  By us ing the L e a p - f r o g  

scheme, a new s e c o n d - o r d e r  cons i s ten t  d i s s ipa t ion  o p e r a t o r  is es tab l i shed ,  which  needs  on ly  

one i t e ra t ion  while  an  o ld  s e c o n d - o r d e r  one in W a n g  and  Ji (1994) requi res  two i t e ra t ions .  

Therefore ,  it  saves m o r e  t ime than  the o ld  one  does .  The  de ta i l ed  d iscuss ion  o f  the  new opera-  

tor  will be given in the coming  sections.  

II. THE CONSTRUCTION OF THE OPERATOR 

C o n s i d e r  the  evo lu t ion  e q u a t i o n  in o p e r a t o r  fo rm:  

OF 
- -  = L F  , 
Ot 
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where L is a zero operator: 

( L F , F )  = 0 . .  

The equation is of the square conservation: 

(2) 

~ 1  IIFII z = 0 . (3) 
0t 2 

The Leap-frog scheme to solve Eq.(1) can be written as 

F n + I _ _  F n - I 
= L F "  (4) 

2At 

o r  

F "  + I = F " -  I + 2 A t L F "  (4)' 

This scheme has two advantages. First, it is an explicit scheme and can be solved directly. 
Next, it is of second-order precision. However, this scheme is absolutely unstable, and usual- 
ly needs a proper smoothing or filtering, such as the Shuman smoothing. The smoothing 
might lessen the precision of  the scheme and even destroy the physical relations of energy 
transformation and exchange. For  example, it will break down the energy conservation prop- 
erty. Thus, this scheme is not a practicable scheme for numerical simulations. 

Anyway, we can use the advantages of the Leap-frog scheme to construct a time-saving 
consistent dissipation operator. The solution from the Leap-frog is not regarded as the 
discrete solution of  the equation at (n + 1)-th step (F"+~), but only as an approximation 
of F" § i.  This approximation solution is marked as P '  + i.  

f f , + l  = F ~ - 1  + 2 A t L F  n (4)" 

By using F" + J , a consistent dissipation operator B can be constructed: 

�9 L f f "  + 1 .~_  f l L F "  + ) , L F " -  l 
B F "  = 

A t  
(5) 

where ~, fl, y are all undetermined parameters. According to the definition of second-order 
consistent dissipation operator (Wang et al., 1994): 

(d 2 F (03 F 
B(F) ~ =  , - -~-  )~ + - ~  )~ +O(At  2) ~-~- (6) 

the parameters can be determined as: 

5 
G t ~ g  , /~ = 2 1 (7)  

- 5 '  ~ = - g '  
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and the new consistent dissipation operator  is established: 

BF" = ~ [SLF ~ + ~ - 4 L F "  -- LF"  - ] 
Dl~f  

(5) 1 

The new operator  is, in form, very similar to the second-order  implicit consistent dissipation 

operator: 

BF" = ~ [5LF" +1 _ 4 L F  ~ _ L F . - I  ] , (8) 

that is constructed in Wang Bin/s Doctor  Dissertation (1992). When F" +j in (8) is replaced 
by the solution of  Leap- f rog  if" + x, the implicit operator  B defined by (8) becomes the new 

explicit operator,  with which the explicit square conservation scheme (Wang et al., 1990): 

F n + I _ F n 

At  
= LF"  + e. A t B F "  (9) 

will be more economical. 

III. A NEW EXPLICIT  S C H E M E  IN G E N E R A L  USE 

According to Wang (1995), the explicit square conservation scheme with a second-order  

consistent dissipation operator  is of  th i rd-order  precision, and e, = 0.5 + O(At  2). If  set, e , 

= 0.5, it is easy to prove that Scheme (9) is still of  th i rd -order  precision. By replacing At in 

the left side of  (9) by an adjustable interval % and substituting (5) / into (9), a new explicit 

scheme is formed: 

z .  1 L F  "+l + 8 L F " - L F  " - I  , (10) 

where P' +1 is determined by (4)" and the time interval in (4)/' is still At, not  z,,. Similar to 

Wang et al., (1996), there are two theorems on Scheme (10): 

Theorem 1: If  L is a zero operator,  i.e., L satisfies (2), and z, is determined by the following 

formula: 

_ At [5(LF,/~,  ) + (LF'-I ,Rz)]  (11) 
~" 61IAF" II 2 

where 

~n+l _Fn ~ Fn _Fn-I 

t ~ 1 =  At  ' R2 -At 

[,,r+' ], (12) 
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then Scheme (10) keeps the quadratic conservation law exactly and has third-order precision. 

