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ABSTRACT

Global gridded crop models (GGCMs) have been broadly applied to assess the impacts of climate and environmental
change and adaptation on agricultural production. China is a major grain producing country, but thus far only a few studies
have  assessed  the  performance  of  GGCMs  in  China,  and  these  studies  mainly  focused  on  the  average  and  interannual
variability of national and regional yields. Here, a systematic national- and provincial-scale evaluation of the simulations by
13 GGCMs [12 from the GGCM Intercomparison (GGCMI) project, phase 1, and CLM5-crop] of the yields of four crops
(wheat, maize, rice, and soybean) in China during 1980–2009 was carried out through comparison with crop yield statistics
collected from the National Bureau of Statistics of China. Results showed that GGCMI models generally underestimate the
national yield of rice but overestimate it for the other three crops, while CLM5-crop can reproduce the national yields of
wheat,  maize,  and  rice  well.  Most  GGCMs struggle  to  simulate  the  spatial  patterns  of  crop  yields.  In  terms  of  temporal
variability, GGCMI models generally fail to capture the observed significant increases, but some can skillfully simulate the
interannual variability. Conversely, CLM5-crop can represent the increases in wheat, maize, and rice, but works less well in
simulating the interannual variability. At least one model can skillfully reproduce the temporal variability of yields in the
top-10  producing  provinces  in  China,  albeit  with  a  few  exceptions.  This  study,  for  the  first  time,  provides  a  complete
picture of GGCM performance in China, which is important for GGCM development and understanding the reliability and
uncertainty of national- and provincial-scale crop yield prediction in China.
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Article Highlights:

•  GGCMs generally underestimate rice yield but overestimate wheat, maize, and soybean yield.
•  GGCMs fail to capture the spatial patterns of observed crop yields in China.
•  GGCMI models are more skillful in reproducing the interannual variability, while CLM5-crop is better at simulating long-
term trends.
•  At least one model can skillfully simulate the temporal variability of yield in the top-10 producing provinces, with a few
exceptions.

 

 
 

 1.    Introduction

China  is  the  largest  producing  country  of  wheat  and

rice,  the  second  largest  producer  of  maize,  and  the  fourth
largest producer of soybean in the world as of 2020, with a
share of about 18%, 28%, 22%, and 6% of the global produc-
tion,  respectively  (FAOSTAT,  2022).  China  has  approxi-
mately 136 million hectares of cropland, ranking it third in
the world,  where crop production feeds around 22% of the
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world’s population (Ghose, 2014; FAO, 2021). With popula-
tion expansion, economic growth, and urbanization in China,
concerns arise regarding its  future ability to feed itself  and
related global impacts (Zhao et al., 2021). Therefore, under-
standing  and  predicting  the  spatiotemporal  variability  of
wheat,  maize,  rice,  and  soybean  yield  in  China  is  vital  for
food security,  global  grain  trade,  and achieving the  second
goal of UN Sustainable Development.

The  temporal  and  spatial  variability  of  crop  yield  is
affected  by  climatic  and  environmental  conditions,  agro-
nomic management (such as fertilizer application, irrigation,
and  timing  of  sowing),  and  genetic  strategies  (Kukal  and
Irmak, 2018). Ray et al. (2015) demonstrated that climate vari-
ability explained approximately one-third of yield variability
in  China.  In  North  China,  irrigation  (Wang  et al.,  2008),
high levels of soil organic carbon and nitrogen (Tian et al.,
2019), and appropriate harvest and sowing dates (Sun et al.,
2007) can enhance crop yield. Xiao and Tao (2014) and Liu
et al. (2013) disentangled the relative contributions of differ-
ent factors and highlighted the importance of agronomic man-
agements and cultivar improvement for winter wheat on the
North  China  Plain  and  rice  in  East  China  by  combining
field experiments with a process-based crop model. Yu et al.
(2012)  demonstrated  using  the  Agro-C  model  that  rice
genetic  improvement  was  the  principal  driver  of  China’s
rice production, especially after nitrogen fertilizer application
declined.

Global gridded crop models (GGCMs) are globally con-
sistent  and grid-  and process-based crop modeling systems
that represent crop growth processes and their linear and non-
linear responses to various driving factors in different crop
phenological stages (Müller et al., 2017). GGCMs can be sep-
arated  into  two  categories:  site-based  and  those  used  in
ecosystem models. Both are derived from a field-scale crop
model, but the latter also considers the biophysical and bio-
geochemical influence of agriculture on the land surface and
has  become  an  important  component  of  land  surface  and
Earth  system  models  (Levis  et al.,  2012; Wu  et al.,  2016;
Müller  et al.,  2017; Lombardozzi  et al.,  2020).  They  have
been  increasingly  applied  for  assessing  climate  change
impacts,  adaptation,  and  environmental  impacts  of  agricul-
tural production (e.g., Lobell et al., 2006; Rosenzweig et al.,
2014; Yin et al., 2015; Jägermeyr et al., 2020). Comprehen-
sive evaluation of GGCMs’ historical simulations is essential
for understanding the reliability of GGCMs in these applica-
tions.

