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ABSTRACT

Winter  precipitation over  eastern China displays remarkable  interannual  variability,  which has  been suggested to  be
closely related to El Niño–Southern Oscillation (ENSO). This study finds that ENSO impacts on eastern China precipitation
patterns  exhibit  obvious  differences  in  early  (November–December)  and late  (January–February)  winter.  In  early  winter,
precipitation anomalies associated with ENSO are characterized by a monopole spatial distribution over eastern China. In
contrast,  the precipitation anomaly pattern in late winter remarkably changes, manifesting as a dipole spatial distribution.
The  noteworthy  change  in  precipitation  responses  from  early  to  late  winter  can  be  largely  attributed  to  the  seasonally
varying  Kuroshio  anticyclonic  anomalies.  During  the  early  winter  of  El  Niño  years,  anticyclonic  circulation  anomalies
appear both over the Philippine Sea and Kuroshio region, enhancing water vapor transport to the entirety of eastern China,
thus contributing to more precipitation there. During the late winter of El Niño years, the anticyclone over the Philippine
Sea is further strengthened, while the one over the Kuroshio dissipates, which could result in differing water vapor transport
between  northern  and  southern  parts  of  eastern  China  and  thus  a  dipole  precipitation  distribution.  Roughly  the  opposite
anomalies  of  circulation  and  precipitation  are  displayed  during  La  Niña  winters.  Further  analysis  suggests  that  the
seasonally-varying  Kuroshio  anticyclonic  anomalies  are  possibly  related  to  the  enhancement  of  ENSO-related  tropical
central-eastern Pacific convection from early to late winter. These results have important implications for the seasonal-to-
interannual predictability of winter precipitation over eastern China.
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Article Highlights:

•  ENSO-associated precipitation anomalies exhibit different spatial patterns over eastern China in early and late winter. A
monopole  precipitation  anomaly  pattern  is  detected  in  early  winter  while  the  precipitation  anomaly  in  late  winter  is
characterized by a meridional dipole spatial distribution.
•   The  remarkable  change  in  precipitation  responses  to  ENSO  from  early  to  late  winter  can  be  largely  attributed  to  the
seasonally-varying Kuroshio anticyclonic anomalies, possibly due to the enhancement of ENSO-associated tropical central-
eastern Pacific convection from early to late winter.

 

 
 

 

1.    Introduction

As the strongest signal of interannual variability in the
climate system, El Niño–Southern Oscillation (ENSO) is an
important  source  of  seasonal-to-interannual  climate  pre-

dictability  (Wallace  et al.,  1998; McPhaden  et al.,  2006).
Although ENSO originates and develops mainly in the tropi-
cal Pacific, it can lead to large-scale atmospheric circulation
anomalies around the globe and thus regional weather and cli-
mate  anomalies  through  so-called  atmospheric  teleconnec-
tions (Ropelewski and Halpert, 1987; Trenberth and Caron,
2000; Alexander  and  Scott,  2002).  For  instance,  ENSO
exerts a substantial impact on the North Pacific–North Ameri-
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can climate via Pacific–North America (PNA) teleconnection
(Hoskins  and  Karoly,  1981; Wallace  and  Gutzler,  1981).
ENSO  affects  the  climate  variability  over  the  North
Atlantic–European sector through the North Atlantic Oscilla-
tion  (NAO)  (Moron  and  Gouirand,  2003; Brönnimann,
2007; Ineson and Scaife, 2009).

