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ABSTRACT

Terrestrial ecosystems are an important part of Earth systems, and they are undergoing remarkable changes in response
to global warming. This study investigates the response of the terrestrial vegetation distribution and carbon fluxes to global
warming by using the new dynamic global  vegetation model  in  the second version of  the Chinese Academy of  Sciences
(CAS)  Earth  System Model  (CAS-ESM2).  We conducted  two sets  of  simulations,  a  present-day  simulation  and  a  future
simulation,  which  were  forced  by  the  present-day  climate  during  1981–2000  and  the  future  climate  during  2081–2100,
respectively,  as  derived  from RCP8.5  outputs  in  CMIP5.  CO2 concentration  is  kept  constant  in  all  simulations  to  isolate
CO2-fertilization effects. The results show an overall increase in vegetation coverage in response to global warming, which
is  the  net  result  of  the  greening  in  the  mid-high  latitudes  and  the  browning  in  the  tropics.  The  results  also  show  an
enhancement  in  carbon  fluxes  in  response  to  global  warming,  including  gross  primary  productivity,  net  primary
productivity,  and autotrophic respiration.  We found that  the changes in  vegetation coverage were significantly correlated
with  changes  in  surface  air  temperature,  reflecting  the  dominant  role  of  temperature,  while  the  changes  in  carbon fluxes
were caused by the combined effects of leaf area index, temperature, and precipitation. This study applies the CAS-ESM2
to  investigate  the  response  of  terrestrial  ecosystems  to  climate  warming.  Even  though  the  interpretation  of  the  results  is
limited by isolating CO2-fertilization effects, this application is still beneficial for adding to our understanding of vegetation
processes and to further improve upon model parameterizations.
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Article Highlights:

•  The projected vegetation coverage and carbon fluxes show an overall increase under global warming.
•  Surface air temperature is the dominant driver of changes in vegetation distribution.
•  Changes in carbon fluxes are caused by the combined effects of leaf area index, temperature, and precipitation.

 

 
 

 

1.    Introduction

Terrestrial ecosystems are an important part of Earth sys-
tems.  They  regulate  the  exchanges  of  energy  and  water
mass between the land surface and atmosphere via evapotran-
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spiration  and  provide  organic  carbon  via  photosynthesis.
The change in terrestrial ecosystems is tightly coupled with
climate,  which  is  undergoing  significant  warming  (Diffen-
baugh  and  Field,  2013; Zhu  et  al.,  2016; Yin  et  al.,  2018;
Liu  et  al.,  2019).  How  terrestrial  ecosystems  respond  to
global  warming  has  been  a  hot  research  topic  as  the
responses are of great significance for accurately projecting
future vegetation dynamics and climate change (Woodward
and Williams,  1987; Nemani  et  al.,  2003; Schaphoff  et  al.,
2016; Eric Dusenge et al., 2019; Fan and Fan, 2019).

In response to global warming, land vegetation distribu-
tion and productivity have shown considerable changes over
the  past  few  decades  (Cramer  et  al.,  2001; Fraser  et  al.,
2011; Cao et al., 2019). One of the significant changes is a
poleward “greening” expansion in the middle and high lati-
tudes  (Sturm  et  al.,  2001; Walker  et  al.,  2006; Bi  et  al.,
2013; Mao et al.,  2016; Zhu et al.,  2016; Piao et al.,  2020;
Tømmervik  and  Forbes,  2020).  For  example,  forests  in
Europe were projected to expand northward and contribute
to  a  shrinkage  of  the  tundra  area  (Shiyatov  et  al.,  2005;
Frost and Epstein, 2014; Kreplin et al., 2021), with a similar
expansion found in North America (Field et al., 2007, Yu et
al., 2014). In Northeast China, Hu et al. (2021) found obvious
vegetation  greening.  The  results  shown  by  Madani  et  al.
(2020) indicated an increasing trend in annual gross primary
productivity (GPP) in the northern tundra and boreal ecosys-
tems.  The  greening  of  Arctic  ecosystems  has  shown
increased biomass and abundance in boreal shrubs (Myers-
Smith et al., 2011, 2020; Mekonnen et al., 2021). Several stud-
ies have reported that warming is a key factor that accelerates
the “greening” by enhancing vegetation photosynthesis and
extending  the  length  of  the  growing  season  (Piao  et  al.,
2007; Andreu-Hayles et al., 2011; Keenan and Riley, 2018).
In the tropics, the response of vegetation to warming is differ-
ent from that found in mid-high latitudes (Corlett, 2011). Sev-
eral  studies  have  shown  a  decrease  in  the  tropical  forest
growth rate and productivity in response to warming, which
could be the consequence of a reduction in leaf photosynthesis
under higher temperatures (Clark et al., 2003; Doughty and
Goulden,  2008; Gao et  al.,  2019; Huang et  al.,  2019).  The
decrease in the availability  of  water  associated with higher
temperatures is  reported to result  in a  decrease in leaf  area
index (LAI) and net primary productivity (NPP) in the Ama-
zon and South Africa and a decrease in forest coverage in cen-
tral  and  southern  Mexico  (Mackay,  2008; Yu  et  al.,  2014;
Gang et al., 2017). These studies all indicate that terrestrial
ecosystems have undergone remarkable  changes in  vegeta-
tion  distribution  and  productivity  due  to  global  warming,
and these changes will continue should global warming con-
tinue in the future.

