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ABSTRACT

Both the attribution of historical change and future projections of droughts rely heavily on climate modeling. However,
reasonable  drought  simulations  have  remained  a  challenge,  and  the  related  performances  of  the  current  state-of-the-art
Coupled  Model  Intercomparison  Project  phase  6  (CMIP6)  models  remain  unknown.  Here,  both  the  strengths  and
weaknesses of CMIP6 models in simulating droughts and corresponding hydrothermal conditions in drylands are assessed.
While  the  general  patterns  of  simulated  meteorological  elements  in  drylands  resemble  the  observations,  the  annual
precipitation is overestimated by ~33% (with a model spread of 2.3%–77.2%), along with an underestimation of potential
evapotranspiration  (PET)  by  ~32%  (17.5%–47.2%).  The  water  deficit  condition,  measured  by  the  difference  between
precipitation  and  PET,  is  50%  (29.1%–71.7%)  weaker  than  observations.  The  CMIP6  models  show  weaknesses  in
capturing  the  climate  mean  drought  characteristics  in  drylands,  particularly  with  the  occurrence  and  duration  largely
underestimated in the hyperarid Afro-Asian areas. Nonetheless, the drought-associated meteorological anomalies, including
reduced  precipitation,  warmer  temperatures,  higher  evaporative  demand,  and  increased  water  deficit  conditions,  are
reasonably  reproduced.  The  simulated  magnitude  of  precipitation  (water  deficit)  associated  with  dryland  droughts  is
overestimated  by  28%  (24%)  compared  to  observations.  The  observed  increasing  trends  in  drought  fractional  area,
occurrence, and corresponding meteorological anomalies during 1980–2014 are reasonably reproduced. Still,  the increase
in  drought  characteristics,  associated  precipitation  and  water  deficit  are  obviously  underestimated  after  the  late  1990s,
especially for mild and moderate droughts, indicative of a weaker response of dryland drought changes to global warming
in CMIP6 models. Our results suggest that it is imperative to employ bias correction approaches in drought-related studies
over drylands by using CMIP6 outputs.
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Article Highlights:

•   The water deficit  condition over drylands in CMIP6 models is  weaker than observations due to overestimated climate
mean precipitation and underestimated PET.
•   CMIP6  models  overestimate  drought  intensity  but  underestimate  drought  occurrence  and  duration  in  drylands,  which
may result from more severe water deficits during droughts.
•   The observed increasing  trends  of  dryland droughts  and contributions  of  precipitation  and PET are  well  simulated  by
CMIP6, albeit with a weaker response to global warming after the 1990s than observations.

 

 
 

 1.    Introduction

Drought is a slow-onset but damaging hydroclimatic haz-
ard  with  broad  spatiotemporal  scales  (Gill  and  Malamud,
2014; Ault,  2020).  Severe  droughts  can  bring  cascading
impacts not only on ecosystems (Piao et al., 2019) and envi-
ronmental  systems  (Vicente-Serrano  et  al.,  2020)  but  also
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on  socioeconomic  development  (WMO,  2021).  Drought-
prone  drylands,  characterized  by  scarce  precipitation  and
high atmospheric evaporative demand [measured by potential
evapotranspiration (PET)], occupy ~41% of global terrestrial
land and sustain ~38% of the global population (White and
Nackoney,  2003).  Due  to  the  vulnerable  ecosystems  and
low  societal  resilience,  drylands  are  susceptible  to  greater
threats  than  humid  regions  once  hit  by  severe  droughts,
such as land degradation and desertification, water and food
deficits,  population  migrations,  and  international  disputes
(Sivakumar et  al.,  2013; Davies et  al.,  2016; Cherlet  et  al.,
2018; WMO,  2021).  Therefore,  understanding  how
droughts are changing is critical to policy-making for climate
adaptation and mitigation activities in dryland countries.

Global climate models (GCMs) are useful tools for inves-
tigating the climate response to different forcings and for cli-
mate prediction and projection. The Coupled Model Intercom-
parison  Project  (CMIP)  has  provided  a  fundamental  basis
for the study of drought. Comprehensive assessments of the
strengths and weaknesses of GCMs are of great importance
for understanding how drought has changed in the past, the
characteristics  of  present  drought,  and  what  is  expected  in
the future (Eyring et al., 2019). Issues related to drought and
aridity essentially depend on whether water balance is in sur-
plus or deficit, which is determined by the balance between
precipitation and PET (Sherwood and Fu, 2014; Ault, 2020).
Thus, a reasonable simulation for the meteorological factors
that drive droughts is the premise for reliable future projec-
tions of drought and aridity. So far, great efforts have been
made to evaluate the performances of CMIP models in repro-
ducing meteorological factors and basic drought characteris-
tics.  It  has  been demonstrated that  most  CMIP models  can
capture the dominant features of the spatiotemporal changes
in temperature (Zhao et al., 2014) and PET (Liu et al., 2020)
but  underestimate  their  increasing  trends.  Yet,  the  GCMs
have limited capabilities in simulating the evolution of precipi-
tation,  underestimating  its  variability  and  long-term  trends
(Zhao et al., 2014).

The ability of GCMs to simulate drought and aridity is
usually evaluated by using multiple indices derived from dif-
ferent  hydroclimatic  elements  (Dai,  2011; Peters-Lidard  et
al., 2021). Based on the self-calibrated Palmer Drought Sever-
ity Index (scPDSI), the CMIP Phase 3 (CMIP3) and Phase 5
(CMIP5)  models  well  reproduce  the  observed  long-term
changes in global and hemispheric drought areas but show dis-
crepancies  in  the  regional  trend  patterns  (Zhao  and  Dai,
2017).  Employing  a  standardized  drought  index  approach,
Ukkola  et  al.  (2018)  addressed  the  agreement  of  CMIP5
model variations with drought metrics (i.e., severity and dura-
tion) in simulating different types of droughts (i.e., precipita-
tion, runoff, and soil moisture). The simulation biases further
lead to large uncertainties in global drought projections, espe-
cially  over  arid  regions,  even  in  the  latest  CMIP  Phase  6
(CMIP6)  models  (Cook  et  al.,  2020; Ukkola  et  al.,  2020;
Zhao  and  Dai,  2022).  Until  now,  less  effort  has  been
devoted to evaluating CMIP6 models in simulating drought-

related hydrothermal conditions in global drylands.
The primary motivation of this study is to evaluate the

performances  of  the  new  CMIP6  models  in  the  simulation
of droughts and the associated hydro-meteorological condi-
tions over global drylands. We intend to address the following
questions: 1) How do CMIP6 models perform in simulating
droughts and primary meteorological elements in drylands?
2) Are CMIP6 models able to capture the responses of dryland
droughts  and  associated  meteorological  elements  to  global
warming?