ENSO  also  exerts  a  substantial  influence  on  the  East
Asian climate by modifying the low-level anticyclonic circula-
tion  over  the  western  North  Pacific  (WNP)  region  (e.g.,
Zhang  et al.,  1996, 2017; Wang  et al.,  2000; Yang  et al.,
2007; Xie et al., 2009). The anomalous WNP anticyclone usu-
ally establishes itself in the boreal autumn of the ENSO devel-
oping year,  peaking in the spring of  the decaying year  and
lasting  until  summer  (e.g., Harrison  and  Larkin,  1996;
Wang et al.,  2000). It  has been well established that winter
precipitation over eastern China exhibits notable interannual
variations, which is suggested to be closely related to ENSO
(e.g., Li  and  Ma,  2012; Zhang  et al.,  2015b, 2016; Geng
et al., 2021). During winters with a mature El Niño, the south-
westerly  wind  anomalies  located  in  the  northwestern  flank
of the anomalous WNP anticyclone tend to weaken climato-
logical northeasterly winds and enhance water vapor transport
towards  eastern  China,  leading  to  increased  precipitation
over  eastern  China;  while  La  Niña  winters  present  nearly
opposite effects (e.g., Wu et al., 2003; Zhou and Wu, 2010;
Yuan  and  Yang,  2012).  Several  studies  pointed  out  that
ENSO  exerts  complicated  impacts  on  winter  precipitation
over eastern China. For example, significantly positive precip-
itation anomalies cover southern China during El Niño win-
ters,  while  only  weak  precipitation  anomalies  can  be
observed  during  La  Niña  winters  (e.g., Wu  et al.,  2010;
Zhang et al.,  2015a; Guo et al.,  2017).  In recent  decades,  a
new type of El  Niño has been frequently observed with its
center of action in the Central Pacific (CP), which differs con-
siderably from the traditional El Niño that features its sea sur-
face  temperature  (SST)  anomaly  centered  in  the  Eastern
Pacific (EP) (Larkin and Harrison, 2005; Ashok et al., 2007;
Weng et al., 2007; Kao and Yu, 2009; Kug et al., 2009; Ren
and Jin, 2011). These two types of ENSO events exhibit dif-
ferent impacts on winter precipitation in Eastern China (Su
et al.,  2010; Xu  et al.,  2019).  Specifically,  during  EP  El
Niño winters, southern China experiences positive precipita-
tion anomalies  (Feng et al.,  2010; Xu et al.,  2019).  In  con-
trast,  there  is  a  decrease  in  precipitation  over  the  same
region during CP El Niño winters (Su et al., 2013; Li et al.,
2018).

Previous studies have shown that the ENSO atmospheric
responses  over  many  regions  exhibit  obvious  sub-seasonal
variations (Livezey et al., 1997; Mariotti et al., 2002; Moron
and Gouirand, 2003; Gill et al., 2015); therefore, conventional
winter-mean  analyses  (December–February  or  December–
March) may obscure sub-seasonal features of ENSO atmo-
spheric  teleconnections  (Bladé  et al.,  2008; Kim  et al.,
2018). For example, during the 2015/16 super El Niño win-
ter, it was expected that the anomalous low-level anticyclone
over  the  WNP  should  have  resulted  in  the  more  frequent
northward transport of moist and warm air masses into East

Asia,  thus  leading  to  winter  conditions  that  were  warmer
and wetter than normal. However, there were no obvious tem-
perature  anomalies  observed  over  East  Asia  during  the
2015/16 boreal winter, due to the obvious sub-seasonal varia-
tion  in  temperature  with  warm  anomalies  in  early  winter
and cold anomalies  in  late  winter  (Geng et al.,  2017).  This
raises the question of whether the impacts of ENSO on winter
precipitation anomalies over eastern China have similar sub-
seasonal differences. Understanding the sub-seasonal varia-
tions of precipitation over eastern China during ENSO winters
has important implications for improving East Asian climate
prediction. In this work, different precipitation spatial distribu-
tions are present over eastern China in ENSO early and late
winter. This sub-seasonal variation can be largely attributed
to  the  seasonally-varying  Kuroshio  anticyclonic  pressure
anomalies, possibly due to the enhancement of ENSO-associ-
ated convection over the tropical central and eastern Pacific
from early to late winter.

The  remainder  of  this  paper  is  organized  as  follows.
Section 2 introduces the data and methodology used. Section
3 presents the differences in ENSO impacts on precipitation
over eastern China in early and late winter. Possible physical
mechanisms  are  investigated  in  section  4.  In  section  5,  we
further  verify our observed results  based on model  simula-
tions.  Finally,  a  summary  and  discussion  are  provided  in
section 6. 

