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Research  on  vertical  motion  in  mesoscale  systems  is  an  extraordinarily  challenging  effort.  Allowing  for  fewer
assumptions,  a  new  form  of  generalized  vertical  motion  equation  and  a  generalized  Omega  equation  are  derived  in  the
Cartesian  coordinate  system  (nonhydrostatic  equilibrium)  and  the  isobaric  coordinate  system  (hydrostatic  equilibrium),
respectively. The terms on the right-hand side of the equations, which comprise the Q vector, are composed of three factors:
dynamic, thermodynamic, and mass. A heavy rain event that occurred from 18 to 19 July 2021 in southern Xinjiang was
selected to  analyze the  characteristics  of  the  diagnostic  variable  in  the  generalized vertical  motion equation ( )  and the
diagnostic  variable  in  the  generalized  Omega  equation  ( )  using  high-resolution  model  data.  The  results  show that  the
horizontal  distribution  of  the -vector  divergence  at  5.5  km  is  roughly  similar  to  the  distribution  of  the -vector
divergence at 500 hPa, and that both relate well to the composite radar reflectivity, vertical motion, and hourly accumulated
precipitation. The -vector divergence is more effective in indicating weak precipitation. In vertical cross sections, regions
with alternating positive and negative large values that match the precipitation are mainly concentrated in the middle levels
for  both  forms  of Q vectors.  The  temporal  evolutions  of  vertically  integrated -vector  divergence  and -vector
divergence are  generally  similar.  Both perform better  than the classical  quasigeostrophic Q vector  and nongeostrophic Q
vector in indicating the development of the precipitation system.
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Article Highlights:

•  Qz contains more thermodynamic and mass information than Qp.
•  Both Qz and Qp relate well to the vertical velocity and rainband, and Qz is more effective at indicating weak precipitation.

 

 
 

 1.    Introduction

Vertical  motion  is  one  of  the  key  factors  affecting  the
occurrence and development of high-impact weather, in that
it is closely related to water vapor condensation, the release
of  potential  instability,  energy  conversion,  and  kinetic  and
thermodynamic  exchange  between  the  upper  troposphere
and  lower  troposphere  (Zhu  et  al.,  2007; Yue,  2014; Gao
and Zhou, 2019; Ran et al., 2019). Analyzing and researching
vertical motion has continued to be a challenging area of mete-

orology.
Vertical velocity is difficult to directly measure, thus, it

is usually obtained based on the determination of other physi-
cal quantities. The forcing mechanism of vertical motion is
generally obtained by solving the vertical motion equation.
Hoskins et al. (1978) derived the Q vector divergence as the
only  forcing  term  in  the  quasigeostrophic  vertical  motion
equation, and it can indicate the vertical motion of baroclinic
weather systems. Henceforth, the quasigeostrophic Q vector
has been widely used in the determination of the characteris-
tics of synoptic-scale systems and the dynamic interpretation
of  numerical  prediction  products  (Strahl  and  Smith,  2001;
Dixon et al., 2003).

Considering  the  inherent  differences  between  subsy-
noptic and mesoscale systems, in terms of the magnitude of
their  vertical  velocities,  the  significance  of  their  non-
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geostrophic  characteristics,  and  the  influences  of  their  dia-
batic heating effects, static stability variations in the horizon-
tal direction, and nonuniform saturations (Vasilj and Smith,
1997; Gao et al., 2004; Yang et al., 2007), Q-vector theory
has  been  expanded  through  related  studies.  As  a  result,
different  forms  of Q vectors  with  fewer  assumptions  have
been proposed. For example,  the semigeostrophic Q vector
(Hoskins and Draghici, 1977) and nongeostrophic Q vector
(Davies-Jones,  1991)  take  the  nongeostrophic  property  of
real  atmosphere into consideration,  moist Q vector (Yao et
al.,  2004), C vector  (Xu,  1992),  and  generalized Q vector
(Räisänen,  1995; Rantanen  et  al.,  2017; Li,  2018)  discuss
the  vertical  motion  characteristics  of  absolute  dry  air
(Davies-Jones, 1991), moist saturated air (Yue et al., 2013),
and  saturated  and  unsaturated  transition  zones  (Gao  et  al.,
2013; Ran et al., 2019), respectively. Furthermore, these dif-
ferent forms of Q-vector divergence are widely used in the
diagnostic  analysis  of  heavy  rain  events.  Cao  et  al.  (2008)
pointed  out  that  the  separated  rotational  and  divergent
component Q vectors  improved  the  dynamic  identification
of  both  the  location of  rainstorm and the  direction of  rain-
band. Yue et al. (2013) applied the moist Q-vector interpreta-
tion  technique  to  produce  quantitative  precipitation  fore-
casts,  and the results  showed effective improvement  of  the
test scores and forecast accuracy for precipitation of different
orders. Ran et al. (2019) showed that the Q vector based on
24-h  forecast  data  from  the  Global  Forecasting  System
(GFS) has a close relationship with the observed 6-h preci-
pitation.  Currently,  high-resolution  numerical  models  are
being widely used. It is necessary to obtain high-resolution
data that are consistent between kinematics and thermodynam-
ics. Li (2018) applied a generalized vertical motion equation
to  high-resolution  model  data  and  found  that  the  vertical
velocity calculated through iterative computation was similar
to the vertical velocity output directly from the model. Even
so,  hydrostatic  equilibrium  is  included  in  pressure  coordi-
nates.

From the above discussion, it can be seen that Q-vector
theory research has produced many conclusions from vertical
motion  diagnosis  and  analysis.  However,  new  vertical
motion equations with fewer assumptions are still needed to
describe the development of vertical  motion and reveal the
associated  mechanism  for  subsynoptic  and  mesoscale  sys-
tems. Gao and Zhou (2019) also pointed out that the vertical
motion equation still needs to be assessed for its applicability
in severe mesoscale systems. Besides, most of the work on
vertical  motion  equations  occurs  within  the  framework  of
hydrostatic  equilibrium,  which  is  not  valid  for  smaller
mesoscale  systems  (meso-beta  to  meso-gamma).  In  this
context, the aim of this study is to derive new forms of gener-
alized vertical motion equations that hold with fewer assump-
tions and better approximate the real atmosphere, i.e., the gen-
eralized vertical  motion equation within the nonhydrostatic
equilibrium framework of the local Cartesian coordinate sys-
tem and a generalized Omega equation under the hydrostatic

equilibrium  framework  of  the  isobaric  coordinate  system.
Both  equations  are  based  on  the  primitive  equations  with
the  generalized  potential  temperature  (Gao  et  al.,  2004)
taken  into  consideration  to  describe  non-uniform  saturated
moist air.

A  heavy  rain  event  that  occurred  during  18–19  July
2021 in southern Xinjiang and was successfully reproduced
in a high-resolution numerical simulation is used to evaluate
the  new  vertical  motion  equations.  The  model  output  data
are used to compare the new forms of vertical motion equa-
tions,  focusing  on  the  relationship  between  the Q-vector
divergence and composite radar reflectivity,  vertical  move-
ment, and hourly accumulated precipitation to reveal the typi-
cal differences. The remainder of the paper is structured as fol-
lows: Section 2 details the generalized vertical motion equa-
tions. In section 3, the selected case is described. The model
configuration is given in section 4. The results and discussion
are presented in section 5, and the conclusions are summa-
rized in section 6.