The  remainder  of  this  paper  is  organized  as  follows.
Section  2  describes  data  and  methods  used  in  this  study.
Subsequently,  elaborate  evaluation  results  are  illustrated  in
section 3. To the end, we summarize and discuss results in
section 4.

 2.    Data and methods

 2.1.    Observation and CMIP6 simulation datasets

We  used  the  monthly  observations  from  Climatic
Research Unit gridded Time Series Version 4.03 (CRU TS
v.4.03)  with  a  horizontal  resolution  of  0.5°  latitude  ×  0.5°
longitude  as  validation  datasets  (Harris  et  al.,  2020).  The
three  variables  of  monthly  precipitation,  temperature,  and
PET from 1960–2018, were employed in this study.

Monthly PET values in CMIP6 simulations were calcu-
lated  following  the  Penman-Monteith  approach  (Penman,
1948; Monteith,  1965),  which  is  derived  based  on  surface
moisture and energy balance and recommended by the Food
and Agricultural Organization (FAO) of the United Nations
(Allen et al., 1998). The detailed calculation of PET is as fol-
lows: 

PET =
0.408∆(Rn−G)+γ

900
Tas+273

u2(es− ea)

∆+γ(1+0.34u2)
, (1)

where PET (mm d–1) is the reference evapotranspiration rate,
Rn (MJ  m–2 h–1)  and G (MJ  m–2 h–1)  are  the  net  radiation
and soil heat flux, respectively. Tas (°C) is 2 m air tempera-
ture, u2 (m s–1) is 2 m wind speed, Δ (kPa °C–1) represents
the slope of the saturation vapor pressure–temperature rela-
tionship, and γ (kPa °C–1) is the psychrometric constant.

Specifically, es–ea (kPa)  represents  the  difference
between saturation vapor pressure (es) and actual vapor pres-
sure (ea), i.e., vapor pressure deficit (VPD). In CMIP6 simula-
tions, es and ea can be calculated following Eqs. (2–3): 

es = 0.6108exp
(

17.27Tas

(Tas+237.3)

)
, (2)

 

ea = es×
RH
100
, (3)

where RH (%) is relative humidity.
According  to  Eqs.  (1–3),  the  relevant  input  variables
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for calculating PET from CMIP6 outputs include the near-sur-
face  air  temperature  (tas),  relative  humidity  (hurs),  10  m
wind speed (uas, vas), longwave (rlds, rlus), and shortwave
(rsds, rsus) radiation. Thus, we selected the historical simula-
tions  for  the  period  1980–2014  from  27  CMIP6  models
(Eyring et al., 2016; Table 1) to assess their respective perfor-
mance. This is the maximum number of models with available
data that allow us to diagnose the PET simulation. Only the
first  realization of each model was employed in this study.
To facilitate calculations and comparisons, all outputs were
first re-gridded to 1.5° latitude × 1.5° longitude via a bilinear
interpolation.

 2.2.    Definition of drylands and droughts

Drylands  are  generally  measured  by  the  aridity  index
(AI; Middleton and Thomas, 1992; Hulme, 1996), which is
defined as the ratio of annual precipitation to PET (i.e., AI =
P/PET). In this study, we identified global drylands in both
observations and simulations as regions with an annually aver-
aged  AI,  based  on  1960–2018  observations,  of  less  than
0.65 following previous studies (Feng and Fu, 2013; Huang
et al., 2016).

The drought index is measured by the Standardized Pre-

cipitation  Evapotranspiration  Index  (SPEI),  which  is
defined as a log-logistic probability distribution of the differ-
ence between precipitation and PET (P–PET) (Vicente-Ser-
rano et al., 2010). The observed and simulated SPEI were cal-
culated using monthly precipitation and PET from CRU and
CMIP6 outputs, respectively. The SPEI can be calculated at
different time scales (≥1 month).  For the responses of arid
biomes to droughts on short timescales (Vicente-Serrano et
al., 2013), we employed the 6-month SPEI (SPEI-06) to iden-
tify  drought  events  in  this  study.  Droughts  were  then
divided  into  four  categories,  i.e.,  above  mild  (SPEI≤–0.5),
above  moderate  (SPEI≤–1.0),  above  severe  (SPEI≤–1.5),
and above extreme (SPEI≤–2.0) droughts, which correspond
to mild, moderate, severe and extreme drought, respectively,
in this study.

Four  drought  metrics,  including  the  intensity,  occur-
rence,  duration,  and  fraction  of  affected  area,  for  each
drought category, were calculated to assess drought character-
istics.  Drought  intensity  is  the  mean  SPEI  of  a  drought
event,  occurrence  (month  yr–1)  is  the  number  of  months
under drought condition in a year, duration (months) is the
months  for  an  individual  drought  event,  and  fraction  of
affected area (%) is the percentage of area under drought con-

 

Table 1. Introduction to the 27 CMIP6 models used in this study.

