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ABSTRACT

The process of entrainment-mixing between cumulus clouds and the ambient air is important for the development of
cumulus clouds. Accurately obtaining the entrainment rate (λ) is particularly important for its parameterization within the
overall  cumulus  parameterization  scheme.  In  this  study,  an  improved  bulk-plume  method  is  proposed  by  solving  the
equations  of  two  conserved  variables  simultaneously  to  calculate λ of  cumulus  clouds  in  a  large-eddy  simulation.  The
results demonstrate that the improved bulk-plume method is more reliable than the traditional bulk-plume method, because
λ,  as calculated from the improved method, falls within the range of λ values obtained from the traditional method using
different conserved variables. The probability density functions of λ for all data, different times, and different heights can
be well-fitted by a log-normal distribution, which supports the assumed stochastic entrainment process in previous studies.
Further analysis demonstrate that the relationship between λ and the vertical velocity is better than other thermodynamic/
dynamical properties; thus, the vertical velocity is recommended as the primary influencing factor for the parameterization
of λ in the future. The results of this study enhance the theoretical understanding of λ and its influencing factors and shed
new light on the development of λ parameterization.
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Article Highlights:

•  An improved bulk-plume method is proposed to calculate the entrainment rate.
•  Probability density functions of entrainment rates are well-fitted by a log-normal distribution.
•  The entrainment rate has the strongest relationship with the vertical velocity among the other thermodynamic/dynamical

properties.
 

 
 

 1.    Introduction

Cumulus  clouds  have  important  effects  on  the  vertical
transport of heat, moisture, and momentum and play an impor-
tant  role in affecting the energy budget  of  the Earth–atmo-

sphere system and climate change (Guo et al., 2014, 2015b;
Donner  et al.,  2016; Wang  et al.,  2018; Yang  et al.,  2019;
Jeyaratnam et al., 2021; Sheng et al., 2022). In weather and
climate  models,  because  model  grid  spacing  is  insufficient
to resolve convective processes, the parameterization of cumu-
lus clouds must be achieved using empirical hypotheses and
physical  variables  at  grid  points  (Zhang  and  McFarlane,
1995; Lin  et al.,  2000; Donner  et al.,  2001; Wu,  2012; Xie
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and Liu, 2013). The quality of the cumulus parameterization
scheme  is  crucial  for  simulating  precipitation,  monsoons,
Madden-Julian oscillations, and tropical cyclones (Zou and
Zhou,  2011; Del  Genio  et al.,  2012; Yang  et al.,  2015;
Wang et al.,  2017; Zhao et al.,  2018a). Entrainment-mixing
between  cumulus  clouds  and  ambient  air  is  a  key  process
that affects cloud development and the formation of precipita-
tion, by causing cloud droplet evaporation to alter tempera-
ture,  humidity,  buoyancy  (B),  and  vertical  velocity  (w)  in
clouds (Jonas,  1990; Houze,  1993; Telford,  1996; de Rooy
et al.,  2013; Yeom  et al.,  2017; Wang,  2020; Luo  et al.,
2022; Wang et al., 2023). In many cumulus parameterization
schemes, the lateral entrainment rate (λ) is a physical variable
characterizing the strength of entrainment, which has a signifi-
cant influence on climate sensitivity, precipitation, and mon-
soons  (Klocke  et al.,  2011; Yang  et al.,  2013, 2021; Zhao,
2014; Lu and Ren, 2016; Hanf and Annamalai, 2020).

To better understand the process of entrainment-mixing
and improve cumulus parameterization schemes in models,
an  accurate  calculation  of λ is  essential.  Stommel  (1947)
first calculated λ using the temperature and specific humidity
inside  and  outside  the  cloud.  Based  on  this,  Yanai  et al.
(1973) and Betts (1975) proposed the bulk-plume method to
calculate λ according  to  conserved  physical  variables  (i.e.,
total  moisture,  liquid  water  potential  temperature  (θl),  and
moist  static  energy)  in  clouds  and  ambient  air.  The  bulk-
plume method has been used in many studies. For example,
Esbensen (1978) used this method to calculate the observed
λ in  large-scale  shallow cumulus  clouds,  and  this  was  also
applied  to  calculate λ from  aircraft  observations  (Neggers
et al., 2003; Gerber et al., 2008; Lu et al., 2018) and satellite
data  (Luo  et al.,  2010; Takahashi  and  Luo,  2012; Li  et al.,
2022; Takahashi  et al.,  2023).  Romps  (2010)  proposed  a
method to  estimate λ by directly  calculating the  amount  of
air  entrained into the cloud in large-eddy simulation (LES)
experiments  and found that  the  results  were  approximately
twice those from the bulk-plume method. Dawe and Austin
(2013)  noted  that  the  reason  for  the  difference  may  be
related  to  the  presence  of  a  moist  cloud  shell  around  the
cloud core that is more humid than the ambient air. Neverthe-
less, accurately calculating λ remains a challenge, hindering
the improvement of cumulus parameterization schemes.