 2.    Generalized vertical motion equations

Because  of  rapid  improvements  in  model  spatiotem-
poral resolutions,  numerical weather prediction models can
currently  resolve  more  small-scale  (notably,  convection)
features,  for  which  assumptions  of  large-scale  motion  are
generally  no  longer  valid.  Therefore,  the  need  exists  to
develop new forms of generalized vertical motion equations
based  on  fewer  restrictive  assumptions  which  are  more
suitable  for  mesoscale  and  subsynoptic  systems.  Since  the
earlier  versions  of  vertical  motion  equations  are  mainly  in
the  isobaric  coordinate  system,  a  new  form  of  generalized
Omega  equation  in  isobaric  coordinates  is  derived  first.
Generally, there are three main differences between the new
and  the  earlier  versions.  Firstly,  the  generalized  potential
temperature is introduced to represent the non-uniform satu-
rated moist air. Secondly, the material derivative of the ther-
mal wind imbalance vector is retained, which typically van-
ishes  if  the  Alternative  Balance  (Davies-Jones,  1991)  is
adopted. Thirdly, the terms on the left side of the generalized
Omega equation are related to Omega while the right  ones
are not.  Therefore,  the variation of  vertical  velocity can be
captured  instead  of  the  accurate  magnitude  and  direction,
which  depend  on  waveform  solution  assumption.  Further-
more,  a  new form of  vertical  motion equation in  Cartesian
coordinates is derived, and it is not constrained by hydrostatic
equilibrium in the vertical  direction.  The new forms of  the
generalized  vertical  motion  equations  and  their  diagnostic
variables  are  discussed  in  greater  detail  in  Appendices  A
and B.

 2.1.    Generalized vertical motion equation

In the local Cartesian coordinate system, the generalized
vertical  motion  equation  can  be  written  as  follows  (see
Appendix A for details): 
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σz = cp (∂θ∗/∂z)/(cv f0η)where  represents  static  stability.
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 are the dynamic Q vector,  thermodynamic
Q vector, and mass Q vector, respectively, representing the
dynamic forcing, thermodynamic forcing, and mass forcing
for  the  vertical  motion.  A  list  of  symbols  is  presented  in
Table 1.

 2.2.    Generalized Omega equation

In  the  isobaric  coordinate  system,  the  generalized

Omega equation can be written as follows (see Appendix B

for the details):
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where  represents  vertical  vorticity  and

 represents static stability. The diagnostic vari-
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Table 1.   List of symbols.

Symbols Meanings

u Zonal wind component
ug Zonal geostrophic wind component
v Meridional wind component
vg Meridional geostrophic wind component
w Vertical wind component
ω Vertical wind component
vh Horizontal wind velocity vector
f0 Constant reference Coriolis parameter
p Pressure
ps Surface pressure
ϕ Geopotential
α Specific volume
ρ Density
g Gravitational acceleration
θ Potential temperature
θ∗ Generalized potential temperature
η Latent heat function
Lv Specific latent heat of vaporization
qs Saturation specific humidity
qv Specific humidity
T Absolute temperature
H Heating rate
R Gas constant
cp Heat capacity at constant pressure
cv Specific heat for a constant-volume process
σz Static stability parameter
σp Static stability parameter
ζ Vertical vorticity component
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coordinate system, representing the dynamic forcing, thermo-
dynamic forcing, and mass forcing for the vertical motion.
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Equations  (1)  and  (8)  are  diagnostic  equations  that
describe  vertical  motion.  Through  the  terms  on  the  right-
hand  side  of  the  equations,  the  physical  factors  that  affect
vertical  motion  on  the  left-hand  side  can  be  analyzed.
Equation  (1)  is  based  on  the  nonhydrostatic  equilibrium
dynamic  framework  of  the  local  Cartesian  coordinate  sys-
tem,  while  Eq.  (8)  is  based  on  the  hydrostatic  equilibrium
framework of the isobaric coordinate system. The dynamic
components  and  are  similar,  and  both  components
contain terms for horizontal wind variation, horizontal advec-
tion,  and  enstrophy.  However,  the  thermodynamic  compo-
nents  and  are  quite  different.  In  addition  to  the
quasi-frontogenesis term,  also contains the vertical gradi-
ent of quasi-frontogenesis, which introduces more thermody-
namic information. There is no mass forcing if the atmosphere
is  strictly  incompressible.  In  this  case,  is  always  zero,
while  still  contains  the  effect  of  horizontal  divergence.
Overall, the Q vector in the generalized vertical motion equa-
tion based on the local Cartesian coordinate system contains
more information in the thermodynamic and mass terms.

In  the  derivation  of  Eqs.  (1)  and  (8),  the  generalized
potential temperature (Gao et al., 2004) is introduced. Since
the  generalized  potential  temperature  contains  the  latent
heat of condensation, it seamlessly connects the potential tem-
perature and the equivalent potential temperature into a single
conservative  form.  Therefore,  Eq.  (1)  and  Eq.  (8)  do  not
explicitly include diabatic forcing, and the calculation is sim-
ple. However, local changes are introduced at the same time
due to the retainment of the material derivative of the thermal

wind imbalance vector. From the diagnosis result, the tempo-
ral  tendency  terms  are  less  important  than  the  other  terms,
such as the advection terms, so they can be omitted in the cal-
culation  process  without  affecting  the  overall  distribution
and main characteristics of the result. If a balance approxima-
tion like the “Alternative Balance” (Davies-Jones, 1991) is
adopted, these local change items can be ignored.

To analyze the characteristics of the hydrostatic equilib-
rium Q vector and the nonhydrostatic equilibrium Q vector,
high-resolution data  output  of  the  numerical  model  is  used
in this paper to calculate the two different forms of the Q vec-
tor. The relationships between Q-vector divergence and com-
posite radar reflectivity, vertical velocity, and hourly accumu-
lated precipitation are determined to reveal the typical differ-
ences.

 3.    Case review

From 18 to 19 July 2021, precipitation covered the area
from Kizilsu Kirghiz Autonomous Prefecture to the Aksu Pre-
fecture along the southern flank of the Tianshan Mountains
in southern Xinjiang. As the data from automatic weather sta-
tions show (Fig. 1), the precipitation region was mainly dis-
tributed in a northeast–southwest orientation, which is consis-
tent with the topography. At 1200 UTC 18 July, precipitation
appeared over the east slope of the high terrain, with a maxi-
mum hourly record of more than 10 mm. Subsequently, the
rainband moved eastward. The maximum daily precipitation
in  the  Kashgar  Prefecture,  Kezhou  mountainous  region,
Aksu Prefecture, and parts of the western Hotan Prefecture
exceeded  50  mm,  causing  local  floods,  mudslides,  land-
slides,  and  other  geological  disasters.  Serious  economic
losses  were  reported  locally,  including  damage  related  to
enterprise  exploration  equipment,  residential  houses,  and
fields.