No. Model Name Institute, Country
Resolution

(Lat×Lon×Level)

1 ACCESS-CM2 Commonweaalth Scientific and Industrial Research Organization (CSIRO) and
Bureau of Meteorology (BoM), Australia

144×192×85
2 ACCESS-ESM1-5 145×192×38
3 BCC-CSM2-MR Beijing Climate Center (BCC), China 160×320×46
4 CanESM5 Canadian Centre for Climate Modelling and Analysis (CCCma), Canada 64×128×49
5 CMCC-CM2-SR5 The Euro-Mediterranean Centre on Climate Change (CMCC) 192×288×47

6 CNRM-CM6-1 Centre National de Recherches Meteorologiques/Centre Europeen de Recherche et
Formation Avancees en Calcul Scientifique (CNRM-CERFACS), France 128×256×91

7 EC-Earth3 EC-Earth-Consortium, Europe 256×512×91
8 EC-Earth3-CC EC-Earth-Consortium, Europe 256×512×91
9 EC-Earth3-Veg EC-Earth-Consortium, Europe 256×512×91
10 EC-Earth3-Veg-LR EC-Earth-Consortium, Europe 160×320×62

11 FGOALS-f3-L Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP-CAS),
China 180×288×32

12 GFDL-CM4 NOAA’s Geophysical Fluid Dynamics Laboratory (NOAA-GFDL), USA 180×288×33
13 GFDL-ESM4 NOAA’s Geophysical Fluid Dynamics Laboratory (NOAA-GFDL), USA 180×288×49
14 GISS-E2-1-G NASA Goddard Institute for Space Studies (NASA-GISS), USA 90×144×40
15 HadGEM3-GC31-LL Met Office Hadley Centre (MOHC), UK 144×192×85
16 HadGEM3-GC31-MM Met Office Hadley Centre (MOHC), UK 324×432×85
17 INM-CM4-8 Institute for Numerical Mathematics (INM), Russia 120×180×21
18 INM-CM5-0 Institute for Numerical Mathematics (INM), Russia 120×180×73
19 IPSL-CM6A-LR Institute Pierre Simon Laplace (IPSL), France 143×144×79

20 KACE-1-0-G National Institute of Meteorological Sciences, Korea Meteorological
Administration (NIMS-KMA), Korea 144×192×63

21 KIOST-ESM Korea Institute of Ocean Science and Technology (KIOST), Korea 96×192×32
22 MIROC6 Atmosphere and Ocean Research Institute (AORI, the University of Tokyo),

National Institute for Environmental Studies, and Japan Agency for Marine-Earth
Science and Technology (JAMSTEC), Japan

128×256×80

23 MIROC-ES2L 64×128×62

24 MPI-ESM1-2-HR Max Planck Institute for Meteorology (MPI-M), Germany 192×384×95
25 MPI-ESM1-2-LR Max Planck Institute for Meteorology (MPI-M), Germany 96×192×47
26 MRI-ESM2-0 Meteorological Research Institute (MRI), Japan 160×320×80
27 UKESM1-0-LL Met Office Hadley Centre (MOHC), UK 144×192×85
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dition  relative  to  the  global  dryland  area  (Ukkola  et  al.,
2018).

To  represent  drought-related  hydrothermal  conditions,
four meteorological variables, including precipitation, temper-
ature, PET, and P–PET, were examined. To exclude the sea-
sonal cycle, the anomaly for each variable was first obtained
as follows: 

Anomi, j = xi, j− x j , (4)

x j

where i is  the  year  ranging  from  1980  to  2014, j is  the
month ranging from January to December, xi,j is the meteoro-
logical  variable  of  month j for  year i,  and  is  the
1980–2014 climatology for month j.

Considering  SPEI-06  represents  the  water  balance  for
the preceding 6 months,  we further calculated the previous
6-month average of the anomaly for each meteorological vari-
able. Each meteorological anomaly during the four drought
categories was then extracted and analyzed.

 2.3.    Model evaluation metrics

Droughts and the corresponding primary meteorological
elements were assessed in terms of their climatology, interan-
nual  variability,  and  long-term  trends  for  the  period
1980–2014.  The  interannual  variability  is  measured  by  the
temporal standard deviation (SD). The long-term trend is esti-
mated  by  Theil-Sen  non-parametric  statistics  (Sen,  1968;
Theil,  1992)  and  is  tested  if  the  monotonic  trend  is  robust
by the Mann-Kendall non-parametric method (Mann, 1945;
Kendall, 1955).

To quantify the performances of the 27 CMIP6 models,
we calculated the pattern correlation coefficients (PCC) and
root-mean-square error (RMSE) between the simulation and
observation,  representing  the  spatial  distribution  similarity
and model biases, respectively. Following Seo et al. (2013),
we employed a skill score to evaluate both the PCC and nor-
malized spatial SD, calculated as follows: 

S =
4(1+PCC)(

σ+
1
σ

)2
(1+PCC0)

, (5)

σ

where PCC is the pattern correlation coefficient between simu-
lation  and  observation,  is  the  simulated  spatial  SD
divided  by  the  observed  SD  (i.e.,  normalized  spatial  SD),
and  PCC0 is  the  maximum achievable  correlation  (set  to  1
here).

 3.    Results

 3.1.    Simulation  on  primary  meteorological  elements  in
drylands

In  this  section,  we  first  evaluate  the  performances  of
CMIP6 models in reproducing the meteorological elements
across  global  drylands,  given  the  aforementioned  meteoro-
logical  anomalies  as  the  main  drought  drivers. Figure  1

shows the spatial patterns of the climatology of the annual pre-
cipitation,  temperature,  PET,  and P–PET  in  drylands  from
the observations, the simulated CMIP6 multi-model ensemble
mean (MME), and their respective differences. Observations
show  the  climate  mean  annual  precipitation,  temperature,
and PET averaged over global dryland regions to be 328 mm,
17.8°C, and 1580 mm, respectively (Figs. 1a, d, g). Because
the  atmospheric  evaporative  demand  is  higher  than  the
water  supply,  global  drylands  are  completely  under  water
deficit conditions, with P–PET reaching –1252 mm on aver-
age (Fig. 1j). The climatological values of the four meteoro-
logical elements are unevenly distributed across global dry-
lands. The annual precipitation amount agrees with the spatial
pattern of aridity, with the least rainfall (<25 mm) observed
in the hyperarid North Africa-Middle East and western Aus-
tralia  areas,  while  relatively  greater  rainfall  (>500  mm)
occurred in the semihumid and semiarid Sahel, India Penin-
sula,  and  northern  Australian  areas  (Fig.  1a).  The  climate
mean annual temperature, PET, and P–PET show similar pat-
terns to each other, particularly with the highest temperature
(>28°C), atmospheric evaporative demand (>2400 mm) and
the most severe water deficit condition (<–2400 mm) in the
hyperarid North Africa-Middle East and western Australian
regions (Figs. 1d, g, j).