The  Global  Gridded  Crop  Model  Intercomparison
(GGCMI) was initiated in 2012, coordinated by the Agricul-
tural  Model  Intercomparison and Improvement  Project  and
the  Inter-Sectoral  Impacts  Model  Intercomparison  Project
(Elliott et al., 2015). It aims to bring together a diverse inter-
national  community  of  crop  modelers  for  climate  impact
assessment as well as model intercomparison and improve-
ment at the global scale, using the same and standardized pro-
tocol  (Elliott  et al.,  2015).  So  far,  the  first  two  phases  of
GGCMI have  been completed,  i.e.,  historical  yield  simula-

tions (Phase 1, Elliott et al., 2015) and sensitivity simulations
of  yield  responses  to  different  atmospheric  CO2,  tempera-
ture,  water,  and  nitrogen  levels  (Phase  2, Franke  et al.,
2020). Three simulation scenarios were included in GGCMI
phase  1:  (1)  default:  management  and  technology  assump-
tions and growing seasons that models typically use for simu-
lations  in  the  historical  period,  presenting  the  best  perfor-
mance of each model; (2) fullharm: harmonized growing sea-
sons  and  nitrogen  fertilizer  inputs;  and  (3)  harmnon:  the
same as fullharm but with unlimited nitrogen fertilizer supply
(Elliott et al., 2015).

Müller et al. (2017) evaluated the average and interan-
nual variability pattern (quantified by temporal correlation)
of GGCMI phase 1 default simulations and pointed out that
the observed pattern of wheat, soybean, and maize yield can
be partly reproduced by these models at the global scale and
for top-10 producing countries. Li et al. (2022) assessed the
performance of nine models in the GGCMI phase 1 fullharm
scenario in simulating the average and interannual variability
of  yield  in  seven  regions  of  China  and  concluded  that
GGCMI  models  simulated  regional  yields  of  maize  better
than  other  grain  crops  and  pointed  out  the  best  model  of
each region. Until now, however, no study has evaluated the
performance  of  GGCMI  models  in  reproducing  the
observed  spatial  pattern  and  trend  of  crop  yield  in  China
(the  trend  is  much stronger  than  the  interannual  variability
for China’s crop yield;  see Fig.  3 later  in the paper),  or  on
the provincial scale to guide provincial agricultural manage-
ment.

CLM5-crop is version 5 of the Community Land Model
(CLM5)  with  modeling  of  actively  managed  crops
(Lawrence et al.,  2019; Lombardozzi  et al.,  2020).  It  was a
GGCM developed from CLM4.5post-crop used in GGCMI
phase  1  (Levis  et al.,  2012, 2018)  by  Lombardozzi  et al.
(2020). It is the only GGCM worldwide used formally in an
Earth system model (CESM2) and its code is open to the pub-
lic. Lombardozzi  et al. (2020)  evaluated  its  skill  on  the
global scale, but the performance of CLM5-crop in simulating
crop yield in China is still unclear.

In this study, we perform a comprehensive national and
provincial  evaluation of  yield  simulations  of  the  four  main
grain crops (i.e., wheat, maize, rice, and soybean) in China
made by 12 models from the GGCMI phase 1 default scenario
and CLM5-crop to provide a complete picture of GGCM per-
formance.  The systematical  analyses,  which include spatial
and temporal evaluations such as the average, spatial pattern,
long-term trend, and the magnitude and pattern of interannual
variability,  are  conducted  by comparing model  simulations
with  collected  national  and  provincial  observations  for
1980–2009.

 2.    Data and methods

 2.1.    GGCMs

This  study  evaluates  the  performance  of  13  GGCMs
(Table  1)  in  simulating  crop  yield  in  China.  Among  them,

MARCH 2024 YIN ET AL. 421

 

  



12  GGCMs  (CLM4.5post-crop,  LPJ-GUESS,  LPJmL,
ORCHIDEE-crop,  PEGASUS,  CGMS-WOFOST,  EPIC-
Boku,  EPIC-IIASA,  GEPIC,  pAPSIM,  pDSSAT,  and
PEPIC) are from GGCMI phase 1. Simulation data of the 12
GGCMI  models  were  obtained  from  Müller  et al.  (2019).
The  12  models  were  selected  with  the  exclusion  of  EPIC-
TAMU and PRYSBI2 because EPIC-TAMU did not provide
default  simulations  and  PRYSBI2  did  not  distinguish
between rainfed and irrigated crops required by the GGCMI
protocol (Elliott et al., 2015).

In  this  study,  simulations  of  the  default  scenario  in
GGCMI  that  present  the  highest  simulation  skill  of  each
model are used to evaluate the model performance (section
3)  and  simulations  of  the  fullharm  and  harmnon  scenarios
are compared to investigate the simulated response of yield
to nitrogen fertilization (section 4). Additionally, simulations
of the default scenario are also used to investigate the simu-
lated response of yield to climate in section 4. Furthermore,
the GGCMI simulations  were run at  a  spatial  resolution of
0.5° for 1980–2010 and were driven by the climate dataset
AgMERRA (Ruane et al., 2015). Our study uses the simula-
tions  for  the  period  1980–2009  because  the  yields  in  2010
could be missed due to their method of assigning simulations
to calendar year (Elliott et al., 2015).

CLM5-crop  had  several  primary  developments  com-
pared to CLM4.5post-crop used in GGCMI phase 1, including
the  ability  to  simulate  transient  crop  distribution  and  crop
management  due to  the  introduction of  dynamic land units
(carbon,  nitrogen,  water,  and  energy  are  conserved  during
all transitions), phenological triggers that vary with latitude,
and tuning of allocation and phenological parameters (Lom-
bardozzi  et al.,  2020).  The  phenology  phases  are  governed
by the growing-degree-day threshold values, and the manage-
ment  strategies  include  cropland  expansion,  fertilization,
and irrigation (Lombardozzi et al., 2020). A detailed descrip-
tion of CLM5-crop can be found in technical documentation

(https://www.cesm.ucar.edu/models/cesm2/land/CLM50_
Tech_Note.pdf).