This event was mainly affected by a midlevel shortwave
trough, low-level shear line, and low-level convergence line.
As shown in Fig. 2, at 1200 UTC 18 July, straight westerly
airflow  dominates  at  200  hPa.  At  500  hPa,  a  shortwave
trough  lies  over  the  western  part  of  Kizilsu  Kirghiz
Autonomous Prefecture. The rainband is within the ascending
region ahead of the shortwave trough and gradually moves
eastward. At the 700-hPa level, the confluence of the south-
westerly and westerly airflows forms a northeast–southwest-
ward  shear  line  located  in  the  northern  part  of  Kizilsu
Kirghiz  Autonomous  Prefecture  and  the  western  part  of
Aksu. The shear line is conducive to local convergence, verti-
cal motion development, and the release of unstable energy.
The near-surface flow field is uniformly from the east over
the Tarim Basin. On the one hand, this airstream transports
water vapor to the precipitation region; on the other hand, it
helps to form a banded convergence line on the east side of
the  terrain,  which  is  conducive  to  the  development  of
upward motion. All these factors favor triggering local con-
vective activity.
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Fig. 1. Observed hourly precipitation from 1200 UTC to 2000 UTC 18 July 2021 (units: mm).
 

(d)(c)

(b)(a)

 

Fig. 2. (a) 200 hPa wind vector (units: m s−1) and geopotential height (contour, units: ×10 gpm), (b) 500 hPa
wind vector (units: m s−1) and geopotential height (contour, units: ×10 gpm), (c) 700 hPa wind vector (units:
m s−1) and geopotential height (contour, units: ×10 gpm), and (d) terrain (shaded, units: m) and wind vector
(units: m s−1) at 10 m at 1200 UTC on 18 July 2021.
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 4.    Simulation

The  Weather  Research  and  Forecasting  (WRF)  model
is used to study this event because of its high spatial and tem-
poral  resolution.  The main configuration of  the experiment
is shown in Table 2 and described below. The initial fields
and boundary conditions adopted here are the fifth generation
ECMWF  reanalysis  for  the  global  climate  and  weather
(ERA5), with a horizontal grid spacing of 0.25° × 0.25° and
38 layers in the vertical direction. The boundary conditions
are  provided  every  3  hours.  The  experiment  uses  a  single-
layer grid with the center point at (37.1°N, 79.9°E). The num-
ber of grid points in the horizontal directions is 901 × 901,
with a grid spacing of 3 km. There are 81 layers in the vertical
direction, from the near-surface layer stretching up to 5 hPa
at  the  model  top.  The  physical  configuration  includes  the
RRTMG  radiation  scheme,  the  unified  Noah  land  surface
model,  the  WRF  double  moment  6-class  scheme  micro-
physics  scheme,  and  the  YSU  planetary  boundary  layer
scheme.  Convective  parameterization  is  switched  off
because the convection is explicitly resolved with this setup.

Figure  3 shows the  comparison between the  simulated
24-hour  accumulated  precipitation  (Fig.  3a)  and  that
observed  (Fig.  3b).  The  observations  are  taken  from  the
merged precipitation product at hourly and 0.05° latitude/lon-
gitude  temporal-spatial  resolution,  following  application  of
PDF (probability density function), BMA (Bayes model aver-
aging), and OI (optimal interpolation) based on the hourly pre-

cipitation observed by national surface weather stations, auto-
matic weather stations in China, and retrieved precipitation
from CMORPH (CPC MORPHing technique) satellite data
(Shen et al., 2013). Overall, the model reproduced the precipi-
tation  process  well.  Both  the  simulated  and  observed  rain-
bands are northeast–southwest oriented. The precipitation cov-
erage is the same and is mainly located in the northern part
of  Kashgar and the southwestern part  of  Aksu.  In terms of
intensity,  the  simulated  precipitation  center  is  slightly
stronger than the observations. In the next section, the high-
resolution data output by the model is used to determine and
analyze  the  spatial  distribution  and  temporal  evolution  of
the Q-vector divergence in the generalized Omega equation
and the generalized vertical motion equation based on Eqs.
(2)–(7) and (9)–(14).

 5.    Results

 5.1.    Horizontal structure

Qp

Qz

Qz

Qp

Qz

The  distribution  of Q-vector  fields  at  low  levels,  such
as 850 hPa, has been typically analyzed in previous studies
with  a  focus  on  low-altitude  regions  such  as  the  southeast
coast of China. Considering that the average altitude of South-
ern Xinjiang is ~ 3000 m, the level of 500 hPa, or 5.5 km, is
chosen  to  conduct  a  comparison  in  this  study. Figure  4
shows the horizontal distribution of Q-vector divergence in
the generalized Omega equation ( , left column) and the Q-
vector divergence in the generalized vertical motion equation
( , right column) superposed with composite radar reflectiv-
ity at different stages. The overall horizontal characteristics
of  the  two  kinds  of Q-vector  divergence  are  quite  similar.
The high-value region with alternating positive and negative
values is mainly located in the range of the 10-dBZ contour,
which primarily indicates the position information and move-
ment characteristics of the precipitation system. The area cov-
ered by high values of -vector divergence is significantly
larger than that covered by high values of -vector diver-
gence. For example, at 1200 UTC 18 July, the value of  is
large  near  (41.5°N,  76.5°E)  within  the  20-dBZ contour,
which  is  a  better  indication  of  precipitation  in  the  system.

Table 2.   Summary of the model configuration in the experiment.

Model configuration

Grid points 901 × 901
Horizontal grid spacing 3 km

Vertical levels 81
Model top 5 hPa

Microphysics WDM6
Radiation RRTMG

Land surface Noah
Planetary boundary layer YSU

 

(a) (b)

 

Fig. 3. (a) The simulated and (b) observed 24-hour accumulated precipitation (units: mm) from 0000 UTC 18 July to
0000 UTC 19 July 2021.
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QzHowever, some high-value regions of  also appear outside
of the 10-dBZ contour at the same time, such as near (40°N,
77°E), which indicates a certain risk of false alarm. In other
words, there is no precipitation corresponding to the regions
mentioned above with abnormal Q-vector divergence. Similar
instances  of  false  alarms  have  been  found  in  previous
research. This is partly because vertical motions in the atmo-
sphere  are  not  entirely  produced  by Q-vector  (quasi-
geostrophic)  forcing  and  partly  because  physical  processes
closely related to the development of precipitation systems,

Qz

such as evaporation, are not considered. In practical applica-
tion, it is usually necessary to combine other factors into com-
prehensive consideration, which is beyond the scope of this
paper.  The  horizontal  characteristics  at  1800  UTC  18  July
and at 0000 UTC 19 July are also basically similar. The hori-
zontal distributions of the two forms of Q-vector divergence
correspond well with the composite radar reflectivity. In par-
ticular, the area covered by high values of  is much larger,
consistent with the analysis above.