The spatial  distributions for the climate mean states of
the four meteorological elements from CMIP6 MME agree
well  with  the  observations,  with  the  PCC  of  simulated
annual precipitation, temperature, PET, and P–PET reaching
0.8,  1.0,  0.8,  and  0.8,  respectively  (Figs.  1b, e, h, k).  The
annual  precipitation  is  overestimated  in  most  drylands
except the northern African, Middle East, and India peninsula
regions, on average by 107.6 mm (~33% of observed climate
mean), with the RMSE reaching 250.5 mm (Figs. 1b, c). In
contrast, the annual temperature and PET in drylands are sys-
tematically underestimated by CMIP6 models (Figs. 1e, f, h,
i),  especially for PET with an area average that is 500 mm
(~32%) lower than observations (Figs. 1h, i). Due to the com-
bination  of  overestimated  precipitation  and  underestimated
PET,  CMIP6  MME  shows  a  systematic  overestimation  of
P–PET  across  all  dryland  areas,  as  evidenced  by  an  area
mean (–607 mm) that is about 48% less than the observation
(–1252 mm) (Figs. 1k, l). The largest bias also occurs in the
hyperarid  North  Africa-Middle  East  and  western  Australia
regions,  exceeding  1500  mm,  thereby  indicating  much
weaker  water  deficit  conditions  in  drylands  simulated  by
CMIP6  models  relative  to  observations.  According  to  Eq.
(1),  PET  is  determined  by Tas, ea, Rn,  and u2.  Considering
the observational data availability to calculate PET in CRU
TS v.4.03, we checked the relative contributions of the four
factors to PET bias and found that the systematic underestima-
tion in PET mainly comes from biases in radiation and wind
speed, especially over the hyperarid North Africa and Middle
East drylands (figures not shown).

We further examine the performances of CMIP6 models
in the simulation of interannual variability of the four meteo-
rological elements depicted in Fig. 2. The observed are-aver-
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aged, interannual variability of annual precipitation, tempera-
ture,  PET,  and P–PET  in  drylands  is  69.2  mm  yr–1,
0.5  °C  yr–1,  39.9  mm yr–1 and  95.9  mm yr–1,  respectively,
with obvious regional differences (Figs. 2a, d, g, j). The inter-
annual variability in both precipitation (Fig. 2a) and P–PET
(Fig. 2j) shows a high consistency with the annual precipita-
tion climatology (Fig. 1a), with the lowest SD (<20 mm yr–1)
observed  in  the  hyperarid  regions  and  the  largest  SD
(>200  mm  yr–1)  in  the  semiarid  and  semihumid  areas.  As
for annual mean temperature (Fig. 2d), the observed interan-
nual  variability  in  the  northern  mid-latitude  drylands
(>1.0°C yr–1) is notably higher than the tropical and Southern
Hemisphere drylands (0.2°C yr–1–0.4°C yr–1). The observed
interannual  variability  of  PET (Fig.  2g)  is  generally  below
60 mm yr–1 over most drylands, except for the North Ameri-
can (>100 mm yr–1),  central  Asian,  and western Australian
areas (~70 mm yr–1).

CMIP6  models  well  reproduce  the  spatial  patterns  for
the interannual variability of precipitation, temperature, and
P–PET, but fail  to capture that for PET, with their PCC of
simulation reaching 0.9, 0.8, 0.8, and only 0.1, respectively
(Figs. 2b, e, h, k). Overall, CMIP6 models overestimate the
interannual  variability  of  precipitation,  temperature,  and
P–PET in most drylands, on average by 25.6 mm yr–1 (~37%
of observed SD) and 0.2°C yr–1 (~38%), and 18.7 mm yr–1 (~
19%), respectively, while underestimate that of PET by –6.9
mm yr–1 (~17%). For precipitation (Fig. 2c) and temperature
(Fig. 2f), the overestimations of their interannual variability
are widespread across most drylands. The largest biases are
seen  in  the  Southern  Hemisphere  for  precipitation
(>60 mm yr–1) and in many dryland regions for temperature
(>0.4°C yr–1).  Biases for the interannual variability in PET
(Fig.  2i)  and P–PET  (Fig.  2l)  present  heterogeneous  pat-
terns. For PET, the largest overestimation (>40 mm yr–1) is

 

 

Fig. 1. Spatial patterns of observed and simulated climatology in four meteorological elements across global drylands during
1980–2014.  (a–c)  Annual  precipitation (units:  mm yr–1),  (d–f)  annual  mean temperature  (units:  °C),  (g–i)  annual  potential
evapotranspiration  (PET,  units:  mm  yr–1),  (j–l)  annual  water  balance  (P–PET,  units:  mm  yr–1).  The  three  columns  depict
observation, CMIP6 multi-model ensemble mean (MME), and biases. Slant hatchings in the right column denote that 21/27
models are of the same sign, and area-averaged biases are presented as MME and inter-model range between minimum and
maximum, respectively.

FEBRUARY 2024 YU ET AL. 197

 

  



seen  in  the  western  North  Africa  and  India  Peninsula
regions,  while  the  largest  underestimation  (<–50  mm  yr–1)
is located over the North American drylands. For P–PET, pos-
itive  biases  within  20–80  mm  yr–1 are  widely  seen  over
most drylands except for slight negative biases (~20 mm yr–1)
in  the  northern  mid-latitudes.  Notably,  the  CMIP6  models
well simulate the spatial patterns of the interannual variability
in precipitation and P–PET but perform poorly for PET, sug-
gesting that the interannual variability of P–PET is dominated
by precipitation.