In this study, we performed a transient 1850–2009 run
of  CLM5-crop  (component  name:  IHistClm50BgcCrop).
The simulations were driven by atmospheric forcing (precipi-
tation,  temperature,  specific  humidity,  surface  pressure,
wind speed, and solar radiation) from GSWP3v1, with a 0.9°
(latitude) × 1.25° (longitude) horizontal resolution. Crop dis-
tribution,  industrial  fertilizer,  and  irrigated  area  were
derived  from  Land  Use  Harmonization  Version  2  (Hurtt
et al., 2011).

 2.2.    Benchmarks

The  wheat,  maize,  rice,  and  soybean  yields  of  31
provinces  (autonomous  regions  or  municipalities)  during
1980–2009 were collected from the National Bureau of Statis-
tics  of  China  (NBSC, https://data.stats.gov.cn/easyquery.
htm?cn=E0103).  The  planting  area  and  nitrogen  fertilizer
application rate were also obtained from the NBSC. The grow-
ing  season  of  wheat,  maize,  and  rice  obtained  from  Chi-
naCropPhen1km  (Luo  et al.,  2020)  and  climate  data
obtained from CN05.1 (Wu and Gao, 2013) were used to cal-
culate growing season temperature and precipitation.

 2.3.    Aggregating simulated yield data

In order to compare with the yield observations, which
were available at provincial and national scales, gridded simu-
lations  were  aggregated  into  provincial  and  national  yield
Y(t)  for  year t for  each  grain  crop  type  using  the  area-
weighted average method: 

Y(t) =

n∑
i=1

[ai,rf(t)yi,rf(t)+ai,ir(t)yi,ir(t)]

n∑
i=1

[ai,rf(t)+ai,ir(t)]

. (1)

 

Table 1. Summary of the GGCMs used in this study.

Crop model Typea N stress Cropb Scenariosc Reference(s)

CLM4.5post-crop E yes whe, mai, ric, soy D, F, H Levis et al. (2018)
LPJ-GUESS E no whe, mai, ric, soy D, H Lindeskog et al. (2013)

LPJmL E no whe, mai, ric, soy D, H Bondeau et al. (2007)
ORCHIDEE-crop E yes whe, mai, ric, soy D, F, H Wu et al. (2016)

PEGASUS E yes whe, mai, soy D, F, H Deryng et al. (2011, 2014)
CGMS-WOFOST S no whe, mai, ric, soy D de Wit and van Diepen (2008)

EPIC-Boku S yes whe, mai, ric, soy D, F, H Kiniry et al. (1995)
EPIC-IIASA S yes whe, mai, ric, soy D, F, H Balkovič et al. (2014)

GEPIC S yes whe, mai, ric, soy D, F, H Folberth et al. (2012)
pAPSIM S yes whe, mai, soy D, F, H Keating et al. (2003), Elliott et al. (2014)
pDSSAT S yes whe, mai, ric, soy D, F, H Jones et al. (2003), Elliott et al. (2014)
PEPIC S yes whe, mai, ric, soy D, F, H Liu et al. (2016)

CLM5-crop E yes whe, mai, ric, soy D Lombardozzi et al. (2020)

a E: ecosystem model; S: site-based model
b whe: wheat; mai: maize; ric: rice; soy: soybean
c D: default; F: fullharm; H: harmnon
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Here, y is the gridded simulated yield and a is the harvested
area in grid cell i under fully irrigated (ir) or purely rainfed
(rf) conditions for GGCMI models and for irrigated crop func-
tional  types  (CFTs)  and  rainfed  CFTs  for  CLM5-crop.
Because the GGCMI models simulated crops on all agricul-
tural  lands  no  matter  which  type  of  crop  was  planted  and
whether  irrigated  or  rainfed  methods  were  used  in  the  real
world (Elliott et al., 2015), MIRCA2000, with a spatial resolu-
tion of 30 arc minutes (Portmann et al., 2010), was used to cal-
culate  the  harvested  area  of  gridded  irrigated/rainfed  crop
types, following Müller et al. (2017).

 2.4.    Statistical analyses

This study performs a systematic evaluation of GGCMs
in simulating  crop yield  in  China,  including the  multi-year
average of national yield, spatial pattern, long-term trend, pat-
tern and magnitude of interannual variability, and temporal
variability of yield in top-10 producing provinces.

The Pearson correlation coefficient  is  used to  evaluate
the ability (skill) of models to reproduce the observed spatial
or temporal variability pattern, following many earlier evalua-
tion  studies  (e.g., Sperber  et al.,  2013; Müller  et al.,  2017;
Li et al., 2019). The Pearson correlation coefficient is a num-
ber between −1 and 1 that measures the strength and direction
of the linear relationship between two variables. The simula-
tion  skill  is  higher  if  the  Pearson  correlation  coefficient
between simulations and observations is closer to 1. Student’
s t-test was used to assess its significance. If the Pearson cor-
relation coefficient between simulations and observations is
positive and significant, then the simulations are skillful. Spa-
tial correlation is used to evaluate the similarity of spatial dis-
tribution between observations and simulations, while tempo-
ral correlation is used to evaluate the similarity of observed
and simulated time series for a province or for the national
average.