The  parameterization  of λ is  an  important  way  to
describe  the  process  of  entrainment-mixing  in  models  (de
Rooy  et al.,  2013; Lu  et al.,  2016; Zhang  et al.,  2016; Vil-
lalba-Pradas and Tapiador,  2022).  However,  the process of
entrainment-mixing is also often considered to be a stochastic
process.  Romps  and  Kuang  (2010)  found  that  a  parcel
model with a constant or continuous λ could not reproduce
the observed variability of clouds, whereas a stochastic parcel
model could, in which entrainment behaves like a stochastic
Poisson process. Observations have shown that the probabil-
ity density functions (PDFs) of λ for shallow and deep convec-
tion follow a log-normal distribution (Lu et al., 2012a; Guo
et al.,  2015a),  supporting  the  stochastic  process  of  entrain-
ment-mixing. Romps and Kuang (2010) and Romps (2016)
presented  Lagrangian  and  Eulerian  implementations  of  the

stochastic parcel model, respectively, to treat the process of
entrainment-mixing  in  cumulus  clouds  as  a  stochastic  pro-
cess. Böing et al. (2014) studied the process of entrainment-
mixing using two parcel models that describe λ in different
ways.  The  stochastic  mixing  model  with λ satisfying  a
gamma  distribution  better  captured  the  scatter  of  the  in-
cloud  thermodynamic  properties.  Yang  et al.  (2021)  linked
the  mass  fluxes  between  shallow  and  deep  convection  by
assuming that λ satisfies a log-normal distribution, and a modi-
fied deep convection scheme improved precipitation simula-
tions in mean state and variability at various timescales. How-
ever,  a  simply  assumed  log-normal  distribution  of λ may
cause uncertainty since this assumption only considers statisti-
cal characteristics. Therefore, analyzing the PDF of λ and its
influencing factors provides an important reference for numer-
ical models to improve cumulus parameterization schemes.

Despite  significant  progress,  further  improvement  of
the calculation accuracy of λ and determination of the PDF
of λ and  its  influencing  factors  remain  worthy  of  further
study.  This  study  developed  an  improved  bulk-plume
method  and  applied  it  to  a  simulated  cumulus  cloud  case
using an LES. First, the accuracy of the method for calculating
λ was evaluated. Second, the PDFs of λ were fitted to a log-
normal distribution, then the variation in the fitting parame-
ters  over  time  and  the  influencing  factors  were  analyzed.
Finally, the variation in the PDFs of λ with height was ana-
lyzed. The LES was chosen because it is difficult to obtain
the PDFs of λ at different heights and times owing to limita-
tions to aircraft observations. An LES can provide the three-
dimensional structure of cumulus convection and its temporal
evolution (Neggers et al., 2003; Endo et al., 2015), which pro-
vides  important  data  for  studying λ (Romps,  2010; Dawe
and Austin, 2013; Drueke et al., 2019).

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the model setting and simulation results. Sec-
tion 3 describes and verifies the improved method for calculat-
ing λ. Section 4 analyzes the spatial and temporal distribution
of λ, the variation in PDFs of λ with time and height, and its
influencing factors. The conclusions and discussions are pre-
sented in section 5.

 2.    Simulation results

The  LES  model  was  used  to  simulate  cumulus  clouds
over the Southern Great Plains (SGP) during the LES Atmo-
spheric  Radiation  Measurement  Symbiotic  Simulation  and
Observation  (LASSO)  experiment  (Gustafson  et al.,  2020)
on  11  June  2016  [Coordinated  Universal  Time  (UTC)  and
Local  Standard  Time  (LST,  LST  =  UTC – 6)]  (Xu  et al.,
2022).  The  model  adds  time-varying  large-scale  forcing
(Endo et al.,  2015)  to  a  Weather  Research  and Forecasting
model tailored for solar irradiance forecasting (WRF-Solar),
which can better handle radiation-related processes, as well
as  cloud-aerosol-radiation  feedback  (Haupt  et al.,  2016;
Jimenez  et al.,  2016).  The  large-scale  forcing  data  and
model  settings  were  the  same  as  those  used  by  Xu  et al.
(2022).  The  horizontal  grid  spacing  of  the  model  was
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100 m × 100 m, the number of grids was 144 × 144, and the
vertical grid spacing was 30 m with 225 layers. The simulation
started  at  1200  UTC  on  11  June  2016,  and  ended  at  0300
UTC  on  12  June  2016.  The  output  of  simulation  results
occurred  every  10  minutes.  The  quasi-steady  state  in  an
LES may be reached within a few large-eddy turnover times
(Moeng and Sullivan, 1994; Nakanish, 2001). Here, the spin-
up  time  was  set  to  3  h  (Xu  et al.,  2022),  which  was  more
than eight large-eddy turnover times. The chosen microphysi-
cal scheme was the Thompson aerosol-aware scheme (Thomp-
son and Eidhammer, 2014) with an improved parameteriza-
tion  of  the  entrainment-mixing  mechanism  (Luo  et al.,
2020; Xu et al., 2022).