QpThe  three  components  of  were  analyzed,  and  the

 

(a)

(b)

(c) (f)

(e)

(d)

 

Qp

Qz

Fig. 4. Horizontal distribution of Q-vector divergence at 1200 UTC 18 July 2021 (a, d), 1800 UTC 18 July 2021 (b,
e),  and  0000  UTC  19  July  2021  (c,  f),  where  (a–c)  represent  the -vector  divergence  (units:  10–8 Pa–1 s–2)  at
500  hPa  and  (d–f)  indicate  the -vector  divergence  (units:  10–6 m–1 s–2)  at  5.5-km  height.  The  black  line  is
composite radar reflectivity (units: dBZ).
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Qp

Qp2

results  show  that  the  distribution  of -vector  divergence
depends almost exclusively on the second term, the thermody-
namic forcing term. Further analysis of  reveals that the
key process is: 

qpkx =
h
f0

[
u
∂

∂x

(
1
η

∂θ∗

∂x

)
+ v
∂

∂x

(
1
η

∂θ∗

∂y

)]
, (15)

 

qpky =
h
f0

[
u
∂

∂y

(
1
η

∂θ∗

∂x

)
+ v
∂

∂y

(
1
η

∂θ∗

∂y

)]
, (16)

Qp

which is  the coupling between the wind and the horizontal
gradient of generalized potential temperature. Figure 5 com-
pares the hourly precipitation with the horizontal distribution
of  simulated  vertical  velocity  and  the  key  components  of

-vector divergence at 500 hPa at different stages. At 1200
UTC 18 July, precipitation is mainly located in Kyrgyzstan.
Two  banded  structures  stretch  eastward  and  northeastward
along both sides of the southern Tianshan Mountains. The ver-
tical motion corresponds well to the precipitation on the east-
ern side of the Tianshan Mountains. The upward motion is
more significant on the front side of the rainband, indicating

 

(a)

(c)

(b)

(d)

(e)

(f)

 

QpFig. 5. Horizontal distribution of vertical velocity at 500 hPa (a–c) and the key component of -vector divergence at
500 hPa (units: 10–8 Pa–1 s–2) superposed with hourly precipitation (units: mm) (e–f) at 1200 UTC 18 July 2021 (a, d),
1800 UTC 18 July 2021 (b, e), and 0000 UTC 19 July 2021.

MAY 2023 JIAO ET AL. 863

 

  



Qp

Qp

that  the  system  continues  to  develop  southeastward.  Upon
comparing with Fig. 4, it is evident that the key component
basically determines the structure and variation of -vector
divergence, namely at 500 hPa, and the key component is cor-
related with the vertical motion, with the high-value region
mainly distributed within the precipitation area on the eastern
side of the Tianshan Mountains.  This demonstrates that 
can track the precipitation system and the direction of move-
ment. At 1800 UTC, the rainband moved to the western part
of  the  Taklimakan  Desert,  stretched  northeast–southwest,
and  increased  significantly  in  intensity.  At  the  same  time,
the strongest updrafts are mainly located inside the precipita-
tion  region.  In  addition,  an  elongated  banded  updraft
appears  ahead  of  the  rainband  extending  southwestward.
The composite radar reflectivity in Fig. 4 ahead of the rain-
band is associated with a corresponding updraft at the same
location.  The  key  component  helps  indicate  the  specific
regions with large vertical velocities. At 0000 UTC 19 July,
the precipitation system continued to move southward. The
updraft is mainly collocated with the rainband, while the sink-
ing motion is mainly located behind the rainband. Correspond-
ingly,  the  high-value  regions  of  the  key  component  are
mainly located within and on the front side of the rainband,
indicating  the  development  and  movement  direction  of  the
system.

QzSimilarly, the analysis of  reveals the key process is: 

qzkx =
∂

∂z

{
h

cp

cv f0

[
u
∂

∂x

(
1
η

∂θ∗

∂x

)
+ v
∂

∂x

(
1
η

∂θ∗

∂y

)]}
, (17)

 

qzky =
∂

∂z

{
h

cp

cv f0

[
u
∂

∂y

(
1
η

∂θ∗

∂x

)
+ v
∂

∂y

(
1
η

∂θ∗

∂y

)]}
, (18)

Qp

Qz

Qz

Qz

qpkx qpky

qzkx qzky

Qz

which  contains  additional  vertical  gradient  information  not
considered with the key component of . Figure 6 compares
the hourly precipitation with the horizontal distribution of ver-
tical velocity and the key components of -vector divergence
at  different  stages.  The  vertical  velocity  at  a  height  of  5.5
km is analogous to that at 500 hPa. It is also found that the
key  component  of -vector  divergence  essentially  deter-
mines  the  structure  and  variation  of -vector  divergence.
The horizontal coverage of the high value of the key compo-
nent  is  still  wider.  The  characteristics  can  be  explained  by
the  definition  of  the  main  process;  and  depend
only on the distribution of dynamic and thermodynamic struc-
ture at a single layer, while  and  contain additional
dynamic and thermodynamic information at adjacent layers
because  of  the  vertical  gradient  operator.  For  areas  with
weak precipitation, the value of the -vector divergence is
larger, such as the region near the west side of the southern
part of Tianshan Mountain (41.5°N, 76°E) at 1200 UTC 18
July.

 5.2.    Vertical structure

Qp Qz

Figure 7 shows the meridional cross-section distribution
of the -vector divergence (left column) and the -vector
divergence  (right  column)  at  different  stages  along  76°E.
The green line represents hourly precipitation, and dark shad-

Qp Qz

Qp

Qz

ows represent terrain. Before precipitation occurred, the sig-
nals of both -vector divergence and -vector divergence
in the middle and low levels are relatively weak. There are
only small regions of high values in the vicinity of the terrain
due to the large generalized potential  temperature gradient.
There  is  a  large  area  of  abnormal -vector  divergence  at
upper layers near 250 hPa, which does not indicate the occur-
rence  and  development  of  the  precipitation  system.  The
value of -vector divergence at the corresponding height is
small.

Qp

Qz

At  1200  UTC  18  July,  the  hourly  precipitation  is
mainly distributed between 40°N and 42°N, and the center
of  heavy  precipitation  mainly  appears  near  40.6°N.  There
are obvious large values of Q-vector divergences above the
precipitation in the middle and low layers. The positive and
negative phases of the two Q-vector divergences are spatially
different, but the coverage of the high-value region is simi-
lar, which correlates well with the development of the precipi-
tation system. As before, there are still large regions of high-
value -vector divergence at the upper layers, which have
a weaker relationship with precipitation, while the -vector
divergence  is  always  weak  at  the  same  layers.  By  0000
UTC 19 July, as the precipitation system moved to the south-
east,  the  high-value  area  of  the Q-vector  divergence  in  the
middle and low layers moved to between 38°–40°N, and the
meridional coverage was slightly larger than the precipitation
range.

Qp

Qz

h h Qp h = R(ps/p)−
R
cp /p

Qz h = R/(ps/p)
R
cp

Qp

From the above discussion and the left column of Fig. 7,
it is clear that large values of  fill almost the entire plane,
while  is sparse. Reexamining the key components in Eqs.
(15)–(18), it is found that they are mainly dependent on the
horizontal  variation  of  generalized  potential  temperature
and . The definition of  in  is , while

its definition in  is  (see Appendices A and
B). In terms of generalized potential temperature, high values
at middle levels are closely related to moist air that follows
the  precipitation  system.  High  values  at  upper  levels  are
related to the terrain-excited gravity waves, which are signifi-
cantly weaker than those at middle levels. Because there is
an extra pressure variable in the denominator,  increases
significantly  with  height,  which  is  thought  to  contribute  to
the abnormal disturbances at upper levels.