We  estimated  the  long-term  trend  using  the  ordinary
least-squares method. The significance was tested using the
Mann–Kendall test.

The  detrended  component  of  time  series  was  regarded
as the interannual variability. Its amplitude and pattern were
quantified using the coefficient of variation (CV, the standard
deviation divided by the mean) and the Pearson correlation
coefficient, respectively.

As the multi-model ensemble (MME) mean can represent
the  overall  performance  of  multiple  models  and  often  per-
forms better in reproducing observations than individual mod-
els (Martre et al., 2015; Wallach et al., 2018), the MME was
calculated  as  the  average  of  the  GGCMs.  Furthermore,  we
used  standard  deviation  (SD)  to  estimate  the  intermodel
spread.

The  normalized  root-mean-square  error  (RMSE)  [Eq.
(2); Li et al., 2022] of anomalies was applied to evaluate the
temporal variability of simulated yield for top-10 producing
provinces. The mean null model (temporal mean of observa-
tions) (Hantson et al., 2020), also called the climatology fore-
cast in meteorology (Li, 2011), was used to assess whether
a GGCM was skillful. 

RMSE =

√√√√√√√ n∑
i=1

[(ysim,i− ysim)− (yobs,i− yobs)]
2

n
, (2)

where ysim,i and yobs,i are the simulated and observed yield in
year i, and n is the number of years.

 3.    Results

 3.1.    Multi-year average of national yield

GGCMI  models  generally  underestimate  national  rice
yield but overestimate yield for the other three crops [Fig. 1,
Table S1, in the Electronic Supplementary Material (ESM)].
The observed, 1980–2009 averaged national crop yields are
3.51×10−1,  4.49×10−1,  5.79×10−1,  1.53×10−1 kg  m−2 for
wheat,  maize,  rice,  and  soybean,  respectively,  while  the
GGCMI MME yields are 3.94×10−1, 5.59×10−1, 4.36×10−1,
2.16×10−1 kg m−2 (Table S1, in the ESM). The MMEs overes-
timate the crop yield of wheat, maize, and soybean by 12%,
24%, and 41%, respectively, but underestimate rice by 25%.
Among the twelve GGCMI models, seven, nine, and ten mod-
els  overestimate  the  yield  of  wheat,  maize,  and  soybean,
among which CGMS-WOFOST simulates yields more than
twice those observed for soybean (Figs. 1a, b and d). Seven
out  of  ten  models  underestimate  the  rice  yield,  among
which CLM4.5post-crop, LPJ-GUESS, and EPIC-Boku simu-
late  a  yield  less  than  half  that  observed  (Fig.  1c).  EPIC-
IIASA  performs  the  best  for  wheat,  maize,  and  rice,  and
PEGASUS does the best for soybean (Fig. 1). The GGCMI
models  show  large  intermodel  spread,  with  the  maximum
spread  of  2.26×10−1 kg  m−2 for  rice  and  the  minimum  of
0.84×10−1 kg m−2 for soybean (Table S1, in the ESM).

CLM5-crop  reproduces  the  national  yields  of  wheat,
maize, and rice well, but overestimates the soybean yield by
45%  (Fig.  1).  It  outperforms  most  GGCMI  models  for
wheat,  maize,  and  rice,  and  is  close  to  or  even  better  than
the GGCMI-MME (Fig. 1, Table S1, in the ESM).

 3.2.    Spatial pattern

Most of the GGCMs fail to reproduce the spatial patterns
of crop yields (Fig. 2). No model can skillfully simulate the
spatial  pattern  for  wheat.  Only  one  model  is  skillful  for
maize (PEGASUS) and for rice (EPIC-IIASA), and two mod-
els are skillful for soybean (LPJmL and CLM5-crop) (Fig. 2).
Some of the models even simulate a significant negative corre-
lation (e.g., EPIC-Boku for wheat, LPJmL for maize) (Figs.
S1h and S2d, in the ESM). Most of the GGCMs overestimate
the yield in Southwest China for wheat (Fig. S1, in the ESM)
and maize (Fig. S2, in the ESM). The models with significant
negative  spatial  correlation  for  rice  (CLM4.5post-crop  and
LPJ-GUESS) tend to simulate high yields in southern China
(Figs. S3b and S3c, in the ESM).

 3.3.    Temporal variability

 3.3.1.    Trend

The observed national yields show significant increases
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during  1980–2009  for  all  four  crop  types  (Fig.  3),  with
trends  of  0.080×10−1,  0.074×10−1,  0.065×10−1,  and  0.020×
10−1 kg m−2 yr−1 for wheat, maize, rice, and soybean, respec-
tively (Table S2 in the ESM). The long-term trend is much
stronger  than  the  interannual  variability  for  wheat,  maize,
and rice (Figs. 3a–c), with the SDs of the former being 3.6,
2.2, and 2.3 times the latter, respectively.

Most of the GGCMI models and the MME fail to capture
the significant upward trends (Figs. 3–4). Some of the ecosys-
tem models, as well as CGMS-WOFOST, can capture the sig-
nificant  increases,  but  with  lower  trend  magnitude,  except
CLM4.5post-crop and PEGASUS for soybean (Fig. 4). Con-
trary to the observations,  all  of  the GGCMI models  except
PEGASUS  simulate  a  decreasing  trend  in  national  maize
yield (Fig. 4b).