We extend our analysis to the long-term trends over the
time period 1980–2014 in Fig.  3.  The observation presents
an overall increasing trend in the annual precipitation, temper-
ature, and PET across global drylands, with average rates of
11.3 mm (35 yr)–1, 0.85°C (35 yr)–1 and 48.6 mm (35 yr)–1,
respectively (Figs. 3a, d, g). The trend in annual precipitation
shows  heterogeneous  patterns,  with  a  trend  of  wetting
[>100 mm (35 yr)–1] in the Sahel, South African, India Penin-
sula, and northern Australian drylands with drying [<–70 mm
(35 yr)–1] in many other dryland areas. The warming rate is

particularly  faster  in  the  Afro-Asian  drylands  [>1.5°C
(35 yr)–1] compared to the other drylands. Because the rising
atmospheric  evaporative  demand  is  partly  offset  by
increased  precipitation,  the  annual P–PET  has  generally
declined at –36 mm (35 yr)–1 over global drylands (Fig. 3j),
showing  a  similar  pattern  with  annual  precipitation.  The
decreasing trend in the annual P–PET suggests deteriorating
water deficit conditions over most drylands except for those
regions with significant wetting trends.

Although CMIP6 simulations agree with the observation
on the sign of the long-term trend in the four meteorological
elements  over  global  drylands,  the  regional  patterns  are
poorly reproduced, as evidenced by the low PCC of simula-
tions  within  0.2–0.5  and  large  RMSEs  (Figs.  3b, e, h, k).
The biases for the long-term trend in all meteorological ele-
ments  show  obvious  regional  dependence.  The  simulated
annual  precipitation  presents  an  increasing  trend  over  the
observed  drying  regions,  including  most  Northern  Hemi-
spheric  and  South  American  drylands;  thus,  the  long-term
trend  is  overestimated  by  about  80  mm  (35  yr)–1,  at  most

 

 

Fig. 2. Same as in Fig. 1, but for the interannual variability of four meteorological elements during 1980–2014. (a–c) Annual
precipitation (units: mm yr–1), (d–f) annual mean temperature (units: °C yr–1), (g–i) annual potential evapotranspiration (PET,
units: mm yr–1), (j–l) annual water balance (P–PET, units: mm yr–1).
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(Figs. 3b, c). In contrast, the increasing trend is greatly under-
estimated by about 80 mm (35 yr)–1 over those observed dry-
lands which are wetting. The simulated annual mean tempera-
ture  shows  an  overestimated  warming  trend  in  most  dry-
lands, on average by 0.42°C (35 yr)–1 (49% of the observa-
tion)  (Figs.  3e, f),  while  an  underestimated  rising  trend  in
PET, on average by 15.5 mm (35 yr)–1 (32% of the observa-
tion) (Fig. 3h, i). As a result, CMIP6 models systematically
overestimate the trend in annual P–PET by 16.3 mm (35 yr)–1

(45% of the observation) across global drylands (Figs. 3k, l),
showing a similar spatial pattern to that of annual precipita-
tion.

As  the  CMIP6  models  still  show  spread  in  both  the
mean state and variability simulations, we further assess the
performances of individual models using a portrait diagram
(Fig. 4). Among the three metrics, the simulated climatology
generally obtains the highest scores (0.6–0.98), followed by
the interannual variability (0.4–0.8); the lowest scores were

obtained  for  the  long-term trend  (0.4–0.6).  In  terms  of  the
four meteorological elements, the simulation skill in tempera-
ture  is  the  highest,  followed  by  precipitation  and P–PET;
the lowest skill was for PET. For the temperature climatol-
ogy,  in  particular,  all  CMIP6  models  score  above  0.95,
close  to  the  perfect  score  of  1.0.  Most  models  perform
poorly in simulating the interannual variability of PET and
the  long-term  trend  in  the  four  meteorological  elements,
with scores generally less than 0.6. Notably, the performance
of  MME is  substantially  higher  than  any  individual  model
except  for  simulating  the  long-term  trend  for  precipitation
and PET.

According to the calculation method of SPEI (Vicente-
Serrano et al., 2010), the probability density function (PDF)
of P–PET can substantially affect the drought index. Thus,
we investigate the performance of CMIP6 models in their abil-
ity to accurately capture the PDFs related to the water balance
across  global  drylands. Figure  5 shows the  PDFs of  the  6-

 

 

Fig.  3. Same  as  in  Fig.  1,  but  for  the  long-term  trend  in  four  meteorological  elements  during  1980–2014.  (a–c)  Annual
precipitation  [units:  mm  (35  yr)–1],  (d–f)  annual  mean  temperature  [units:  °C  (35  yr)–1],  (g–i)  annual  potential
evapotranspiration  [PET,  units:  mm  (35  yr)–1],  (j–l)  annual  water  balance  [P–PET,  units:  mm  (35  yr)–1].  Dots  in  the  left
column denote those regions passing the 0.05 significance level, and slant hatchings in the rightmost two columns indicate
that 21/27 models are of the same sign.
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Fig.  4. Portrait  diagrams  of  skill  scores  for  each  CMIP6  model  in  simulating  the  meteorological
elements across global drylands during 1980–2014. The horizontal axis denotes 27 CMIP6 models
and the  multi-model  ensemble  mean (MME),  and the  vertical  axis  indicates  the  assessed metrics,
including  the  climatology  (CLM),  interannual  variability  (STD),  and  long-term  trend  (Trend)  for
precipitation  (Pre),  temperature  (Tas),  potential  evapotranspiration  (PET)  and  water  balance
(P–PET). Warmer colors represent higher skills, with a perfect score of 1.0.

 

 

Fig.  5. Probability  density  functions  (PDFs)  of  6-month  accumulated  precipitation  minus  potential
evapotranspiration  (P–PET)  for  global  and  sub-drylands  during  1980–2014.  Red  and  blue  lines  denote  PDFs
derived from observation and CMIP6 multi-model simulations, and the numbers to the right are the mean and the
standard deviation for PDFs. Boxes in the map depict the regions of seven sub-drylands, including the northern
American  (NAm),  northern  African  (NAf),  central  Asian  (CAs),  East  Asian  (EAs),  southern  American  (SAm),
southern African (SAf), and Australian (Aus) drylands.

200 DROUGHTS IN DRYLANDS SIMULATED BY CMIP6 MODELS VOLUME 41

 

  



month accumulated P–PET for global and seven sub-drylands
during 1980–2014. For global drylands, the simulated PDF
(blue lines in Fig. 5) of P–PET presents an obvious rightward
shift compared to the observation (red lines in Fig. 5). This
suggests that much weaker water deficit conditions are simu-
lated by CMIP6 models. The PDFs for the seven sub-drylands
also show similar discrepancies with different means and stan-
dard  deviations;  even  though  the  same  SPEI  thresholds
were  applied  for  measuring  droughts,  the  associated  water
deficit conditions in CMIP6 models are quite different from
the  observations,  which  may  further  result  in  different
responses of ecosystems to climate change.