2.    Data and methods

The  datasets  used  in  this  work  include  (1)  monthly
mean  SST  data  on  a  1°  ×  1°  grid  from  the  Met  Office
Hadley Centre (Rayner et al., 2003); (2) monthly mean precip-
itation data from the Climate Prediction Center Merged Analy-
sis  of  Precipitation (CMAP) (Xie and Arkin,  1997),  with a
horizontal resolution of 2.5° × 2.5°; (3) monthly mean atmo-
sphere data from the fifth generation of the European Center
for Medium-Range Weather Forecast (ECMWF) atmospheric
reanalysis (ERA5) dataset (Hersbach et al., 2020). The reanal-
ysis  data  employed  includes  the  monthly  mean  zonal  (u)
and meridional (v) wind, sea level pressure (SLP), 300-hPa
geopotential height (H), and the specific humidity across 20
vertical levels from 1000 to 300 hPa, with a horizontal resolu-
tion  of  0.25°  ×  0.25°.  In  addition,  we  examine  ENSO
impacts on precipitation and atmospheric circulation anoma-
lies in 28 atmospheric general circulation models [AGCMs,
Table  S1 in  the  electronic  supplementary material  (ESM)],
forced by the Atmospheric Model Inter-comparison Project,
version  6  (AMIP6)-style  SST  boundary  conditions  from
1979  to  2014  (Eyring  et al.,  2016).  The  simulation  results
from the first  ensemble member (r1i1p1f1) for  each model
are utilized. All model data are bi-linearly interpolated into
a  common  horizontal  grid  of  2.5°  ×  2.5°  for  comparison
with the reanalysis data (Kirkland, 2010). Our analyses span
1980–2020, and anomalies for all variables are obtained by
removing  the  monthly  mean  climatology  over  the  entire
study period. The low-frequency components are suppressed
by performing an 8-year highpass Lanczos filter to focus on
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the interannual variability (Duchon, 1979).
The  Niño-3.4  index  (SST  anomalies  in  the  region  of

5°S–5°N, 120°–170°W) is used to represent the ENSO vari-
ability. Thirteen El Niño and fourteen La Niña winters over
the period 1980–2020 are identified by the Climate Prediction
Center (CPC) based on a threshold of ±0.5 standard deviations
of the Niño-3.4 index (Table 1). The year listed in Table 1 cor-
responds to year(0)/year(1), where 0 and 1 stand for the devel-
oping  and  decaying  years  of  ENSO  events,  respectively.
Two  precipitation  indices  are  defined  based  on  the
regressed precipitation anomaly patterns on early winter and
late  winter  Niño-3.4  indices.  The  monopole  precipitation
index (MPI) is calculated as the standardized area-averaged
precipitation anomalies in the region bounded by 23°–42°N
105°–123°E. The dipole precipitation index (DPI) is calcu-
lated as the difference of the standardized precipitation anoma-
lies between the northern (31°–39°N, 105°–113°E) and south-
ern  (23°–31°N,  107°–123°E)  regions  of  eastern  China.
Based  on  the  regressed  SLP  anomalies  onto  the  Niño-3.4
index,  the  Kuroshio  index  is  defined  as  the  standardized
area-averaged  SLP  anomalies  over  the  Kuroshio  region
(35°–50°N,  135°–165°E),  the  Philippines  index  is  defined
as  the  standardized  area-averaged  SLP  anomalies  over  the
Philippines region (0°–20°N, 120°–143°E), and the Aleutian
index  is  defined  as  the  standardized  area-averaged  SLP

anomalies  over  the  Aleutian  region  (35°–60°N,
180°–135°W).  In  this  study,  the  boreal  winter  is  divided
into early winter (November–December, ND) and late winter
(January–February, JF). All statistical significance tests are
inferred using a two-tailed Student’s t-test.
 

3.    Different  ENSO  impacts  on  the
precipitation pattern over eastern China in
early and late winter

Figure 1 displays the spatial distribution of precipitation
climatology  and  variance  over  eastern  China  in  early  and
late winter. Climatological precipitation maxima are mainly
concentrated over southern China both in early and late win-
ter,  with the precipitation amount in late winter larger than
that in early winter by about 1 mm d−1. Consistent with the
spatial distribution of climatological precipitation, the precipi-
tation variability  over  southern  China is  much greater  than
that in other regions both in early and late winter except that
the maximum variability center in late winter moves south-
ward of 25°N. To explore the different impacts of ENSO on
precipitation anomalies over eastern China in early and late
winter, Figs. 2a–c display regressed precipitation anomalies
onto the simultaneous Niño-3.4 index during the entire win-

 

Table 1. El Niño and La Niña winters.