 5.3.    Temporal evolution

From the perspective of temporal evolution (Fig. 8), the
precipitation  in  the  meridional  cross  section  along  76°E
began at approximately 0700 UTC 18 July. There were two
precipitation centers located near 42°N and 40.5°N, respec-
tively (Fig. 8a). Subsequently, the precipitation system propa-
gated southward and gradually weakened. The position corre-
sponding to  the  precipitation area  has  a  significant  upward
motion  (Fig.  8b).  In  addition,  there  is  also  a  large  upward
motion  band  on  the  front  side  of  the  precipitation  area,
which  is  consistent  with  the  horizontal  characteristics  ana-
lyzed above. Near 39°N and 43°N, there is always continuous
sinking/rising movement associated with high terrain.
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Qp

Qz

Qz Qp

As shown in the previous analysis, adjacent regions of
Q-vector  divergence  with  high  values  alternate  as  positive
and  negative.  To  obtain  comprehensive  information  across
several  levels,  the  absolute  values  of -vector  divergence
and -vector divergence in the middle layer (600–400 hPa;
4–8  km)  were  vertically  integrated  (Figs.  8c and d).  The
results are quite close in terms of the evolutionary characteris-
tics between the vertically integrated - and -vector diver-
gences.  The  maximum  value  of  the Q-vector  divergence
appears  1–2  hours  ahead  of  the  precipitation,  which  is  a

Qz Qp

Qz

good indicator of the appearance of precipitation in the area
and the southward movement and development of the precipi-
tation system. The continuous upward motion related to the
terrain corresponds to a weaker vertically integrated Q-vector
divergence.  From  the  temporal  evolution  at  a  single  layer
(Figs.  8e and f),  the -  and -vector  divergences  both
correspond  well  to  the  precipitation  area  and  the  vertical
velocity within the rainband. However, the meridional range
of the larger value of the -vector divergence is significantly
wider,  which  is  a  good  indication  of  the  vertical  motion

 

(a)

(b) (e)

(c) (f)

(d)

 

QzFig. 6. Horizontal distribution of vertical velocity at 5.5 km (a–c) and the key component of -vector divergence at
5.5 km (units: 10–6 m–1 s–2) superposed with hourly precipitation (units: mm) (e–f) at 1200 UTC 18 July 2021 (a, d),
1800 UTC 18 July 2021 (b, e), and 0000 UTC 19 July 2021.
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ahead of the rainband.

 5.4.    Performance of other Q vectors

Qz

Qp

For  comparison,  the  horizontal  and  vertical  structures
of  the  quasigeostrophic Q-vector  divergence  and  non-
geostrophic Q-vector  divergence  at  1800  UTC 18  July  are
given in Fig. 9. At 500 hPa, the traditional QG Q vector is
scattered  with  significant  maxima  inside  and  outside  the
echo region, which cannot effectively distinguish the simu-
lated precipitation system. Whereas, the performance of the
nongeostrophic Q vector is much better. The high values are
mainly concentrated within the echo regions, although they
cannot fully reflect the distribution characteristics of the pre-
cipitation  system.  The  newly  derived Q vectors  (both 
and )  basically  fill  the  entire  echo  region  (Fig.  4)  and

Qp

Qz

have the best correspondence with the precipitation system.
They both perform better  than the traditional  QG Q vector
in  indicating  significance  for  the  precipitation  region  and
development  of  the  system  in  the  following  few  hours.
From the perspective of vertical characteristics, large values
are mainly concentrated near the precipitation in the middle
troposphere for all diagnostic variables. The quasigeostrophic
Q vector has significant false abnormal signals in non-precipi-
tation areas, while the nongeostrophic Q vector and  have
false abnormal signals at the upper layers.  is the best diag-
nostic variable in the vertical cross section since the high val-
ues are mainly near the rainband and move with the system.

Revisiting  the  difference  in  definition,  the  generalized
Q vectors comprise the information of the actual wind field
and nonuniform saturated air, as well as the gradient in both
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Qp QzFig. 7. Meridional cross sections of (a–c) -vector divergence (units: 10–8 Pa–1 s–2) and (d–f) -vector divergence
(units: 10–6 m–1 s–2) along 78°E at (a, d) 1200 UTC 18 July, (b, e) 1800 UTC 18 July, and (c, f) 0000 UTC 19 July
2021. The green lines represent hourly precipitation (units: mm), and dark shadows represent terrain (units: km).
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the  horizontal  and  vertical  direction.  By  contrast,  quasi-
geostrophic equilibrium is usually nonexistent in mesoscale
systems,  and the heterogeneous distribution of water  vapor
also  affects  the  development  of  mesoscale  systems.  There-
fore, it is more reasonable and efficient to use generalized ver-
tical motion equations and generalized Q vectors with fewer
assumptions in high impact mesoscale systems.

 6.    Conclusion and discussion

The  vertical  motion  field  is  one  of  the  key  factors  in
weather analysis and forecasting. The determination of verti-
cal motion commonly depends on the vertical motion equa-
tion. For application in mesoscale systems, a new form of gen-
eralized vertical  motion equation and a generalized Omega
equation are derived in this paper within the nonhydrostatic

 

(a)

(e) (f)

(d)

(b)

(c)

 

Qp Qz

Qp Qz

Fig.  8. Time  variation  in  (a)  hourly  precipitation  (units:  mm),  (b)  vertical  velocity  at  500  hPa  (units:  m  s–1),  (c)
vertical integrated -vector divergence (units: 10–4 s–2), (d) vertical integrated -vector divergence (units: 10–3 s–2) ,
(e) -vector divergence at 500 hPa (units: 10–8 Pa–1 s–2), and (f) -vector divergence at 5.5 km (units: 10–6 m–1 s–2)
along 78°E from 0000 UTC 18 to 0000 UTC 19 July 2021.
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Qz

Qp

equilibrium dynamic framework of a local Cartesian coordi-
nate  system  and  the  hydrostatic  equilibrium  framework  of
the isobaric coordinate system, respectively. Through the forc-
ing terms, namely the Q vector, on the right side of the equa-
tions,  the  physical  factors  affecting  the  vertical  movement
of the left side can be analyzed. According to these derived
equations,  the Q vector  ( )  of  the  generalized  vertical
motion equation contains more thermodynamic information
and mass forcing information than the Q vector ( ) in the
generalized Omega equation.

A  heavy  rain  event  that  occurred  18–19  July  2021  in
southern Xinjiang was selected, and the mesoscale numerical
model  WRF  was  utilized  for  high-resolution  simulation.
Simulated  data  with  high  spatial  and  temporal  resolutions
were used to analyze the characteristics of the two forms of
Q-vector divergence and reveal their relationships with simu-
lated  composite  radar  reflectivity,  vertical  velocity,  and
hourly accumulated precipitation.

The  main  conclusions  obtained  are  described  as  fol-
lows:

Qz Qp1. The - and -vector divergence fields both can indi-
cate  the  distribution  of  the  vertical  motion  within  the  rain-
band. The horizontal distribution of Q-vector divergence is
closely  related  to  the  composite  radar  reflectivity,  vertical
velocity,  and  hourly  accumulated  precipitation.  The  region

Qzwith high values of -vector divergence had a wider horizon-
tal coverage area and was a better indication for weak precipi-
tation areas.