For  this  cumulus  cloud  case,  the  diurnal  variations  of
the  simulated  cloud  fraction  (CF)  and  liquid  water  path
(LWP)  in Fig.  1a illustrate  a  first  peak  around  1600–1700
UTC and a secondary peak around 2000–2100 UTC. Since
LWP is a vertically integrated quantity and CF is a horizontal
coverage value, the peak timings of the two variables do not
always coincide (Shin et al., 2021). The mean thermodynamic
profiles  (Fig.  1b)  show that  the mean characteristics  of  the
convective planetary boundary layer are as follows: the sur-
face layer from 0 m to about 330 m, the mixed layer from
about 330 m to 1600 m, and the inversion layer from about
1600 m to 2800 m. The maximum updraft in the simulation
is  9.40  m  s–1,  and  the  mean  of  the  maximum  updraft  for
each moment is  6.19 m s–1.  The simulated cumulus clouds
formed  at  approximately  1500  UTC  and  dissipated  com-
pletely at approximately 2400 UTC. The simulations gener-
ally  captured  the  diurnal  variation  of  cumulus  clouds  (Xu
et al., 2022).

Cloud  grid  points  without  precipitation  were  selected
based  on  the  following  criteria:  their  liquid  water  mixing
ratios (ql) must exceed 0.01 g kg–1, B must be greater than
0  m  s–2,  and  rain-water  mixing  ratios  must  be  less  than
0.005  g  kg–1 (Lu  et al.,  2012b). Figure  1c shows  the  time-
height distribution of the number of cloud grid points in the
simulated region. For the case of cumulus cloud, the height
of the cloud base continued to rise from 1500 to 1900 UTC,
and the cloud ensemble vigorously developed within a large
number of cloud grids, accompanied by the decay of small
cumulus  clouds  and  the  appearance  of  new  clouds;  after
1900  UTC  the  number  of  cloud  grid  points  declined  and
after 2200 UTC the cumulus cloud ensemble gradually dissi-
pated. Based on the temporal and spatial distribution charac-
teristics,  the  simulated  cumulus  clouds  were  divided  into
three stages: formation (1500–1900 UTC), with continuous
increases  in  cloud  base  and  top  heights,  maintenance
(1900–2200 UTC), with relatively consistent cloud base and
top heights, and dissipation (2200–0020 UTC the next day),
with decreasing cloud base and top heights.

 3.    An improved method for calculating λ

 3.1.    Development of the improved method

The parameter λ can be calculated using the bulk-plume

method  (Betts,  1975; Neggers  et al.,  2003; Gerber  et al.,
2008): 

λ =
∂ϕc
∂z

1
ϕe−ϕc

, (1)

ϕwhere  is  a  conserved  physical  variable  during  cloud
ascent, the subscripts c and e represent the cloud and ambient
air, respectively, and z is height. Substituting the total water
mixing ratio (qt)  and θl as the conserved variables into Eq.
(1) yields: 

∂qtc

∂z
= λ (qte−qtc) , (2)

 

∂θlc
∂z
= λ (θle− θlc) . (3)

The total water vapor mixing ratio is defined as: 

qt = qv+ql , (4)

where qv is  the  water  vapor  mixing  ratio. θl is  defined  as
(Betts, 1973): 

θl = θ−
(
θ

T
Lv

cp

)
ql , (5)

where θ =  γT is  the  potential  temperature  with γ =  (p0 /
p)0.286; p0 and p are  standard  atmospheric  pressure  and  air
pressure,  respectively; T is  temperature; Lv is  latent  heat;
and cp is the specific heat capacity at constant pressure.