El Niño 1982/1983, 1986/1987, 1987/1988, 1991/1992, 1994/1995, 1997/1998,
2002/2003, 2004/2005, 2006/2007, 2009/2010, 2014/2015, 2015/2016,

2018/2019

La Niña 1983/1984, 1984/1985, 1988/1989, 1995/1996, 1998/1999, 1999/2000,
2000/2001, 2005/2006, 2007/2008, 2008/2009, 2010/2011, 2011/2012, 2016/2017, 2017/2018

 

 

Fig. 1. (a) Climatology (shading; mm d−1) and variance (contour; mm2 d−2) of early winter precipitation. (b) Same as
(a), but for the late winter.
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ter, early winter, and late winter. For the entire winter mean
(Fig.  2a),  ENSO-related  precipitation  anomalies  exhibit  a
monopole spatial distribution over eastern China, with posi-
tive  (negative)  precipitation  anomalies  during  El  Niño  (La
Niña) years. The precipitation anomaly pattern in early winter
also manifests as a monopole distribution (Fig. 2b), similar
to that in the entire winter. In contrast, ENSO-related precipi-
tation anomalies in late winter exhibit a meridional dipole pat-
tern with positive anomalies over southern China and negative
anomalies over central China (Fig. 2c). Considering that the
spatial  distribution  of  climatological  precipitation  is
extremely uneven across eastern China (Fig. 1a), we further
show  the  percentages  of  precipitation  anomalies  regressed
onto the Niño-3.4 index (Figs. 2d–f). The percentage of pre-
cipitation  anomaly  represents  the  ratio  of  the  precipitation
anomaly  to  the  climatological  precipitation.  Similarly,  a
monopole  spatial  distribution  exists  over  eastern  China  in
early winter, while precipitation anomalies in late winter fea-

ture a dipole spatial distribution.
Here, two precipitation indices are defined to represent

the  variability  of  precipitation  anomaly  associated  with
ENSO  in  early  and  late  winter,  respectively  (see  methods;
MPI and DPI). The MPI in early winter shows a high correla-
tion with the Niño-3.4 index (R=0.73, statistically significant
at  a  95%  confidence  level),  while  the  DPI  in  late  winter
exhibits  a  significant  relationship  with  the  Niño-3.4  index
(R=0.59,  statistically  significant  at  95%  confidence  level).
Figure 3 further shows the composite difference of precipita-
tion anomalies between El Niño and La Niña events. For the
early  winter,  significantly  positive  precipitation  anomalies
cover almost the entirety of eastern China (Fig. 3a), similar
to that in Figs. 2b and 2e. In late winter, precipitation anoma-
lies  over  eastern  China  show  a  north-south  dipole  pattern
(Fig. 3b), characterized by positive anomalies over southern
China and negative anomalies over central China, similar to
those in Figs. 2c and 2f.

 

 

 

Fig. 2. Precipitation anomalies (shading; mm d−1) regressed onto the simultaneous Niño-3.4 index for the (a) entire winter, (b)
early winter, and (c) late winter. (d–f) Similar to (a–c), but for the percentage of precipitation anomaly (shading; %). The small
and big black dots indicate the values exceeding the 90% and 95% confidence levels, respectively. The red boxes in (b) and (e)
are used to calculate the MPI, while the red boxes in (c) and (f) are used to calculate the DPI.
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4.    Possible  mechanisms  for  different  ENSO
impacts  on  early  and  late  winter
precipitation patterns

Previous  studies  revealed  that  the  physical  mechanism
by which  ENSO affects  winter  precipitation  is  through the
modulation  of  the  large-scale  atmospheric  circulations  and
thus the local water vapor transport (Zhang and Sumi, 2002;
Zhou and Wu, 2010; Yin and Wang, 2016; He et al., 2019).
Figure 4 compares the ENSO-associated water vapor trans-
port anomalies in early and late winter. For early winter, sig-
nificant  northward  water  vapor  flux  anomalies  cover  the
entirety  of  eastern  China,  which  can  transport  warm  and
moist airflow from the South China Sea and the Bay of Ben-
gal,  a  pattern  conducive  to  the  increased  precipitation
(Fig.  4a).  However,  in  late  winter,  northward  water  vapor
flux  anomalies  are  limited  to  the  southern  part  of  eastern
China.  Over  the  northern  part  of  eastern  China,  there  are
southward water vapor flux anomalies;  thus,  the warm and
moist  water  vapor  over  oceans  cannot  be  transported  into
northern  China  (Fig.  4b).  This  could  lead  to  a  meridional
dipole  pattern  of  precipitation  anomaly  over  eastern  China
in late winter.