 3.2.    Simulation  on  climatological  characteristics  of
drought events in drylands

In this section, we examine the performance of CMIP6
models  in  depicting  the  climatological  characteristics  of
drought  events  and  the  associated  hydrothermal  conditions
across  global  drylands.  The  spatial  patterns  of  the  four
drought categories are generally similar (figures not shown);
thus, only severe droughts are shown herein to illustrate the
model performances.

Figure 6 presents the climate mean spatial distributions
for the severe drought intensity, occurrence, and duration in
observations  and  the  CMIP6  MME as  well  as  their  differ-
ences.  In  observations,  the  severe  drought  intensity  in  dry-
lands is around –1.8 on average, with an evenly-distributed

pattern (Fig. 6a). The observed occurrence (Fig. 6d) and dura-
tion (Fig.  6g) of  severe drought are highly consistent,  with
an area  average of  3.2  month yr–1 and 4.3  months,  respec-
tively,  across  global  drylands.  The  most  frequent  and  the
longest-lasting severe droughts occur in the hyperarid areas
of North Africa-Middle East and East Asia, with the occur-
rence  and  duration  exceeding  4.0  month  yr–1 and  5.5
months,  respectively.  The  mean  characteristics  of  droughts
across  drylands  are  not  well  captured  by  CMIP6  models,
with  the  PCC  of  simulated  drought  intensity,  occurrence,
and  duration  only  reaching  0.1,  0.3,  and  0.1,  respectively
(Figs. 6b, e, h). The severe drought intensity is overestimated
by –0.06 (–0.11 to –0.03) on average (Fig.  6c),  while both
the occurrence (Fig. 6f) and duration (Fig. 6i) are generally
underestimated  by  CMIP6  models,  with  the  largest  biases
exceeding –2 month yr–1 and –3 months, respectively, cen-
tered  in  those  drylands  where  the  most  frequent  and  the
longest lasting droughts are observed (Figs. 6d, g).

The spatial patterns for the climatology of meteorological
anomalies  during  severe  droughts  from  observation  and
CMIP6  MME  and  model  biases  are  further  depicted  in
Fig. 7. The observation shows less precipitation, warmer tem-
peratures,  higher  evaporative  demand  and  increased  water
deficit  during  severe  droughts,  with  an  area  average  of
–11.1 mm month–1, 0.6°C, 6.0 mm month–1, and –17.1 mm
month–1, respectively, across global drylands (Figs. 7a, d, g,
j). The anomalies of precipitation and P–PET during severe

 

 

Fig.  6. Spatial  patterns of  the observed and simulated climatology in severe drought characteristics across global  drylands
during 1980–2014; (a–c) intensity, (d–f) occurrence (units: month yr–1), (g–i) duration (units: month). Slant hatchings in the
right  column denote  that  21/27  models  have  the  same sign.  Area-averaged  biases  are  presented  as  MME and  inter-model
range between minimum and maximum, respectively.
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droughts show a similar unevenly-distributed pattern, ranging
from less than –5 and –10 mm month–1 over the hyperarid hin-
terland, to greater than –30 and –40 mm month–1 over semi-
humid  regions,  respectively  (Figs.  7a, j).  The  temperature
and  PET  anomalies  in  the  Northern  Hemispheric  drylands
are generally higher than those in the Southern Hemisphere,
with  centers  exceeding  1.6°C  and  15  mm  month–1 in  the
North  American,  central,  and  East  Asian  drylands,  respec-
tively (Figs. 7d, g).

CMIP6 models well reproduce the overall meteorologi-
cal  anomalies  of  severe  droughts.  The  simulations  agree
well with observations regarding the spatial patterns of precip-
itation  and P–PET  anomalies  (PCC=0.8)  (Figs.  7b, k)  but
show large inconsistencies in terms of temperature and PET
anomalies,  with  PCCs  only  reaching  0.3  and  even –0.1,
respectively (Figs. 7e, h). The precipitation deficit of severe
drought is systematically overestimated by –3.1 mm month–1

(~28%  of  observed  climatology)  in  most  drylands  except

the  Sahel,  Mediterranean  and  India  Peninsula  regions
(Fig. 7c). The biases in the temperature anomalies of severe
drought  show  great  regional  differences,  with  positive
biases  (>1.0°C)  present  in  most  drylands,  while  negative
biases  (<–1.0  °C)  are  centered  in  the  North  Africa-Middle
East  drylands  (Fig.  7f).  The  simulated  PET  anomaly  of
severe drought shows slight biases (within ±4 mm month–1)
in  most  drylands,  with  the  largest  negative  bias  centers
(<–10  mm  month–1)  over  the  North  American  dryland
(Fig.  7i).  Due to  the  combination of  biases  in  precipitation
and  PET  anomaly  during  severe  drought,  the  simulated
P–PET  anomaly  shows  an  overall  negative  bias  of
–4.5  mm  month–1 (~24%  of  the  observed  climatology)  in
most drylands (Fig. 7i). This indicates that the magnitude in
water  deficit  of  droughts  in  drylands  as  simulated  by
CMIP6 models is more severe than observations.

A comparison of individual CMIP6 models in reproduc-
ing the severe drought characteristics and the corresponding

 

 

Fig.  7. Same  as  in  Fig.  6,  but  for  the  mean  meteorological  anomalies  composited  from  all  severe  droughts  across  global
drylands  during  1980–2014.  The  anomaly  of  each  element  is  calculated  as  the  previous  6-month  averaged  anomaly  when
severe  drought  occurs,  relative  to  their  climatology  during  1980–2014  (the  same  below).  (a–c)  Precipitation  (unit:  mm
month–1), (d–f) temperature (units: °C), (g–i) potential evapotranspiration (PET, units: mm month–1), and (j–l) water balance
(P–PET, unit: mm month–1).
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meteorological anomalies is given in Fig. 8. CMIP6 models
perform poorly for the climate mean drought characteristics,
with most skill scores between 0.4–0.5. Of the four meteoro-
logical anomalies during severe droughts,  precipitation and
P–PET obtain relatively higher scores of 0.6–0.8, followed
by temperature with 0.4–0.6; the lowest skill scores belong
to PET, for which the scores are less than 0.5.  In addition,
the skill scores for the other three drought categories are gen-
erally consistent with severe droughts (figures not shown).