Substituting Eq. (4) and Eq. (5) into Eq. (2) and Eq. (3)
yields: 

∂

∂z
(qvc+qlc) = λ (qve−qvc−qlc) , (6)

 

∂

∂z

(
cpTcγc−Lvqlcγc

)
= λ

(
cpTeγe− cpTcγc+Lvqlcγc

)
, (7)

where qvc in  the  cloud is  the  saturated  water  vapor  mixing
ratio calculated according to the Clausius-Clapeyron equation
(Wallace  and  Hobbs,  2006).  The qle cancels  and  does  not
appear in Eq. (6) considering the nature of ambient air. Com-
bining  Eqs.  (6)  and  (7)  with qlc in  the  cloud  at  different
heights  and  meteorological  properties  of  ambient  air,  both
Tc and λ in the cloud can be calculated simultaneously by iter-
ation. Note that the input variables of this method are qlc in
the cloud and qve, Te, and pe of ambient air; the output vari-
ables are qvc, Tc, and λ; and the remaining variables are inter-
mediate variables.

The improved method does not  depend on which con-
served variable is used to calculate λ. On the contrary, the iter-
ation of the two equations takes into account the simultaneous
conservation of the two physical variables, making the calcu-
lation  of λ more  accurate.  For  cumulus  clouds  with  multi-
layer data (in this study referring to LES simulations), λ is cal-
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culated layer-by-layer from the cloud base to the cloud top,
allowing for the vertical distribution of λ to be obtained.

 3.2.    Validation of the improved method

The  variables  required  to  calculate λ from  the  model
results were determined as follows: First,  the domain-aver-
aged qve, Te, and pe were taken as the properties of the ambient
air involved in the process of entrainment-mixing (Lu et al.,

2012b). Second, an average qlc of the cloud grid points with
positive B (the  virtual  potential  temperature  in  the  cloud
exceeds  that  of  the  environment)  in  each  layer  of  the
domain was considered as the cloud properties of that layer.
Finally, the cloud base height at each moment was the lowest
height  of  the  cloud  grid  points  in  the  domain  at  that
moment.

Before  analyzing λ,  as  calculated  using  the  improved
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Fig. 1. (a) Time series of the cloud fraction (CF) and liquid water path (LWP) from the simulation on 11 June 2016.
(b)  The simulated mean thermodynamic profiles  of  virtual  potential  temperature (θv)  and total  water  vapor mixing
ratio (qt). (c) Distribution of the grid numbers of cloud grid points with time and height. The black, dash-dotted lines
divide the three stages of cloud ensemble evolution: formation (1500–1900 UTC), maintenance (1900–2200 UTC),
and dissipation (2200–0020 UTC the next day). The blank values in (c) indicate that no grid point of the area meets
the criteria for a non-precipitating cloud.
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method,  it  is  necessary  to  examine  the  accuracy  of  the
improved  method  with  respect  to  the  bulk-plume  method.
Figure 2 compares the PDF of λ calculated by the improved
method described in section 3.1, with that calculated by the
traditional  bulk-plume  method  [Eqs.  (2)  and  (3)].  The
results show that λ calculated by the improved method was rel-
atively  large  in  the  lower  layers,  decreased  gradually  with
increasing height, and increased gradually in the upper layers
(Fig.  2b).  The λ calculated from the traditional  bulk-plume
method using qt was  smaller  than that  calculated  using the
same method but with θl. Interestingly, λ from the improved
method was  between those  of  the  traditional  method using
qt or θl.  The  mean  value  of λ calculated  by  the  improved
method was 1.93 km–1,  and the mean value of λ calculated
from qt and θl was  1.34  km–1 and  2.16  km–1,  respectively.
Therefore, the improved method can reduce the uncertainty
associated with traditional methods.

 4.    Spatial and temporal distribution of λ and
its influencing factors

 4.1.    Overall characteristics of λ
Figure 3 shows the spatial and temporal distributions of

λ after examining the accuracy of the improved method for
calculating λ. In  the  formation  and  dissipation  stages, λ
exceeded that in the maintenance stage, that is, λ decreased
at first and then increased with time. In the vertical direction,
λ was  generally  large  in  the  lower  and  upper  layers,  but

smaller  in  the  middle  layers.  The  average  profile  of λ also
demonstrates that λ first decreased and then increased along
with the increase in height (Fig. 2b) and the overall vertical
distribution  of λ that  decreased  with  height  was  consistent
with  that  obtained  in  previous  studies  (Dawe  and  Austin,
2013; Xu et al., 2021). However, λ exhibited some differences
at different stages of the cumulus ensemble life cycle. During
formation, λ was relatively large near the cloud base and ini-
tially decreased before increasing with increased height. Dur-
ing the maintenance stage, the vertical distribution of λ was
relatively  consistent,  and  the  overall  trend  featured  a
decrease  of λ with  increasing  height  and  then  increasing,
whereas λ in  the  middle  layer  (~2000–2200  m)  changed
only  slightly  with  height.  During  dissipation, λ increased
with increasing height.