Figure 5 displays the ENSO-related atmospheric circula-
tion anomalies at different levels during early and late win-
ter.  During  El  Niño  early  winter,  significant  anticyclonic
anomalies  can  be  detected  over  the  WNP  at  low  levels
(850 hPa), with two action centers, located over the Philippine
Sea and the Kuroshio region (Fig. 5a). The combination of

these  two  anticyclonic  anomalies  results  in  significant
southerly anomalies over entirety of eastern China, contribut-
ing to a monopole precipitation anomaly pattern in early win-
ter. In contrast, the anticyclonic circulation located over the
Kuroshio region disappears in late winter, occurring in tan-
dem with the further development of the Philippine anticy-
clone  (Fig.  5b),  a  pattern  transition  that  could  lead  to  the
southerly  water  vapor  transport  confined  in  southeastern
China  and  a  dipole  precipitation  pattern  in  late  winter.  At
300 hPa (Figs. 5c, d), the low-level circulation over the Philip-
pine Sea exhibits an opposite anomaly to that at high levels,
due to the baroclinic characteristics inherent in the tropical
atmosphere.  However,  corresponding  to  the  equivalent
barotropic structure in the mid-to-high latitude atmosphere,
the sub-seasonal change in the Kuroshio atmospheric circula-
tion anomalies at 300 hPa is similar to that at 850 hPa. To bet-
ter illustrate the changes in the Kuroshio and Philippine anti-
cyclones from early to late winter, Fig. 6 displays the compos-
ite  differences  of  Kuroshio  and  Philippines  anticyclone
indices between El Niño and La Niña years for the early and
late winter periods. It is clear that the Kuroshio anticyclone
dissipates and the Philippine anticyclone further strengthens
during the transition from early to late winter.

The  possible  reason  for  the  disappearance  of  the
Kuroshio anticyclone in late winter is worthy of further atten-
tion. Considering that tropical heating is a more direct factor
in forcing atmospheric teleconnections (e.g., Chiodi and Harri-
son, 2013, 2015; Cai et al., 2014), Fig. 7 compares the tropical
precipitation anomalies related to ENSO in early and late win-
ter  when  significantly  positive  and  negative  precipitation

 

 

Fig. 3. (a) Composite difference of precipitation anomalies (shading; mm d−1) between El Niño and La Niña years
for the early winter. (b) Same as in (a), but for the late winter. The small and big black dots indicate values exceeding
the 90% and 95% confidence levels, respectively. The red boxes in (a) and (b) are used to calculate the MPI and DPI,
respectively.
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anomalies  occur  in  the tropical  central-eastern and western
Pacific, respectively—a typical ENSO-associated dipole pre-
cipitation pattern (Figs. 7a, b). Figure 7c further displays the
regressed differences in precipitation anomalies between the
early and late winter on the winter Niño-3.4 index. It shows
that the tropical central-eastern Pacific convection is signifi-
cantly enhanced and the tropical western Indian Ocean con-
vection weakens in late winter. Previous studies have shown
that the sub-seasonal enhancement of the tropical Pacific con-

vection could lead to a notable strengthening of the Aleutian
Low  anomalies  over  the  North  Pacific  (e.g., Bladé  et al.,
2008; Son et al., 2014; Kim et al., 2018; Hu et al., 2023). As
displayed in Figs. 5 and 6, the Aleutian Low exhibits a sub-
seasonal  enhancement  from  early  to  late  winter  of  ENSO
years.  The  remarkable  enhancement  of  the  Aleutian  Low
response in late winter could suppress the anticyclone over
the Kuroshio region, which may be responsible for the disap-
pearance of the Kuroshio anticyclonic anomalies. Some previ-

 

 

Fig.  4. (a)  Regressed  vertically  integrated  water  vapor  flux  anomalies  (vectors;  kg  m−1 s−1)  and  its  meridional
component on the early winter Niño-3.4 index (shading; kg m−1 s−1). (b) Same as in (a), but for the late winter. The
small  and big black dots indicate the values exceeding the 90% and 95% confidence levels,  respectively.  The flux
anomalies are shown only when their significance meets or exceeds the 90% confidence level.