Theorem 2: If the operator L does not satisfy the condition (2), but % still obeys (11)-(12), 
then Scheme (10) is of third-order precision. 

Also, it is not difficult to prove the third theorem according to the method given by Li et al., 
(1984): 
Theorem 3: Scheme (10) has the same absolute stability interval as the third order explicit 

�9 , ~ & L F  
Runge-Kutta scheme: ~ -- #T~( - 2.51,0) where # -- ln j~--~-  j 

These theorems denote that Scheme (10) determined by (11)-(12) can be used not only 
for square conservation systems but also for other general systems. Especially, the scheme has 
third-order precision and good computational stability�9 Therefore, it is suitable for the 
simulations with long-term numerical integrations. 

IV. APPLICATION 

The establisment of the new explicit scheme with exact quadratic conservation law is for 
applications to real simulation problems, such as the atmospheric and oceanic problems�9 One 
application of the new scheme introduced here, is to improve the lAP atmospheric general 
circulation model (AGCM). The original AGCM uses the Leap-frog scheme to solve the dy- 
namic equations�9 The scheme cannot keep the conservation of the effective energy. Even the 
mass conservation property is also hard to be maintained, without any correction�9 Hereby, 
the computing effects may be influenced. For example, a small system near the Antarctic re- 
gion can be easily found from the observed 500 hPa height field in July (see Fig.l), but the 
original dynamical model is unable to simulate this system (see Fig.2). Therefore, the com- 
puting scheme used in the model should be modified. 

We use the new scheme to improve the IAP AGCM, i.e., use it to replace the Leap-frog 
scheme in the model�9 It is found that good computing effects and time benefit can be obtained 
from the improved AGCM. Without FFT filering near the poles, the improved model shows 
being of good physical conservation properties and good computational stability. It keeps the 
conservations of effective energy and mass all the time and the adjustable time interval ~, is 
always near to, but greater than At(= 100 s) (see Table 1). In the same situation, the time in- 
terval used by the original model can only be about 50 s. In real simulations, FFT filtering is 
usually adopted near the poles, in order to lengthen the time interval and to save the com- 
puting time. In this case, the improved model can set At = 800 s, and needs about 1200 s for a 
monthly numerical integration. While, the original model can only use 360 s as the time inter- 
val and requires about 1324 s for the same integration. This denotes that the improved model 
is more economical than the original one. It saves only about 10% of CPU time because the 
new scheme needs one iteration at each step while the Leap-frog scheme does not. 
Furthermore, the computing effects from the improved model are also better than those from 
the original one. Fig. 3 shows that the improved model can simulate the small system near the 
antarctic pole, found in Fig. 1. Thus, the new scheme, constructed from the aforesaid econom- 
ical consistent dissipation operator, is very effective and worthy of popularization and appli- 
cation�9 
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Fig. !. The observed 500 hPa height field in July. Fig. 2. The simulated 500 hPa height field in July from 

the original model. 
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Fig. 3. The simulated 500 hPa height field in July from the improved model. 

Table 1. Evolutions of Effective Energy, Mass and Time Interval of the New Scheme under the Standard 

Stratification Approximation 

Step Effective enewrgy Mass Time interval 

00100 3.3860237e9 3250544 100.0734 

00200 3.3890237e9 3250544 100.0668 

00400 3.3890237e9 3250544 100.0567 

00800 3.3890237e9 3250544 100.0450 

01600 3.3890234e9 3250544 ! 00.0240 

03200 3.3890237e9 3250545 100.0107 

06400 3.3890234e9 3250544 100.0260 

12800 3.3890237e9 3250544 100.2663 

25600 3.3890237e9 3250544 100.3467 
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