In the formation stage, the cloud ensembles experienced
significant λ over a large depth due to the rapid development
accompanied by the decay of small cumulus clouds and the
appearance of new clouds, some of which were initial cumu-
lus clouds; the main reason is that the cloud ensemble in the
formation stage possessed a  smaller w than the  subsequent
maintenance stage [Fig. S1b in the electronic supplementary
material (ESM)] since λ frequently increases with decreasing
w (Neggers  et al.,  2002; de  Rooy  et al.,  2013; Lu  et al.,
2016; Xu  et al.,  2021)  and λ has  the  strongest  relationship
with w among  other  thermodynamic/dynamical  properties
(see  sections  4.2.2  and 4.3.2  for  detailed  analysis).  In  con-
trast, the larger w in the maintenance stage (Fig. S1b in the
ESM)  leads  to  the  development  of  smaller λ in  the  lower
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Fig. 2. Probability density function (PDF) of entrainment rate (λ) as a function of height calculated using (a) the bulk-plume
method  using  total  water  mixing  ratio  (qt),  (b)  the  improved  method,  and  (c)  the  bulk-plume  method  using  liquid  water
potential temperature (θl). The mean values of λ calculated by the three methods are shown in the figure.
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ϕe

ϕc

part of the cloud (Fig. 3). The cloud dissipation was responsi-
ble for the increasing λ near cloud tops and toward the end
of the simulation, as the dissipating clouds share similar physi-
cal  properties  with  the  ambient  air  [resulting  in  small  –

 in Eq. (1)]. It is also worth noting that smaller w occurred
in  the  cloud ensembles  near  the  cloud tops  and toward the
end  of  the  simulation  (Fig.  S1b;  in  the  ESM),  resulting  in
larger λ (Fig. 3). The increasing λ towards the cloud top has
been  found  in  many  model  simulations  (Romps,  2010;
Dawe and Austin, 2011, 2013; Xu et al., 2021).

Dawe and Austin (2013) diagnosed the spatial and tempo-
ral  distributions  of λ for  each  individual  shallow  cumulus
cloud  using  a  cloud-tracking  algorithm  in  an  LES.  The
results  for  one  of  the  cumulus  clouds  showed  that λ was
larger  in  the  lower  levels  and  gradually  decreased  with
height, and there were several large values in the upper lay-
ers.  Note  that λ initially  decreased and then increased with
time. The spatial and temporal distributions of the cumulus
ensemble in the present study represented the ensemble char-
acteristics of all individual cumulus clouds and were very sim-
ilar to the results of individual cumulus clouds in Dawe and
Austin (2013). This indicates that the spatial and temporal dis-
tributions of the cumulus ensemble λ simulated in this study
can also represent the characteristics of individual cumulus
clouds.  In  addition,  the  variation  with  height  in  PDF  of λ
across  all  cumulus  clouds  simulated  by  Dawe  and  Austin
(2013) demonstrated that ensemble λ initially decreased and
then increased with height, consistent with the vertical varia-
tion of ensemble λ simulated in the present study.

 4.2.    Variation  of  the  PDF  of  λ over  time  and  its
influencing factors

 4.2.1.    Variation of the PDF over time

Figure 4 shows the PDF of 1293 domain-averaged λ val-
ues  at  all  heights  and  times.  Due  to  the  assumptions
described in section 3.2, we note that the calculated λ is the
cloud ensemble λ.  The entrainment  characteristics  of  cloud
ensembles (e.g., cloud ensemble λ) are required in current gen-
eral  circulation  models  (GCMs)  (Dawe  and  Austin,  2013).
The PDF of λ was well fitted using a log-normal distribution
(coefficient of determination R2 = 0.99); similar results were
obtained  by  Lu  et al.  (2012a).  The  log-normal  distribution
was chosen as the fitting function because previous studies
have demonstrated that the PDF of λ conforms to a log-normal
distribution (Lu et al., 2012a; Dawe and Austin, 2013; Guo
et al.,  2015a). In climate models, the grid spacing is coarse
and cumulus convection is often described through parameter-
ization. The different effects of entrainment on cumulus con-
vection can be obtained by parameterizing λ rather than by
assuming a constant λ (Gregory, 2001; Neggers et al., 2002;
Wu, 2012). Therefore, a wide distribution of λ is reasonable.
It is also important to treat the process of entrainment-mixing
as  a  stochastic  process  (Romps  and  Kuang,  2010; Böing
et al., 2014; Romps, 2016; Yang et al., 2021). The PDF of λ
is  well  described  by  the  log-normal  distribution  (Fig.  4),
which  supports  stochastic  entrainment  and  has  important
implications for treating convection in models.