 

 

Fig.  5. Regressed  SLP  (shading;  hPa)  and  850-hPa  wind  (vector;  m  s−1)  anomalies  onto  the  Niño-3.4  index  for  the  (a)  early
winter and (b) late winter. (c, d) Similar to (a, b), but for the 300-hPa geopotential height (shading; m) and wind (vector; m s−1)
anomalies. The black box in (a) is used to calculate the Kuroshio index, while the black and red boxes in (b) are used to calculate
the  Philippines  and  Aleutian  indices,  respectively.  Only  the  SLP,  geopotential  height,  and  wind  anomalies  with  statistical
significance that meet or exceed the 90% confidence level are shown.
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ous studies also suggest that convection anomalies in the tropi-
cal Indian Ocean also play a role in the ENSO atmospheric
teleconnection  in  early  winter  (Ma et al.,  2022; Park  et al.,
2023).
 

5.    Impacts  of  ENSO  on  early  and  late
precipitation  anomaly  patterns  over
eastern China in AMIP6 simulations

To substantiate the observed results, we further examine
the impacts of ENSO on early and late winter precipitation
over eastern China in AMIP6 simulations.  The simulations
are  conducted  with  prescribed  observed  SST  and  sea  ice
data, which can extend our investigation beyond the limited
observational  record.  Figure  S1  (in  the  ESM)  displays  the
regressed precipitation anomalies over southern China onto
the  winter  Niño-3.4  index  in  28  AMIP6  models.  It  shows
that 12 models could simulate significantly positive precipita-
tion  anomalies  similar  to  those  in  observations.  ENSO-
related impacts on early and late winter precipitation are fur-
ther  examined in  these  12 models,  and 7  of  12 models  are

 

Fig.  6. Composite  differences  of  Kuroshio  (red  bars),
Philippines  (green  bars),  and  Aleutian  indices  (blue  bars)
between  El  Niño  and  La  Niña  years  for  the  early  and  late
winter, with error bars of one standard deviation.

 

 

Fig. 7. (a) Regressed tropical precipitation anomalies (shading; mm d−1)
onto the winter  Niño-3.4 in  the  early  winter.  (b)  Same as  in  (a),  but
for  the  late  winter.  (c)  Differences  in  the  regressed  tropical
precipitation anomalies (shading; mm d−1) between the early and late
winter  on  the  winter  Niño-3.4  index.  The  red  boxes  represent  the
region  of  the  tropical  western  Indian  Ocean  and  tropical  central-
eastern  Pacific.  The  small  and  big  black  dots  indicate  the  values
exceeding the 90% and 95% confidence levels, respectively.
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finally  selected  since  these  models  could  simulate  the
observed sub-seasonal change from the monopole pattern in
early  winter  to  the  dipole  pattern  in  late  winter  (Fig.  8a).
Figures 8b and 8c display the regressed precipitation anoma-
lies onto the winter Niño-3.4 index in early and late winter
based  on  the  ensemble  mean  of  these  selected  seven  mod-
els. Similar to those in observations (Figs. 2b, c), the precipita-
tion anomalies related to ENSO in early winter are character-
ized by a monopole distribution,  while a meridional  dipole

precipitation pattern appears in late winter.
The  simulated  change  of  ENSO-related  precipitation

anomalies from early to late winter can also be explained by
the  disappearance  of  the  Kuroshio  anticyclone  in  late  win-
ter. As shown in Figs. 9a and 9c, the southerly wind anomalies
associated  with  the  Philippines  and  Kuroshio  anticyclones
could transport more water vapor into the entirety of eastern
China,  leading  to  the  monopole  pattern  of  precipitation
anomalies. In contrast, the disappearance of the Kuroshio anti-

 

 