Qz Qp

Qp

2. In the vertical structure, the high-value regions of the
-  and -vector  divergence  fields  at  middle  levels  were

closely related to precipitation. The relationship between the
high-level  abnormal value of the -vector divergence and
precipitation was not obvious.

Qz Qp

3.  The  temporal  evolution  of  the  vertically  integrated
-vector  divergence  was  similar  to  that  of  the -vector

divergence, and both could indicate the development and evo-
lution of the observed rainband.

4.  A  comparison  with  the  geostrophic  and  non-
geostrophic Q vectors  demonstrated  that  the  generalized Q
vectors are more informative and consistent in the analysis
of mesoscale systems.

The task of quantitative precipitation forecasting contin-
ues to challenge numerical models. This paper qualitatively
analyzes the relationships between the two forms of Q-vector
divergence proposed here with vertical motion and precipita-
tion systems. The results demonstrate that the new forms of
Q vectors have the potential for tracking and indicating the
position and movement of mesoscale precipitation systems.
In the future, the quantitative relationship will be addressed
based  on  many  experiments  among  different  regions,  sea-
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Fig.  9. (a)  Horizontal  distribution  of  (a)  quasigeostrophic Q-vector  divergence  (units:  10–8 )  and  (b)
nongeostrophic Q-vector  divergence  (units:  10−14 )  at  500  hPa,  and  meridional  cross  sections  of  (c)
quasigeostrophic Q-vector divergence and (d) nongeostrophic Q-vector divergence along 76°E at 1800 UTC 18 July
2021. The black lines in (a, b) are composite radar reflectivity (units: dBZ), and green solid lines in (c, d) represent
hourly precipitation (units: mm).
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sons,  and  dominant  weather  patterns.  The  use  of  dynamic
and statistical methods to process and modify the comprehen-
sive results of numerical forecast products may improve the
forecast accuracy of precipitation. Of course, this method is
closely related to  the  performance of  the  numerical  model,
especially the forecast of the wind field and temperature, serv-
ing as a supplement and/or correction. Additionally, the com-
ponents of Q vectors are worth further research to reveal the
internal  dynamic  and  thermodynamic  causes  of  vertical
motion and the development of precipitation systems.
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 APPENDIX A

Derivation of the Generalized Vertical Motion
Equation in the Local Cartesian Coordinate System

In  the  local  Cartesian  coordinate  system,  the  primitive
equations on an f-plane are defined as follows: 

∂u
∂t
+u
∂u
∂x
+ v
∂u
∂y
+w
∂u
∂z
− f0v+

1
ρ

∂p
∂x
= 0 , (A.1)

 

∂v
∂t
+u
∂v
∂x
+ v
∂v
∂y
+w
∂v
∂z
+ f0u+

1
ρ

∂p
∂y
= 0 , (A.2)

 

∂w
∂t
+u
∂w
∂x
+ v
∂w
∂y
+w
∂w
∂z
+g+

1
ρ

∂p
∂z
= 0 , (A.3)

 

∂ρ

∂t
+u
∂ρ

∂x
+ v
∂ρ

∂y
+w
∂ρ

∂z
+ρ

(
∂u
∂x
+
∂v
∂y
+
∂w
∂z

)
= 0 , (A.4)

 

∂θ

∂t
+u
∂θ

∂x
+ v
∂θ

∂y
+w
∂θ

∂z
= H , (A.5)

 

θ = T
(

ps

p

) R
cp
, (A.6)

 

p = ρRT . (A.7)

ρAssuming  is a function of altitude, the continuity equation
Eq. (A.4) can be simplified as: 

∂u
∂x
+
∂v
∂y
+
∂w
∂z
= Mz , (A.8)

Mzwhere  represents  various  mass  non-conservation  terms

(the  local  and  advective  terms).  Using  Eq.  (A.6)  and  Eq.
(A.7), the pressure gradient can be written as: 

∂p
∂x
=

cp

cv

p
θ

∂θ

∂x
, (A.9)

 

∂p
∂y
=

cp

cv

p
θ

∂θ

∂y
. (A.10)

Thus, the horizontal motion equations can be written as fol-
lows: 

∂u
∂t
+ vh · ∇u+w

∂u
∂z
− f0v+h

cp

cv

∂θ

∂x
= 0 , (A.11)

 

∂v
∂t
+ vh · ∇v+w

∂v
∂z
+ f0u+h

cp

cv

∂θ

∂y
= 0 , (A.12)

h = R/(ps/p)
R
cpwhere .

Geostrophic wind is defined as follows: 

ug = −
1
f0

h
cp

cv

∂θ

∂y
, (A.13)

 

vg =
1
f0

h
cp

cv

∂θ

∂x
. (A.14)

∂

∂t
+u
∂

∂x
+ v
∂

∂y
+w
∂

∂z
ug vg

Taking  of Eq. (A.13) and Eq. (A.14),

we can obtain the tendency equation of  and : 

∂ug

∂t
+u
∂ug

∂x
+ v
∂ug

∂y
+w
∂ug

∂z

=
h
f0

cp

cv

(
∂u
∂y
∂θ

∂x
+
∂v
∂y
∂θ

∂y
+
∂w
∂y
∂θ

∂z
− ∂H
∂y

)
− hs

f0

cp

cv

∂θ

∂y
,

(A.15)
 

∂vg

∂t
+u
∂vg

∂x
+ v
∂vg

∂y
+w
∂vg

∂z

= − h
f0

cp

cv

(
∂u
∂x
∂θ

∂x
+
∂v
∂x
∂θ

∂y
+
∂w
∂x
∂θ

∂z
− ∂H
∂x

)
+

hs

f0

cp

cv

∂θ

∂x
,

(A.16)

where 

hs =

(
∂

∂t
+u
∂

∂x
+ v
∂

∂y
+w
∂

∂z

)
h . (A.17)

Introducing the definition of generalized potential tem-
perature 

θ∗ = θη , (A.18)

η = Lvqs(qv/qs)k/
(
cpT

)
where  is  the  latent  heat  function,
Cao et al. (2008) demonstrated that the generalized potential
temperature satisfies the following conservation equation: 
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(
∂

∂t
+u
∂

∂x
+ v
∂

∂y
+w
∂

∂z

)
θ∗ = 0 . (A.19)

Using Eqs. (A.18), (A.19), and (A.5), the latent heat function

satisfies the following equation:
  (

∂

∂t
+u
∂

∂x
+ v
∂

∂y
+w
∂

∂z

)
η = −η

θ
H . (A.20)

Upon substituting Eq. (A.18) into Eq. (A.15) and Eq. (A.16)

to  replace  the  potential  temperature,  the  tendency  equation

of  geostrophic  wind  can  be  further  modified  using  Eq.