The PDF of cloud λ for all  times and heights in Fig. 4
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Fig. 3. Distribution of entrainment rate (λ) with time and height. The black dash-dotted lines divide
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can  present  the  characteristics  of  ensemble λ during  the
entire life cycle of the cumulus ensemble. It is also interesting
to see whether there are differences in the PDFs of λ at differ-
ent  times,  which  could  further  improve  the  description  of
the  entrainment  process  in  the  cumulus  parameterization
scheme. Figure  5 shows  the  PDF  for  all  cloud λ for  each
hour from 1500 to 2400 UTC, along with the parameters of
the  log-normal  fit  and R2.  For  the  consistency  of  the  time
interval,  the  data  of  the  two moments  after  2400  UTC (13
samples) were not involved in the analysis.  The R2 in each
time interval exceeded 0.90 (more than half attain 0.95), con-
sistent with the results for all times and heights (Fig. 4). Fur-
thermore, λ in each time interval was also described well by
a  log-normal  distribution,  further  confirming the  stochastic
distribution of λ.

Differences  still  existed  between  the  distributions  of λ
for each time interval. The two parameters of the log-normal
fit of λ were the mean (μ) and standard deviation (σ) of ln(λ).
The μ initially decreased and then increased with time, and
σ initially increased with time and decreased later. Thus, in
the early stage of cloud ensemble development, λ was rela-
tively large and the distribution was relatively concentrated.
Over time, λ initially decreased and then increased, and its dis-
tribution  gradually  widened.  At  the  end  of  the  cloud  life
cycle, λ became relatively large and concentrated.

 4.2.2.    Influencing factors

An accurate description of the PDF of λ in the model is
of value for improving the simulation, which requires investi-
gation of the factors affecting the PDF of λ. Previous studies
have shown that w, B, and the environmental relative humidity

(RHe)  are  important  factors,  and  these  variables  are  often
used to parameterize λ (Stirling and Stratton, 2012; de Rooy
et al.,  2013; Lu et al.,  2016, 2018; Zhang et al.,  2016; Bera
and Prabha, 2019; Xu et al., 2021). Therefore, the effects of
w, B, and RHe on the PDF of λ are analyzed in this section.
Note  that w, B,  and  RHe refer  to  the  mean  values  of  the
cloud grid points as mentioned in section 2.

Similar to the analysis of the PDF of λ, PDFs were also
calculated  for w, B,  and  RHe at  each  moment  and  fitted
using a log-normal distribution. The hourly PDFs of w fitted
well to a log-normal distribution (Fig. S2; in the ESM), and
the  results  for  the  other  variables  were  similar  (figures  not
shown).  This  facilitated  the  analysis  of  the  relationship
between these variables and λ using the fitting parameters of
the log-normal fit.

To determine the factors influencing the PDF of λ,  the
temporal  variation  of  the  parameters  in  the  log-normal  fit
of  the  hourly  PDF  of λ, w, B,  and  RHe was  examined
(Fig.  6).  Consistent  with  the  analysis  in  section  4.2.1,  the
mean value of λ initially decreased and then increased with
time  (Fig.  6a).  In  contrast, w initially  increased  and  then
decreased with time (Fig. 6b); thus establishing a negative cor-
relation  with λ. B generally  decreased  with  time  (Fig.  6c)
and was not  correlated with λ.  The RHe initially  decreased
and then increased with time (Fig. 6d) and was positively cor-
related with λ, although the timing of inflection points, from
decreasing to increasing values, differed for λ and RHe.

In summary, λ was negatively correlated with w, consis-
tent  with  the  results  of  many  previous  studies  (de  Rooy
et al., 2013; Lu et al., 2016). Note that there was no significant
correlation between λ and B, although previous studies have
found a negative correlation between them (Lin, 1999; von
Salzen and McFarlane, 2002). However, a lack of a significant
correlation  between λ and B was  also  found  by  Romps
(2010).  Gregory  (2001)  used B/w2 to  parameterize λ,  a
scheme  that  has  been  applied  to  climate  models  (Kim  and
Kang, 2012; Song and Zhang, 2018), showing that λ is posi-
tively correlated with B and negatively correlated with w. In
previous studies, λ and B were found to be positively corre-
lated,  negatively  correlated,  or  not  correlated,  suggesting
that the effect of B on λ might be indirect. In contrast, w has
a  more  direct  effect  on λ because  when w is  smaller,  the
cloud is  allotted more time to  mix with ambient  air  during
ascent, which results in a larger λ (Neggers et al., 2002; Lu
et al.,  2016; Zhang  et al.,  2016; Xu  et al.,  2021).  Lu  et al.
(2016) demonstrated that a larger λ reduces the temperature
in  the  cloud  when  the  ambient  air  and  the  cloud  mix,
thereby  reducing B,  while  the  decrease  in B drives  a
decrease  in w,  which  leads  to  an  increase  in λ.  They  also
noted that w is the optimum choice when using a single vari-
able to parameterize λ. Previous studies have shown that the
relationship  between λ and  RHe can  be  positive  (Axelsen,
2005; Lu  et al.,  2018; Bera  and  Prabha,  2019; Stanfield
et al.,  2019; Zhu  et al.,  2021)  or  negative  (Bechtold  et al.,
2008; Zhao et al., 2018b); and the results of this study tend
to suggest a positive correlation. In conclusion, a relationship
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between w and λ is optimal.