Fig. 8. (a) Regressed MPI (green bars) and DPI (red bars) onto the winter Niño-3.4 index in observations and
12 AMIP6 models. Solid bars represent values that exceed the 95% confidence level. Gray shading indicates
the  selected  7  models.  (b)  Simulated  precipitation  anomalies  (shading;  mm  d−1)  regressed  onto  the  early
winter Niño-3.4 index. (c) Same as in (b), but for the late winter. Dots denote that at least 5 of 7 models have
precipitation anomalies of the same sign.
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cyclone  in  late  winter  leads  to  the  water  vapor  transport
being confined over southern China and a dipole precipitation
pattern (Figs. 9b, and d). Figure 10 further compares the tropi-
cal  precipitation  anomalies  related  to  ENSO  in  early  and
late winter. It shows that ENSO-associated precipitation pat-
terns can be well simulated in these models, with increased
convection in the tropical central-eastern Pacific and weak-
ened  convection  in  the  tropical  western  Pacific  (Figs.  10a,
b).  The  differences  in  tropical  precipitation  anomalies
between the early and late winter are displayed in Fig. 10c.
These models can also reproduce the enhanced tropical cen-
tral-eastern  Pacific  precipitation  in  late  winter,  although
some differences do exist in other tropical regions. 

6.    Conclusions and discussion

In  this  study,  we  investigated  different  impacts  of
ENSO  on  precipitation  anomalies  over  eastern  China  in
early  and  late  winter  during  1980–2020.  In  early  winter,
ENSO-associated  precipitation  anomalies  over  eastern
China  exhibit  a  monopole  spatial  distribution.  In  contrast,
the precipitation anomaly pattern in late winter obviously dif-
fers from that in early winter, characterized by a meridional
dipole spatial distribution. The remarkable change in precipita-
tion responses from early to late winter is mainly due to the
seasonally varying Kuroshio anticyclonic anomalies.  In the
early winter of El Niño years, anticyclonic circulation anoma-
lies  appear  both  over  the  Philippine  Sea  and  Kuroshio
region, enhancing water vapor transport to the entirety of east-
ern China, thus contributing to more precipitation there. Dur-
ing the late winter of El Niño years, the anomalous anticy-

clone over the Philippine Sea is further strengthened, while
the one over the Kuroshio dissipates. This results in different
water vapor transport anomalies over the northern and south-
ern parts of eastern China, conducive to a dipole precipitation
distribution. Roughly opposite anomalies of circulation and
precipitation are displayed during La Niña winters.  Further
analyses suggest that the seasonally-varying Kuroshio anticy-
clonic anomalies are possibly related to the enhancement of
ENSO-related  tropical  central-eastern  Pacific  convection
from early to late winter. This observed impact of precipita-
tion over eastern China by ENSO is further substantiated by
the modeling simulations. Seven models could well reproduce
the subseasonal variation of ENSO impact on winter precipita-
tion over eastern China and the seasonally varying Kuroshio
anticyclonic anomalies. However, more than half of AMIP6
models  exhibit  limitations  in  simulating  ENSO-associated
atmospheric  responses,  highlighting  the  need  for  ongoing
model improvement efforts.

ENSO-associated  climate  responses  are  diverse  and
related to factors such as the zonal location and strength of
SST anomalies  (e.g., Ashok et al.,  2009; Feng et al.,  2010;
Jiang et al., 2019). Here, it is found that the differences in pre-
cipitation  anomaly  patterns  between  early  and  late  winter
can be obtained both in EP and CP ENSO events although
the precipitation anomalies during CP ENSO events are rela-
tively weak compared to those during EP ENSO events (not
shown). Notably,  some studies pointed out that the climate
impacts of CP ENSO events depend on their zonal location.
Therefore, future research is needed to fully understand the
interannual variability of winter precipitation across eastern
China.

 

 

Fig.  9. Simulated  SLP (shading;  hPa)  and  850-hPa  wind  (vector;  m s−1)  anomalies  regressed  onto  the  Niño-3.4  index  for  the
(a) early winter and (b) late winter. (c) and (d) Similar to (a) and (b), but for geopotential height (shading; m) and wind (vector;
m  s−1)  anomalies  at  300  hPa.  Shading  denotes  that  5  models  at  least  of  7  models  have  in-sign  geopotential  height  and  SLP
anomalies. Vector denotes that at least 5 out of 7 models have wind anomalies of the same sign.
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