CLM5-crop simulates an upward trend in national yield
for  all  crop  types  and  successfully  captures  the  significant
increases in wheat, maize, and rice, even though it also under-
estimates the trend magnitude for wheat and maize (Fig. 4).
It  outperforms  11  of  the  12  GGCMI  models  for  wheat,
maize, and all models for rice, as well as the GGCMI-MME
for  wheat,  maize,  and  rice  (Fig.  4,  and  Table  S2  in  the
ESM).

Similar  to  the  above  national  results,  observed  yields
exhibit  a  significant  increasing  trend  over  most  provinces
for  the  four  crop  types  (Figs.  5a–d).  The  GGCMI  MME
fails  to  capture  the  significant  upward  trend  in  most
provinces (Figs.  5e–h),  whereas individually,  CLM4.5post-
crop does (for wheat) and CLM4.5post-crop and PEGASUS

also do (for soybean) (Figs. S5a, S8a, and S8e, in the ESM).
In  contrast,  CLM5-crop  captures  the  significant  upward
trend in most provinces for wheat, maize, and rice, but gener-
ally underestimates the trend magnitude, except for rice, and
incorrectly locates the high values for wheat, rice, and soy-
bean (Figs. 5i–l).

 3.3.2.    Interannual variability

The  magnitude  of  the  interannual  variability  of  the
observed  yield  is  weak,  with  CVs  of  0.06  for  wheat,  0.07
for maize, 0.04 for rice, and 0.09 for soybean (Table S3, in
the ESM). Overall, the GGCMs can reproduce the small val-
ues,  except  for  PEGASUS (CV = 0.11),  CGMS-WOFOST
(CV  =  0.18),  and  pDSSAT  (CV  =  0.23)  for  wheat,  and
CLM4.5post-crop (CV = 0.17) for rice (Fig. 6, Table S3 in
the  ESM).  Several  models  reproduce  less  than  half  the
observed  interannual  variation,  e.g.,  pAPSIM  (CV  =  0.02)
for wheat, CLM4.5post-crop (CV = 0.03) and ORCHIDEE-
crop (CV = 0.03) for maize, ORCHIDEE-crop (CV = 0.01)
for rice, and PEPIC (CV = 0.04) for soybean (Table S3, in
the ESM). CLM5-crop performs better than GGCMI MME
for maize, rice, and soybean (Fig. 6).

Spatially,  the  observational  interannual  variability  is
higher  in  the  northeastern  region  of  China  for  wheat  and
maize,  northeastern  and  southwestern  regions  for  rice,  and
middle  reaches  of  the  Huanghe  River,  northeastern  region,
and southwestern region for soybean (Fig. S9, in the ESM).
The GGCMI MME simulates  the  spatial  pattern of  CV for
maize (Fig. S9f, in the ESM) and soybean (Fig. S9h, in the

 

 

Fig.  1. Multi-year  average  national  yield  (units:  10−1 kg  m−2)  for  (a)  wheat,  (b)  maize,  (c)  rice,  and  (d)
soybean,  from observations and GGCM simulations for  1980–2009.  See Table S1 (in the ESM) for  values
corresponding to the bars.
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ESM) reasonably well. The GGCMI models simulate the spa-
tial pattern best for maize, with seven out of twelve models
showing significant positive spatial correlation with observa-
tions  (Fig.  S11,  in  the  ESM).  Furthermore,  those  models
with significant positive spatial correlation can generally cap-
ture the high CVs in the northeastern region, while those mod-
els with significant negative spatial correlation are inclined
to simulate high CVs in the southern region (Figs. S10–S13,
in  the ESM).  CLM5-crop can reproduce the spatial  pattern
of CV for rice and soybean reasonably well, with a significant
spatial  correlation  of  0.55  and  0.61,  respectively  (Figs.
S9k–l,  in  the  ESM).  For  wheat  (Fig.  S9i,  in  the  ESM) and
maize (Fig. S9j, in the ESM), CLM5-crop generally simulates
relatively high CVs in northwestern China, where the observa-
tional CVs are actually low.

GGCMI site-based  models  generally  perform better  in
terms  of  modeling  the  interannual  variability  pattern  of
national  yield,  especially  for  maize  (Fig.  7).  For  GGCMI
models, all significant positive correlations are simulated by
site-based models (Fig. 7). The MME of GGCMI site-based

models  shows  higher  simulation  skill  for  all  four  crops
(0.23, 0.57, 0.33, and 0.34) than the MME of GGCMI ecosys-
tem models (0.1, −0.02, 0.05, and −0.06) (Fig. 7, Table S4,
in  the  ESM).  The  site-based  models  perform  the  best  for
maize, with four out of seven models exhibiting significant
positive correlation with observations and a significant corre-
lation of 0.57 for the site-based MME (Fig. 7, Table S4, in
the ESM). CLM5-crop can simulate the interannual variabil-
ity  pattern  of  maize  well,  with  a  significant  correlation  of
0.64,  but  its  skill  for  the  other  three  crops  is  poor,  with
insignificant  temporal  correlations  of  0.16,  0.18,  and  0.09
for wheat, rice, and soybean (Table S4, in the ESM).