 4.3.    Variation  of  the  PDF  of  λ with  height  and  its
influencing factors

 4.3.1.    Variation of the PDF with height

Section  4.2  discussed  variations  in  the  PDF  of λ over
time. Because clouds and λ exhibit different distribution char-
acteristics at different heights (Figs. 1–3), it is necessary to
examine the variation of the PDF of λ with height.  Similar
to  section  4.2.1,  PDFs  were  calculated  for λ per  200  m  in
the range 1000 m to 2600 m above sea level and fitted using
a log-normal distribution. The PDFs of λ were well fitted in

each height range (Fig. 7; R2 exceeded 0.96, except for the
PDF of 2400–2600 m), which further confirms that entrain-
ment is a stochastic process. In the lower layer (Figs. 7a, b),
μ was relatively large and σ was relatively small, indicating
that λ of the lower layer was relatively large and the distribu-
tion was relatively concentrated. As height increased, μ ini-
tially decreased and then increased, whereas σ increased grad-
ually.  Correspondingly, λ initially  decreased  and  then
increased with height,  and the distribution became increas-
ingly dispersed. Interestingly, the PDF was narrow at lower
altitudes  (mainly  due  to  the  identical  properties  of  most
cloud ensembles in the formation stage) and became wider
as height increased (mainly due to cloud variability brought
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Fig.  5. Panels  (a–i)  represent  the  probability  density  function  of  the  entrainment  rate  (λ)  in  hourly  intervals  from 1500 to
2400 UTC. The number of samples, coefficient of determination (R2), mean (μ), and standard deviation (σ) of ln(λ) for the
log-normal fit (red line) in each time interval are provided.
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forth  by  the  coexistence  of  cloud  ensembles  in  multiple
stages). The PDFs of λ at all heights in an LES, as presented
by Dawe and Austin (2013), showed that λ strongly followed
a log-normal distribution and the mean PDF of all individual
cumulus cloud λ was consistent with the cloud ensemble λ.
Furthermore, λ initially  decreased  with  height  and  then
remained unchanged, and increased at high levels, similar to
the vertical distribution obtained in this study.

 4.3.2.    Influencing factors

The factors influencing the PDF of λ were analyzed in
section 4.2.2. In this section, we discuss whether these same
conclusions apply to the PDFs of λ at different heights. Simi-
lar  to  section  4.2.2,  log-normal  distributions  were  fitted  to
the PDFs of w, B, and RHe for each 200-m range. The PDFs

of w within each 200-m range were well fitted by a log-normal
distribution  (Fig.  S3;  in  the  ESM)  and  the  results  for  the
other  variables  were  similar  (figures  not  shown). Figure  8
shows variations in the fitting parameters of the PDFs of λ
and its influencing factors, as a function of height, to analyze
the relationship between λ and influencing factors at different
heights.

The  mean  value  of λ initially  decreased  and  then
increased  with  height  (Fig.  8).  In  contrast, w initially
increased and then decreased with  increasing height,  and λ
and w were  negatively correlated. B initially  increased and
then decreased with increasing height and was negatively cor-
related  with λ.  However,  there  was  a  small  value  in
1800–2000  m,  which  was  inconsistent  with  the  vertical
change in λ. The vertical profiles of λ and B have a better cor-
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respondence compared with the time-series plots of λ and B
in Fig.  6.  The  RHe initially  decreased  and  then  increased
with height, consistent with the vertical distribution of λ; the
corresponding relationship between these two variables was
also better than that apparent in Fig. 6. In conclusion, the rela-
tionship  between λ and  each  influencing  factor  at  different
heights is similar to that at different times (section 4.2.2). Fur-
thermore, similar to Fig. 8, the vertical distributions of the fit-
ting parameters for the PDFs of λ and its influencing factors
were plotted for the three stages of the cloud ensembles (Fig.
S1;  in  the  ESM).  Comparisons  of  the  results  for  the  three
stages  and that  for  all  times  show similar  vertical  distribu-
tions,  and w has  the  best  relationship  with λ in  the  three

stages. Combining the results of different heights and times,
the relationship between λ and w is the strongest.