(A.17), Eq. (A.19), and (A.20). Subtracting Eq. (A.11) and

Eq.  (A.12)  from  the  simplified  tendency  equation  of

geostrophic  wind  ,  we  finally  obtain  the  following  equa-

tions:
  [
∂v
∂y
−h
∂

∂x

(
cp

cv f0η
∂θ∗

∂y

)]
v+

[
∂v
∂x
−h
∂

∂x

(
cp

cv f0η
∂θ∗

∂x

)]
u+(

∂v
∂z
−h
∂σ

∂x

)
w−hσz

∂w
∂x
+ f0u−

cph
cv f0η

(
∂u
∂x
∂θ∗

∂x
+
∂v
∂x
∂θ∗

∂y

)
+

cph
cv

∂θ

∂y
+
∂v
∂t
+

cph
cv f0η

(
1
η

∂η

∂x
∂θ∗

∂t
− ∂

2θ∗

∂t∂x

)
= 0 , (A.21)

  [
∂u
∂y
+h
∂

∂y

(
cp

cv f0η
∂θ∗

∂y

)]
v+

[
∂u
∂x
+h
∂

∂y

(
cp

cv f0η
∂θ∗

∂x

)]
u+(

∂u
∂z
+h
∂σ

∂y

)
w+hσz

∂w
∂y
− f0v+

cph
cv f0η

×(
∂u
∂y
∂θ∗

∂x
+
∂v
∂y
∂θ∗

∂y

)
+

cph
cv

∂θ

∂x
+
∂u
∂t
+

cph
cv f0η

(
∂2θ∗

∂t∂y
− 1
η

∂η

∂y
∂θ∗

∂t

)
= 0 , (A.22)

σz =
cp

cv f0η
∂θ∗

∂z
where  is the static stability parameter.

Taking the vertical  partial  derivatives  on both sides  of

Eqs. (A.21) and (A.22), we can obtain
 

− ∂
∂z

(hσz)
∂w
∂x
+

[
∂2v
∂z2 −

∂

∂z

(
h
∂σz

∂x

)]
w+ f0

∂u
∂z
=

qzx1+qzx2+qzx3 , (A.23)
 

∂

∂z
(hσz)

∂w
∂y
+

[
∂2u
∂z2 +

∂

∂z

(
h
∂σz

∂y

)]
w− f0

∂v
∂z
=

−qzy1−qzy2−qzy3 , (A.24)

The components on the right-hand side of the equations are,

respectively:
 

qzx1 =−
(
∂2v
∂t∂z

+ u
∂2v
∂x∂z

+ v
∂2v
∂y∂z

)
+
∂v
∂z
∂u
∂x
− ∂u
∂z
∂v
∂x
, (A.25)

 

qzx2 =
∂

∂z

{
h

cp

cv f0

[
∂

∂x

(
1
η

∂θ∗

∂t

)
+u
∂

∂x

(
1
η

∂θ∗

∂x

)
+

v
∂

∂x

(
1
η

∂θ∗

∂y

)]
−h

cp

cv

∂θ

∂y

}
+

cph
cv f0

∂

∂z

[
1
η

(
∂u
∂x
∂θ∗

∂x
+

∂v
∂x
∂θ∗

∂y

)]
+

cp

cv f0η
∂h
∂z

(
∂u
∂x
∂θ∗

∂x
+
∂v
∂x
∂θ∗

∂y

)
, (A.26)

 

qzx3 = −h
∂

∂x
[
σz (λ−Mz)

]− ∂v
∂z

Mz , (A.27)
 

qzy1 =
∂2u
∂t∂z

+ u
∂2u
∂x∂z

+ v
∂2u
∂y∂z

+
∂v
∂z
∂u
∂y
− ∂u
∂z
∂v
∂y
, (A.28)

 

qzy2 =
∂

∂z

{
cph
cv f0

[
∂

∂y

(
1
η

∂θ∗

∂t

)
+u
∂

∂y

(
1
η

∂θ∗

∂x

)
+

v
∂

∂y

(
1
η

∂θ∗

∂y

)]
+h

cp

cv

∂θ

∂x

}
+

cph
cv f0

∂

∂z

[
1
η

(
∂u
∂y
∂θ∗

∂x
+
∂v
∂y
∂θ∗

∂y

)]
+

cp

cv f0η
∂h
∂z

(
∂u
∂y
∂θ∗

∂x
+
∂v
∂y
∂θ∗

∂y

)
, (A.29)

 

qzy3 = −h
∂

∂y
[
σz (λ−Mz)

]
+
∂u
∂z

Mz . (A.30)

∂
∂y

∂
∂xUpon subtracting (A.24)− (A.23), the generalized vertical

motion equation under the Boussinesq approximation in the
local  Cartesian  coordinate  system  can  be  obtained  as  fol-
lows:
 

∂

∂z
(hσz)

(
∂2w
∂x2 +

∂2w
∂y2

)
+ f0
∂2w
∂z2 +[

−∂
2v
∂z2 +

∂

∂z

(
2h
∂σz

∂x
+σz
∂h
∂x

)]
∂w
∂x
+[

∂2u
∂z2 +

∂

∂z

(
2h
∂σz

∂y
+σz
∂h
∂y

)]
∂w
∂y
+[

−∂
2ζ
∂z2 +

∂2

∂z∂y

(
h
∂σz

∂y

)
+
∂2

∂z∂x

(
h
∂σz

∂x

)]
w

= −
(
∂qzx1

∂x
+
∂qzy1

∂y

)
−

(
∂qzx2

∂x
+
∂qzy2

∂y

)
−(

∂qzx3

∂x
+
∂qzy3

∂y

)
+ f0
∂Mz

∂z
. (A.31)

 APPENDIX B

Derivation of the Generalized Omega Equation in
an Isobaric Coordinate System

The primitive equations in the isobaric coordinate system
with the f-plane approximation can be written as follows:
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∂u
∂t
+u
∂u
∂x
+ v
∂u
∂y
+ω
∂u
∂p
− f0v = −∂ϕ

∂x
, (B.1)

 

∂v
∂t
+ v
∂v
∂x
+ v
∂v
∂y
+ω
∂v
∂p
+ f0u = −∂ϕ

∂y
, (B.2)

 

∂u
∂x
+
∂v
∂y
+
∂ω

∂p
= Mp , (B.3)

 

∂θ

∂t
+u
∂θ

∂x
+ v
∂θ

∂y
+ω
∂θ

∂p
= H , (B.4)

 

∂ϕ

∂p
+α = 0 , (B.5)

 

α =
1
ρ
, (B.6)

 

θ = T
(

ps

p

) R
cp
, (B.7)

 

p = ρRT . (B.8)(
ug, vg

)
Assuming that the wind is geostrophic , the following
geostrophic balanced relationship is satisfied: 

− f0vg = −
∂ϕ

∂x
, (B.9)

 

f0ug = −
∂ϕ

∂y
. (B.10)

Taking  the  vertical  partial  derivative  of  both  sides  of  the
above  equations,  the  thermal  wind  relationship  can  be
obtained as follows: 

∂ug

∂p
=

h
f0

∂θ

∂y
, (B.11)

 

∂vg

∂p
= − h

f0

∂θ

∂x
, (B.12)

h = R(ps/p)−
R
cp /p = 1/ (ρθ)where 

Using  the  thermal  wind  balance  relations,  Eqs.  (B.11)
and  (B.12),  the  tendency  of  the  vertical  shear  of  the
geostrophic wind can be derived as follows: 