In terms of provincial yield, GGCMI ecosystem-model
MME is unable to skillfully simulate the interannual variabil-
ity  pattern,  especially  for  wheat  and  rice  (Fig.  8).  GGCMI
site-based MME, meanwhile, simulates the interannual vari-
ability of provincial maize and soybean yield better, with aver-
age  correlations  more  than  twice  those  of  wheat  and  rice
(Figs.  8e–h).  Provinces  with  simulation  skill  for  wheat,
maize,  and  soybean  are  mainly  located  in  North  China  for

 

 

Fig. 2. Spatial correlation between observations and simulations for four crop
types.  Only  provinces  where  production  accounts  for  more  than  1%  of  the
national  total  are  considered.  See  Figs.  S1–S4  (in  the  ESM)  for  spatial
distribution of crop yields corresponding to this figure.
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Fig. 3. Temporal change in observed and simulated yield for (a) wheat, (b) maize, (c) rice, and (d) soybean in China in 1980–2009.
Lines in warm colors are for ecosystem models and lines in cool colors are for site-based models.

 

 

Fig. 4. Long-term trend (units: 10−1 kg m−2 yr−1) of observed and simulated national yield for (a) wheat, (b) maize, (c)
rice, and (d) soybean in 1980–2009. A star above the bar denotes statistical significance according to the Mann–Kendall
test at the 0.05 level. See Table S2 (in the ESM) for values corresponding to the bars.
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the site-based models (Figs. S14, S15, and S17, in the ESM).
Moreover,  CLM5-crop  can  skillfully  simulate  the  inter-
annual variability of provincial maize yield in North China
(Fig. 8j).

 3.3.3.    Top-10 producing provinces

We used the RMSE of yield anomalies to test the skill
of models in simulating the temporal variability of yield for
top-10 producing provinces, to serve as model selection for
crop  yield  forecasting/projection  and  agricultural  manage-
ment  of  the  major  crop-producing  provinces.  As  shown  in
Fig. 9, there is at least one model whose simulation is skillful
for  the  top-10  producing  provinces,  except  for  wheat  in
Shaanxi  and  soybean  in  Heilongjiang  and  Hebei,  though
most of the GGCMs cannot simulate the interannual variabil-
ity skillfully (i.e., worse than the mean null model, depicted
by the white boxes). The best models for wheat, maize, and
rice are mostly the CLM family of  models  (CLM5-crop or
CLM4.5post-crop) (Figs. 9a–c). The best models for soybean
are  PEPIC,  GGCMI-MME,  PEGASUS,  CLM5-crop,  and
LPJmL (Fig. 9d). The skill is improved from CLM4.5post-
crop to CLM5-crop mainly for maize and rice.

For wheat, LPJmL clearly produces the best yield simula-
tions for Henan, Shandong, and Anhui, while the CLM family
of models works best for the other seven provinces (Fig. 9a),

mainly  because  they  can  reproduce  the  significant  upward
trends (Fig.  5i,  Fig.  S5a,  and  Fig.  S5c,  in  the  ESM).  For
maize,  CLM4.5post-crop  and  PEPIC  perform  the  best  for
Liaoning and Shanxi, respectively, because they are skillful
in simulating the interannual variability pattern (Fig. 9b, Fig.
S15a,  and  Fig.  S15l,  in  the  ESM).  CLM5-crop  shows  the
best  simulations  for  the  remaining  eight  provinces,  mainly
because it  successfully captures the significant increases in
yield in these provinces,  except  for  Inner Mongolia,  and is
skillful  in  simulating  the  interannual  variability  pattern  for
Jilin, Shandong, Hebei, and Inner Mongolia (Fig. 5j, Fig. 8j
and Fig.  9b).  For  rice,  LPJ-GUESS  performs  the  best  for
Hunan, and LPJmL for Anhui and Zhejiang, mainly because
they simulate the interannual variability pattern of rice yield
well  in  these  provinces  (Fig.  9c and  Figs.  S16b–c,  in  the
ESM).  GEPIC  and  EPIC-IIASA  have  the  best  simulations
for  Sichuan  and  Heilongjiang,  respectively,  while  CLM5-
crop does for the remaining five provinces, mainly because
they successfully capture the significant upward trends (Fig.
5k, Fig.  9c,  and  Figs.  S7g–h,  in  the  ESM).  For  soybean,
LPJmL  works  the  best  for  Hebei,  and  GGCMI-MME  for
Henan,  Inner  Mongolia,  and  Sichuan,  mainly  due  to  the
well reproduced patterns of interannual variability (Fig. 8h,
Fig. 9d and Fig. S17c, in the ESM). CLM5-crop is the most
skillful for Shandong, mainly due to the simulated significant

 

 

Fig. 5. Spatial distribution of the long-term trend (units:  10−1 kg m−2 yr−1) of observations, the MME of GGCMI models, and
CLM5-crop  for  four  crops  during  1980–2009.  Provinces  with  a  significant  trend  (p <  0.05)  are  striped.  Provinces  where
production  accounts  for  more  than  1%  of  the  national  total  are  considered  and  the  numbers  in  parentheses  are  the  spatial
correlation  coefficient  between  observed  and  simulated  trends.  An  asterisk  (*)  denotes  statistical  significance  according  to
Student’s t-test at the 0.05 level. See Figs. S5–S8 (in the ESM) for the spatial distribution of individual GGCMI models.

MARCH 2024 YIN ET AL. 427

 

  



 

 

Fig.  6. As  in  Fig.  1  but  for  the  amplitude  of  interannual  variability,  which  is  calculated  using  the  coefficient  of
variation  (CV)  of  detrended  time  series.  See  Table  S3  (in  the  ESM)  for  values  corresponding  to  the  bars,  and
Figs. S9–S13 (in the ESM) for spatial distribution of CVs.