 5.    Conclusion and discussions

The entrainment rate (λ) is an important physical variable
in cumulus parameterization schemes. The accurate calcula-
tion of λ from observations or high-resolution simulations is
key to improving λ parameterization. The probability density
function (PDF) of λ can be very useful for treating cumulus
convection in models. Therefore, this study applied a large-
eddy simulation of  cumulus  clouds to  calculate λ based on
the  improved  bulk-plume  method  and  analyzed  the  spatial
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Fig.  7. Panels  (a–h)  represent  the  probability  density  function  of  the  entrainment  rate  (λ),  in  200-m  increments,  over  the
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and  temporal  distributions  of λ,  including  variations  of  the
PDF of λ with  time  and  height  and  its  influencing  factors.
The main conclusions are as follows:

First, an improved method for calculating λ was devel-
oped and its accuracy was validated. The improved method,
which  solves  the  conservation  equations  of  two  variables
simultaneously, is an improvement over the traditional bulk-
plume  method.  The  calculated λ,  based  on  the  improved
method, numerically falls within the range of λ values calcu-
lated by the traditional bulk-plume method using two different
conserved  variables,  indicating  the  reliability  of  the
improved method.

Second, the spatial and temporal distributions of λ were
examined. During the entire life cycle of the cumulus ensem-
ble, λ initially decreased and then increased; that is, λ in the
formation and dissipation stages was larger than that during

the maintenance stage. In terms of its vertical distribution, λ
generally  exhibited  an  initial  decline  and  then  an  increase
with increasing height. Regardless of its overall characteris-
tics  or  variations  with  time  and  height,  the  PDF  of λ was
well  fitted by a log-normal distribution,  demonstrating that
it is reasonable to treat λ as a stochastic process in numerical
simulations.  This  study  provides  the  PDF  of λ to  facilitate
the randomization of the entrainment process in models.

Finally, the main factors affecting the spatial and tempo-
ral  distributions  of λ were  determined.  For  the  variation of
PDF with time and height, λ was negatively correlated with
the vertical velocity (w) and positively correlated with envi-
ronmental relative humidity (RHe), consistent with previous
studies. There is a poor correlation between λ and buoyancy
(B) with respect to time, but the relationship between λ and
B was  generally  negative  as  a  function  of  vertical  height.
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Fig.  8. Mean  (μ)  of  the  log-normal  fit  of  the  probability  density  functions  of  (a)  entrainment  rate  (λ),  (b)  vertical
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Overall, the relationship between λ and w was the strongest.
These findings offer insight and a new point of reference for
handling  stochastic  entrainment  processes  in  a  cumulus
parameterization scheme (i.e., assuming a log-normal PDF).

Two points are noteworthy. First, in future parameteriza-
tions of λ, it is recommended that w is used as the primary fac-
tor. In addition, the influences of RHe, B,  and other factors
cannot be ignored. It is necessary to comprehensively analyze
the effects of these factors on λ by combining more observa-
tions and high-resolution simulations so that the model con-
vection  scheme  can  describe  entrainment  more  accurately.
Moreover, as pointed out by Böing et al. (2012), the detrain-
ment rate is even more important than λ in determining the
vertical  distribution  of  convective  cloud  mass.  Thus,  accu-
rately  obtaining  the  detrainment  rate  in  cumulus  clouds  is
fairly  important  to  improve  cumulus  parameterization
schemes.

Second,  the  improved  method  proposed  here  can  be
applied  to  aircraft  observations.  Because  it  is  difficult  to
obtain  multiple  observations  of  the  same  shallow  cumulus
cloud by aircraft, there is usually only one horizontal penetra-
tion  for  each  cumulus  cloud.  For  aircraft  observations,  the
detection  height  of  the  aircraft  and  the  height  of  the  cloud
base can be taken as two height levels to obtain a large number
of observational λ values of  individual  cumulus clouds.  To
increase the accuracy of the measurement of λ in future air-
craft observations, it is highly recommended to measure multi-
ple  layers  of  the  same  cumulus  cloud  and  the  interval
between each layer should be as small as feasibly possible.
Additionally,  the  improved  method  can  also  be  applied  to
remote  sensing  data  such  as  enhanced  ground-based  radar
observations, which can obtain the vertical distribution of λ
in a large horizontal range.
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