∂2ug

∂p∂t
+u
∂2ug

∂p∂x
+ v
∂2ug

∂p∂y
+ω
∂2ug

∂p2

= − h
f0

(
∂u
∂y
∂θ

∂x
+
∂v
∂y
∂θ

∂y
+
∂ω

∂y
∂θ

∂p
− ∂H
∂y

)
+
ω

f0

∂h
∂p
∂θ

∂y
,

(B.13)
 

∂2vg

∂p∂t
+u
∂2vg

∂p∂x
+ v
∂2vg

∂p∂y
+ω
∂2vg

∂p2

=
h
f0

(
∂u
∂x
∂θ

∂x
+
∂v
∂x
∂θ

∂y
+
∂ω

∂x
∂θ

∂p
− ∂H
∂x

)
− ω

f0

∂h
∂p
∂θ

∂x
.
(B.14)

Taking the vertical partial derivatives of Eqs. (B.1) and

(B.2),  the  vertical  wind  shear  tendency  equation  can  be

obtained as follows:
 

∂2u
∂p∂t

+u
∂2u
∂p∂x

+ v
∂2u
∂p∂y

+ω
∂2u
∂p2

= − ∂
2ϕ

∂p∂x
− ∂u
∂p
∂u
∂x
− ∂v
∂p
∂u
∂y
− ∂ω
∂p
∂u
∂p
+ f0
∂v
∂p
, (B.15)

 

∂2v
∂p∂t

+u
∂2v
∂p∂x

+ v
∂2v
∂p∂y

+ω
∂2v
∂p2

= − ∂
2ϕ

∂p∂y
− ∂u
∂p
∂v
∂x
− ∂v
∂p
∂v
∂y
− ∂ω
∂p
∂v
∂p
− f0
∂u
∂p
. (B.16)

The generalized potential temperature is introduced as:
 

θ∗ = θη , (B.17)

η = Lvqs(qv/qs)k/
(
cpT

)
where  is  the  latent  heat  function.

Then, in the isobaric coordinate system, the generalized poten-

tial  temperature  satisfies  the  following  conservation  equa-

tion:
  (

∂

∂t
+u
∂

∂x
+ v
∂

∂y
+ω
∂

∂p

)
θ∗ = 0 . (B.18)

Using Eqs. (B.17), (B.18), and (B.4), it can be easily shown

that the latent heat function satisfies the following equation:
  (

∂

∂t
+u
∂

∂x
+ v
∂

∂y
+ω
∂

∂p

)
η = −η

θ
H . (B.19)

Subtracting  Eqs.  (B.13)  and  (B.14)  from  Eqs.  (B.15)  and

(B.16) and then substituting them into Eq. (B.19) yields
 

− h
f0η
∂θ∗

∂p
∂ω

∂y
+

[
− ∂
∂y

(
h

f0η
∂θ∗

∂p

)
+
∂2u
∂p2

]
ω− f0

∂v
∂p

=
∂u
∂p
∂v
∂y
− ∂v
∂p
∂u
∂y
+

h
f0η

(
∂u
∂y
∂θ∗

∂x
+
∂v
∂y
∂θ∗

∂y

)
+[

∂

∂y

(
h

f0η
∂θ∗

∂y

)
− ∂

2u
∂p∂y

]
v+

[
∂

∂y

(
h

f0η
∂θ∗

∂x

)
− ∂

2u
∂p∂x

]
u+

∂

∂y

(
h

f0η
∂θ∗

∂t

)
− ∂

2u
∂p∂t

+h
∂θ

∂x
− ∂u
∂p

Mp , (B.20)
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h
f0η
∂θ∗

∂p
∂ω

∂x
+

[
∂

∂x

(
h

f0η
∂θ∗

∂p

)
+
∂2v
∂p2

]
ω+ f0

∂u
∂p

= − ∂u
∂p
∂v
∂x
+
∂v
∂p
∂u
∂x
− h

f0η

(
∂u
∂x
∂θ∗

∂x
+
∂v
∂x
∂θ∗

∂y

)
−[

∂

∂x

(
h

f0η
∂θ∗

∂y

)
+
∂2v
∂p∂y

]
v−

[
∂

∂x

(
h

f0η
∂θ∗

∂x

)
+
∂2v
∂p∂x

]
u−

∂

∂x

(
h

f0η
∂θ∗

∂t

)
− ∂

2v
∂p∂t

+h
∂θ

∂y
− ∂v
∂p

Mp . (B.21)

(qpx1,qpy1)
(qpx2,qpy2) (qpx3,qpy3)
Three  sets  of Q vectors  are  defined  as: ,

, and :
 

qpx1 =
∂2v
∂p∂t

+u
∂2v
∂p∂x

+ v
∂2v
∂p∂y

+
∂u
∂p
∂v
∂x
− ∂v
∂p
∂u
∂x
, (B.22)

 

qpx2 =
h
f0

[
∂

∂x

(
1
η

∂θ∗

∂t

)
+u
∂

∂x

(
1
η

∂θ∗

∂x

)
+ v
∂

∂x

(
1
η

∂θ∗

∂y

)
+

1
η

(
∂u
∂x
∂θ∗

∂x
+
∂v
∂x
∂θ∗

∂y

)]
−h
∂θ

∂y
, (B.23)

 

qpx3 =
∂v
∂p

Mp , (B.24)

 

qpy1 = −
∂2u
∂p∂t

−u
∂2u
∂p∂x

− v
∂2u
∂p∂y

− ∂v
∂p
∂u
∂y
+
∂u
∂p
∂v
∂y
, (B.25)

 

qpy2 =
h
f0

[
∂

∂y

(
1
η

∂θ∗

∂t

)
+u
∂

∂y

(
1
η

∂θ∗

∂x

)
+ v
∂

∂y

(
1
η

∂θ∗

∂y

)
+

1
η

(
∂u
∂y
∂θ∗

∂x
+
∂v
∂y
∂θ∗

∂y

)]
+h
∂θ

∂x
, (B.26)

 

qpy3 = −
∂u
∂p

Mp . (B.27)

Substituting  Eq.  (B.22)  minus  Eq.  (B.27)  into  Eqs.  (B.20)
and (B.21), we obtain
 

h
∂

∂x

(
σpω

)
+ω
∂2v
∂p2 + f0

∂u
∂p
= −qpx1−qpx2−qpx3 , (B.28)

 

−h
∂

∂y

(
σpω

)
+ω
∂2u
∂p2 − f0

∂v
∂p
= qpy1+qpy2+qpy3 , (B.29)

σp =
1

f0η
∂θ∗

∂p
where .

∂

∂x
∂

∂y
With (B.28)− (B.29), the generalized Omega equa-

tion in the isobaric coordinate system can be obtained as fol-
lows:
 

∂2

∂x2

(
σpω

)
+
∂2

∂y2

(
σpω

)
− f0
∂2ω

∂p2 +
∂ω

∂x
∂2v
∂p2 −

∂ω

∂y
∂2u
∂p2 +

∂2ζ
∂p2ω

= −
(
∂qpx1

∂x
+
∂qpy1

∂y

)
−

(
∂qpx2

∂x
+
∂qpy2

∂y

)
−

(
∂qpx3

∂x
+
∂qpy3

∂y

)
−

f0
∂Mp

∂p
, (B.30)

ζ =
∂v
∂x
− ∂u
∂y

where .
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