 

 

Fig.  7. As  in  Fig.  4  but  for  the  temporal  correlation  of  the  interannual  variability  of  national  yield  between
observations and simulations based on detrended time series. See Table S4 (in the ESM) for values corresponding to
the  bars.  MMEEcosystem and  MMESite-based are  the  MME  means  of  the  GGCMI  ecosystem  models  and  site-based
models, respectively.
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upward  trend (Fig.  5l and Fig.  9d).  PEPIC  shows  the  best
yield simulations for Northeast China, mainly because it suc-
cessfully  captures  the  significant  increases  in  Heilongjiang
and  Jilin  and  simulates  the  interannual  variability  pattern
well  in  Liaoning (Fig.  9d,  Fig.  S8l,  and  Fig.  S17l,  in  the
ESM). PEGASUS shows the best simulations for Anhui and
Jiangsu, due to its good performance in simulating not only
the significant upward trend but also the pattern of interannual
variability (Fig. 9d, Fig. S8e, and Fig. S17e, in the ESM).

 4.    Discussion

The finding that GGCMI models fail to capture the sig-
nificant  upward  trends  in  wheat,  maize,  and  rice  yield  is
partly because of the incorrect input data of nitrogen fertilizer
supply and/or inaccurate simulations of yield response to agro-
nomic  management  and  cultivar  improvement.  Nitrogen  is
an important nutrient required for crop growth, and nitrogen
fertilization can alleviate the nitrogen limitation in photosyn-
thesis  and  nitrogen  competition  between  microorganisms
and  crops  (Sinclair  and  Rufty,  2012; Lombardozzi  et al.,
2020).  As  shown in  Fig.  S18  (in  the  ESM),  GGCMI input
data do not consider the observed significant increase in nitro-
gen fertilizer supply in China for 1980–2009, which leads to
the underestimated trends in the GGCMI models that consider
nitrogen  stress  (e.g.,  CLM4.5post-crop,  ORCHIDEE-crop,

PEGASUS,  site-based  GGCMs  except  for  CGMS-
WOFOST).  Furthermore,  many  of  the  GGCMI  models
often  simulated  lower  yields  in  the  harmnon  scenario  (no
nitrogen stress) than in the fullharm scenario in China (Figs.
S19–S21, in the ESM), suggesting inaccurate simulations of
the yield response to increased nitrogen fertilization, possibly
due to inaccurate assumptions of the fertilization scheme (e.
g.,  timing,  duration,  and  rate)  and  biogeochemical  scheme
(e.g.,  photosynthesis  and  nitrogen  cycle).  Besides,  LPJ-
GUESS, LPJmL, and CGMS-WOFOST in GGCMI Phase 1
did not model nitrogen stress. On the contrary, CLM5-crop
uses  a  nitrogen  fertilizer  input  that  rises  significantly  as
observed  (Fig.  S18,  in  the  ESM),  and  models  the  nitrogen
cycle and nitrogen–carbon interactions,  which enables it  to
capture the significant upward yield trends of the three crop
types. In addition, no GGCM considers the improvement in
management  level  (e.g.,  developments  in  mechanization,
inter-cropping,  multiple-growing  season,  intra-annual  rota-
tion, or crop residue management) or the changes in crop culti-
vars and policies, which are important for yield increases in
China over the past few decades (Yu et al., 2012; Liu et al.,
2013; Xiao and Tao, 2014).

Many GGCMs fail to reproduce the spatial pattern and
interannual  variability  of  crop yield in  China.  This  may be
partly  caused  by  their  poor  performance  in  capturing  the
response  of  crop  yield  to  climate  conditions.  For  example,

 

 

Fig. 8. As in Fig. 5 but for the spatial distribution of the temporal correlation coefficient between observed and simulated yields
during 1980–2009. Numbers in parentheses are the weighted average of the provincial temporal coefficient with planting area as
the weight. See Figs. S14–S17 (in the ESM) for the spatial distribution of individual GGCMI models.
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Fig. 9. RMSEs of the time series of yield anomalies simulated by GGCMs for top-10 producing provinces in China. Right-hand
labels describe the best performing GGCMs for that province and the RMSE. White boxes indicate the skill is worse than the
mean null model (temporal mean of observations, also called the climatology forecast in meteorology).
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CGMS-WOFOST, EPIC-IIASA, and PEPIC can successfully
reproduce  the  observed  yield–climate  relationship  for  rice,
while other models perform poorly (Fig. S22, in the ESM).
Correspondingly, the simulation skill of these three models
is  much  better  than  others  in  simulating  the  spatial  pattern
and  interannual  variability  of  rice  yield,  with  their  spatial
and temporal correlations being higher than 0.3 (Fig. 2, and
Table S4 in the ESM). Similar conclusions can be made for
wheat and maize (Figs. S23 and S24, in the ESM). In addi-
tion, GGCMs make a number of simplifications in terms of
sowing date, cultivars, and response to extreme weather disas-
ters  (Barlow  et al.,  2015; Müller  et al.,  2017; Rötter  et al.,
2018; Heinicke et al., 2022), which may partly explain their
poor capability in reproducing the spatial pattern and interan-
nual variability of crop yield.