 3.3.    Simulation  of  the  responses  of  dryland  droughts  to
global warming

To investigate the ability of CMIP6 models to reproduce
the responses of droughts to global warming, the time series
for  area  fraction  and  occurrence  for  the  four  drought  cate-
gories  across  global  drylands  during  1980–2014  are  illus-
trated in Figs. 9a–h. The observations show that the fractional
area and occurrence for all drought categories have continu-
ously  increased  since  the  1980s,  especially  and  abruptly
after  the  late  1990s  (red  lines  in Fig.  9a–h).  CMIP6 MME
(blue  lines  in Fig.  9a–h)  can  well  simulate  the  long-term
increasing  trends  for  the  drought  fraction  area  and  occur-
rence,  but  with  an  obvious  underestimation  after  the  late
1990s. In addition, the observed time series falls within the
inter-model  spreads  (grey  shadings  in Figs.  9a–h).  Hence
the  long-term  change  of  dryland  droughts  is  an  externally
forced signal.

We further quantitatively compare the observed and simu-
lated long-term tendencies for the drought-affected area and
occurrence, as depicted in Figs. 9i, j. The observed fraction
area  (occurrence)  for  mild,  moderate,  severe,  and  extreme
droughts  in  drylands  have  increased  by  ~30  (~2.2),  ~20
(~2.1), ~5 (~1.5), and ~1 (0.2) % (month yr–1) from 1980 to
2014, respectively (red asterisks in Figs. 9i, j). CMIP6 models
well  reproduce  their  increasing  tendencies  (box-whisker

plots in Figs. 9i, j). Consistent with the results in Figs. 9a–h,
the simulated tendencies of CMIP6 MME for mild and moder-
ate droughts are weaker than observations, with a rate of 10 %
(35 yr)–1–12 % (35 yr)–1 and ~1 month yr–1 (35 yr)–1 for frac-
tion area and occurrence, respectively. The simulated tenden-
cies  in  terms  of  fraction  area  of  severe  and  extreme
droughts  agree  well  with  observations.  As  seen  from  the
spread of all models, the observed trend for severe drought
occurrence  is  higher  than  inter-model  spreads,  while  it  is
lower for extreme droughts.

The time series of four meteorological anomalies during
four  drought  categories  across  global  drylands  for
1980–2014  are  then  presented  in Fig.  10.  In  the  observa-
tions,  the  three  primary  meteorological  anomalies  show an
increasing trend, indicating a substantial alleviation of precipi-
tation  deficit  while  warmer  temperatures  and  higher  atmo-
spheric evaporative demand intensify during all drought cate-
gories  (red  lines  in Figs.  10a–l).  This  indicates  that  the
increasing PET induced by global warming plays a dominant
role in aggravating droughts in drylands. As the increased pre-
cipitation anomaly is partly offset by the elevated atmospheric
evaporative  demand,  the  water  deficit  conditions  (P–PET)
during  droughts  tend  to  increase  only  slightly  (red  lines  in
Figs. 10m–p).

CMIP6  MME (blue  lines  in Fig.  10)  basically  capture
the long-term trends in the four drought-related meteorologi-
cal anomalies, with their inter-model ranges (grey shadings
in Fig. 10) generally covering the observations (red lines in
Fig. 10). Specifically, the simulated temperature (Figs. 10e–
h) and PET (Figs. 10i–l) anomalies are relatively comparable
with  the  observations,  but  the  magnitudes  of  precipitation
(Figs. 10a–d) and P–PET (Figs. 10m–p) anomalies are overes-
timated,  especially  after  the  late  1990s.  Additionally,  the
inter-model  spreads  of  precipitation  and P–PET  anomaly
are larger than the other two elements.

 

 

Fig.  8. Same  as  in  Fig.  4,  but  for  three  drought  metrics  and  four  corresponding  meteorological  anomalies
during severe droughts (SPEI≤–1.5) across global drylands during 1980–2014. The vertical axis denotes the
assessed  variables,  including  severe  drought  intensity,  occurrence,  and  duration,  and  corresponding
anomalies  of  precipitation  (Pre),  temperature  (Tas),  potential  evapotranspiration  (PET),  and  water  balance
(P–PET) during severe droughts.
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We further  compare  the  observed  and  simulated  long-
term tendencies in the four meteorological anomalies during
the four drought categories over global drylands and seven
sub-drylands in Fig. 11. The observed tendencies of tempera-

ture  anomalies  are  on  the  low  side  of  the  multi-model
spread, whereas that of the other three meteorological anoma-
lies are on the high side, in line with the results in Fig. 10.
Among the seven sub-drylands, the observed tendencies for

 

 

Fig.  9. Changes  in  metrics  for  different  drought  categories  across  global  drylands  during  1980–2014.  The  two
columns  illustrate  the  time  series  (a–h)  and  long-term  trend  (i–j)  for  the  drought  area  (a,  c,  e,  g,  i,  units:  %)  and
occurrence (b, d, f, h, j, units: month yr–1), respectively. (a–h) Red and blue lines denote the observations and CMIP6
multi-model ensemble mean (MME), respectively, and grey shadings denote inter-model spreads between minimum
and maximum. (i–j) Box-whisker plots illustrate the minimum, first quartile, median, third quartile, and maximum of
multi-model long-term tendencies. The asterisks and dots denote the observations and CMIP6 MME, respectively.
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the  four  meteorological  anomalies  mostly  fall  within  the
inter-model  ranges,  except  for  the  precipitation  and  PET
anomaly  in  the  North  African  drylands.  The  inter-model
spreads generally tend to enlarge with increased severity of
drought. For the precipitation anomaly tendencies (Fig. 11a),
the inter-model spreads over the three drylands in the South-
ern Hemisphere (southern American, southern African, and
Australian drylands) are wider than that in the Northern Hemi-
sphere  (Central  Asian,  East  Asian,  and  northern  American
drylands), while the temperature anomalies show contrasting
features (Fig. 11b). For the long-term tendencies of P–PET
anomalies during droughts (Fig.  11d),  due to the offsetting
nature  of  the  increased  precipitation  and  PET  anomalies
(Fig. 11a, c), the tendencies of P–PET anomaly of MME in
most sub-drylands (except for North American and Australian

drylands) are close to 0 for mild and moderate droughts, but
increase for severe and extreme droughts. Most models under-
estimate the increasing (decreasing) trends of P–PET during
droughts  over  global  (Glb)  and  specifically  North  African
(NAf)  drylands  [during  severe  and  extreme  droughts  over
East Asian (EAs) and North American (NAm) drylands].