Earlier studies (Müller et al., 2017; Li et al., 2022) that
evaluated GGCMI models in simulating the average and inter-
annual variability patterns of national and regional yields in
China  showed  that  models  generally  underestimate  rice
yield  but  overestimate  the  yields  for  the  other  three  crop
types  in  China,  which  is  consistent  with  our  results.  They
also  pointed  out  that  GGCMI  models  perform  better  for
maize than other crop types in their simulation of the interan-
nual  variability  pattern,  and  our  results  also  show  that
GGCMI site-based models perform the best for maize, with
four out of seven site-based models exhibiting significant pos-
itive temporal correlation and a significant temporal correla-
tion of 0.57 for the site-based MME (Fig. 7 and Table S4, in
the ESM). However, our study also evaluated the spatial pat-
terns and long-term trends of crop yields, thereby providing
a complete  picture  of  model  performance,  which is  critical
for comprehensively estimating the capability of models in
predicting and projecting yields. Besides, our study, for the
first time, evaluated the temporal change in yield for top-10
producing provinces, and CLM5-crop in simulating China’s
crop yield. In China, provincial agricultural management is
largely  independent.  Therefore,  information  on  model  skill
and the  best  performing models  at  the  provincial  scale  can
serve as a  guide for  model  platform selection in predicting
and projecting future provincial crop production and carrying
out numerical experiments for adjusting and developing agro-
nomic  measures.  CLM5-crop  is  the  updated  version  of
CLM4.5post-crop in the GGCMI project, and the only one for-
mally  used  in  an  Earth  system  model. Lombardozzi  et al.
(2020)  evaluated  the  performance  of  CLM5-crop  on  the
global scale and demonstrated that it can successfully simu-
late  the  significant  increases  in  global  crop  yield,  which  is
consistent with our results. However, our study also provides
a  more  comprehensive  evaluation  of  CLM5-crop  perfor-
mance in China, which should prove useful for quantitatively
assessing  national  and  provincial  food  safety,  given  the
good performance of CLM5-crop in simulating the national
average  and  long-term  trends  of  wheat,  maize,  and  rice
yield, and the temporal variability of yields in the top-10 pro-
ducing provinces. Despite the above strengths of our study,
there  are  two  major  limitations.  First,  we  did  not  collect

yield statistics on scales smaller than the provincial scale (e.
g.,  county  scale),  so  we  could  not  evaluate  simulations  of
the spatial distribution of yield averages, trends, and interan-
nual variability in more detail. And second, we did not evalu-
ate the simulation of carbon fluxes. Evaluation of the carbon
cycle may help in identifying the reasons for yield simulation
skill.

 5.    Conclusions

The performances of  13 GGCMs (12 models  from the
GGCMI phase 1 default scenario, and CLM5-crop) in simulat-
ing crop yields in China during 1980–2009 were comprehen-
sively  evaluated  in  this  study.  Results  showed  that  the
selected GGCMI models tend to overestimate wheat, maize,
and  soybean  yields  but  underestimate  rice  yield  in  China,
with the MME result being 12%, 24%, and 41% higher than
observed for wheat, maize, and soybean, and 25% lower for
rice,  while  CLM5-crop  can  simulate  the  national  yields  of
wheat, maize, and rice well. GGCMs generally fail to simulate
the spatial pattern of crop yields in China. No model can simu-
late the national spatial distribution of wheat yield skillfully,
and only one, one, and two models perform well for maize,
rice,  and  soybean,  respectively.  GGCMI  models  perform
poorly  in  simulating  the  long-term trends  of  crop yields  in
China, but some can simulate the interannual variability and
extremes reasonably well. Conversely, CLM5-crop can cap-
ture  the  observed  significant  upward  trends  for  wheat,
maize, and rice, but works poorly in simulating the interan-
nual variability. In addition, at least one model can skillfully
reproduce  the  observed  temporal  variability  of  yield  in  the
top-10 producing provinces, except one province for wheat
and two provinces for soybean. The best models are generally
CLM4.5post-crop for wheat, CLM5-crop for maize and rice,
and PEPIC or GGCMI-MME for soybean.

There  were  a  few  limitations  in  our  study.  First,  we
focused  on  evaluating  GGCMs  at  national  and  provincial
scales, and the performances of GGCMs at smaller scales (e.
g.,  county scale)  remain unknown, which needs addressing
with further collection and collation of yield statistics. In addi-
tion, the responses of yields to extreme weather and climate
need to be evaluated in the near future.  Lastly,  the reasons
behind simulation biases should be more thoroughly investi-
gated by analyzing related processes (e.g., carbon cycle pro-
cesses).

The  findings  of  our  study  can  serve  as  guidance  for
GGCM development in the future.  Our results  suggest  that
model development should target and consider cultivar differ-
ences  and  improvement  and  improve  the  representation  of
agronomic management  (e.g.,  machinery and technological
advances,  multiple  cropping  seasons,  residue  management
and  soil  tillage,  and  more  realistic  fertilizer  and  irrigation
application). Also, parameter calibration and optimalization
as  well  as  the  representation  of  the  influence  of  pests  and
extreme  weather  disasters  on  agricultural  systems  may
improve  the  simulation  skill  for  the  interannual  variability
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of yields. In addition, our evaluation results could be helpful
for  understanding  model  results  and  biases,  as  well  as
model selection when predicting or projecting national and
provincial  yields,  and  for  developing  correction  methods
that can be applied to model yield outputs.
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