 4.    Summary and discussion

The  performances  of  27  CMIP6  models  in  simulating
droughts  and  corresponding  hydrothermal  conditions  over
global  drylands  are  elaborately  documented.  Both  the
strengths and weaknesses of CMIP6 models in the simulation
of  dryland  droughts  and  the  associated  meteorological  ele-
ments and their responses to global warming are summarized

 

 

Fig. 10. Time series of meteorological anomalies during four drought categories area-averaged across global drylands over
1980–2014. The four columns are meteorological anomalies for mild (SPEI≤–0.5), moderate (SPEI≤–1.0), severe (SPEI≤
–1.5),  and  extreme  (SPEI≤–2.0)  droughts,  respectively.  The  four  rows  depict  the  anomalies  of  precipitation  (units:  mm
month–1), temperature (units: °C), potential evapotranspiration (PET, units: mm month–1), and water balance (P–PET, units:
mm month–1), respectively, relative to the 1980–2014 monthly climatology. Red and blue lines denote the observation and
CMIP6  multi-model  mean  ensemble  (MME),  respectively,  and  grey  shadings  denote  the  inter-model  ranges  between
minimum and maximum.
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Fig. 11. Long-term tendencies for drought-related meteorological anomalies area-averaged across global
drylands  and  seven  sub-drylands  during  1980–2014.  (a)  Precipitation  [units:  mm  month–1 (35  yr)–1],
(b) temperature [units: °C (35 yr)–1], (c) potential evapotranspiration [PET, units: mm month–1 (35 yr)–1],
(d) water balance [P–PET, units: mm month–1 (35 yr)–1]. Box-whisker plots illustrate the minimum, first
quartile, median, third quartile, and maximum of long-term tendencies derived from CMIP6 multi-models,
with colors from shallow to deep representing mild (SPEI≤–0.5), moderate (SPEI≤–1.0), severe (SPEI≤
–1.5) and extreme (SPEI≤–2.0) droughts, respectively. The asterisks and dots denote the observations and
CMIP6  multi-model  ensemble  mean  (MME),  respectively.  The  seven  sub-drylands  are  the  same  as  in
Fig. 5.
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as follows.
Results confirm the capability of the CMIP6 models to

capture the primary characteristics of four meteorological ele-
ments,  i.e.,  precipitation,  temperature,  PET, and P–PET, in
drylands. Comparatively, the simulation skill in temperature
is much higher than the other three elements. Additionally,
the  simulated  climatology  (with  skill  scores  0.6–0.98)  for
each element agrees better with observations than their inter-
annual  variations  (0.4–0.8)  and  long-term trends  (0.4–0.6).
In  particular,  the  simulated  mean  water  balance  conditions
(P–PET) in drylands are weaker than observations by 50%
(29.1%–71.7%),  which  results  from  an  overestimation  of
annual precipitation by 33% (with a model spread of 2.3%
–77.2%)  and  an  underestimation  of  PET  by  32%  (17.5%
–47.2%). Consequently, even though droughts are identified
by the same SPEI thresholds, the water deficit conditions of
droughts  in  CMIP6 models  are  much milder  than  observa-
tions.

In the context of the same SPEI thresholds, CMIP6 mod-
els are limited in capturing the observed mean drought charac-
teristics in drylands but can reasonably reproduce the overall
meteorological  anomalies,  including  reduced  precipitation,
warmer  temperatures,  higher  evaporative  demand,  and
increased water deficit conditions. The area-averaged severe
drought  intensity  is  slightly  overestimated  by –0.06  (–0.11
to –0.03) over global drylands, while the occurrence and dura-
tion are underestimated by 0.38 (0.09–0.64) month yr–1 and
0.6 (0.3–0.8) months, respectively. In particular, the hyper-
arid  North  Africa-Middle  East  and  East  Asian  regions  see
the most significant biases of occurrence and duration. The
biases  in  the  simulated  drought  characteristics  may  arise
from  more  severe  precipitation  and  water  deficit  during
droughts  in  drylands,  about  28%  and  24%  more  than  the
observed magnitude, respectively.

The observations show that drought occurrence, fraction
area,  and  corresponding  meteorological  anomalies  increase
continuously  from 1980 to  2014.  These  long-term changes
are  well  reproduced  by  CMIP6  MME  and  roughly  fall
within the inter-model spreads, indicating that the long-term
change of dryland droughts in the past decades is an externally
forced signal, but the increasing trends in drought characteris-
tics and associated precipitation and water deficit  are obvi-
ously  underestimated  after  the  late  1990s,  especially  for
mild  and  moderate  droughts.  This  suggests  a  weaker
response of dryland droughts to global warming, as simulated
by  CMIP6  models.  The  overall  increasing  trends  for
drought-associated  anomalies  of  precipitation,  temperature,
and PET further indicate that the rising evaporative demand
induced by global warming is a dominant effect and is aggra-
vating droughts in drylands.

To summarize,  our results suggest that  CMIP6 models
are  capable  of  reproducing  the  basic  features  of  dryland
droughts  and  corresponding  hydrothermal  conditions  on  a
global scale. At the same time, the simulated water balance
conditions  of  droughts  differ  greatly  from  observations,
which may lead to a differential response among ecosystems

to climate change. In addition, the model biases for meteoro-
logical elements are still large at local scales. Therefore, cor-
recting  the  systematic  biases  inherent  to  GCM simulations
in drought impact studies in drylands is necessary.
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