Dynamic  Global  Vegetation  Models  (DGVMs)  have
recently become widely used tools to investigate and predict
the  responses  of  terrestrial  ecosystems  to  future  climate
change. They can simulate and project the patterns, dynamics
and  structure,  and  biogeochemical  cycles  of  vegetation
under past, present, and future climatic conditions (Scheiter
et  al.,  2013; Smith et  al.,  2014).  Many DGVMs have been

used to run offline simulations with different climatic scenar-
ios to predict the responses of vegetation to changes in climate
or  atmospheric  CO2 (Woodward  and  Lomas,  2004; Shafer
et al., 2015; Zhang et al., 2015). In addition, some DGVMs
are coupled with general circulation models (GCMs) to inves-
tigate interactions between vegetation dynamics and climate
change (Raddatz et al., 2007; Brovkin et al., 2009; Quillet et
al., 2010; Hawkins et al., 2019; Wu et al., 2019; Arora et al.,
2020; Yu et al., 2021).

However, the simulated vegetation responses to climate
change by DGVMs remain uncertain (Prentice et al., 2007;
Sitch  et  al.,  2008; Liu  et  al.,  2018; Sulman  et  al.,  2019;
Scheiter  et  al.,  2020; Horvath  et  al.,  2021).  Falloon  et  al.
(2012) reported that DGVMs simulated different,  and even
opposite,  vegetation  changes  in  the  northern  high  latitudes
in response to climate change. In the North China Plain, the
predicted  potential  vegetation  is  bare  ground,  whereas,  in
fact, it is dominated by irrigated cropland (Kang and Eltahir,
2018). South Asian savanna ecosystems are often misinter-
preted by DGVMs as degraded forests (Kumar and Scheiter,
2019).  In  addition,  the  estimation  of  GPP  often  differed
among  DGVMs  (McGuire  et  al.,  2001; Jung  et  al.,  2007;
Piao et al., 2013; Anav et al., 2015) due to different represen-
tations  of  ecological  processes  and  parameter  uncertainties
(Knorr and Heimann, 2001; Gurney et al., 2004; De Kauwe
et al., 2014). Gang et al. (2017) argued that large uncertainties
among DGVMs may relate to the differences in recognition
of  the  vegetation  types  and  the  land  surface  processes  that
evolved. These reported uncertainties reflect the complexity
of the vegetation response to climate change, and thus more
investigation is needed to better understand vegetation pro-
cesses and parameterizations in DGVMs.

A new DGVM developed at the Institute of Atmospheric
Physics (IAP-DGVM; Zeng et al.,  2014) was coupled with
the  second  version  of  the  Chinese  Academy  of  Sciences
Earth  System  Model  (CAS-ESM2).  The  coupled  results
showed a good performance in reproducing the present-day
vegetation distribution and carbon fluxes (Zhu et al., 2018b).
In  addition,  the  IAP-DGVM  simulated  a  positive  trend  in
LAI  over  northern  mid-high  latitudes  during  the  period
1972–2004, which was consistent with that of LAI3g, with
a  significant  correlation  coefficient  of  0.48  (Prob<0.05,
where  Prob  is  the  probability  of  statistical  significance  of
the linear correlation coefficient) (Fig. S1 in the Electronic
Supplementary  Materials).  This  consistency  illustrates  that
the IAP-DGVM has a good ability to reproduce the greening
trend  of  vegetation  over  northern  mid-high  latitudes  in
response  to  climate  change  during  the  historical  period.
Thus,  this  study focuses  on the  IAP-DGVM projections  of
vegetation  distribution  and  carbon  fluxes  in  response  to
global warming in the future. To narrow down the uncertain-
ties in the forcing datasets, we present a method (see section
2)  that  is  used  to  produce  the  forcing  datasets  based  on
multi-model outputs from the Coupled Model Intercompari-
son Project Phase 5 (CMIP5) instead of using them directly.
Here, we report the simulated changes in vegetation distribu-
tion  and  carbon fluxes  in  response  to  global  warming,  and
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more  importantly,  we  further  investigate  the  dominant
driver  of  the  changes  and  discuss  the  underlying  causes.
The investigation will support a better understanding of vege-
tation processes, and in doing so, contribute to future improve-
ments of the model parameterizations. Moreover, the results
provide  a  valuable  sample  for  comparison not  only  for  the
CAS-ESM2 community but also for other model communi-
ties.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the model physics and experimental design,
section 3 presents the results of the experiment, section 4 pro-
vides a discussion and interpretation of results,  and section
5 provides a brief summary. 

2.    Model  description  and  experimental
design

 

2.1.    Model description

The  IAP-DGVM,  which  was  first  released  in  2014
(Zeng et al., 2014), was used in this study. The IAP-DGVM
classifies natural plants into 14 plant functional types (PFTs)
and  does  not  currently  simulate  crops  (Table  S1  in  the
ESM). The vegetation model has made significant develop-
ments that mainly include the shrub sub-model (Zeng et al.,
2008; Zeng,  2010),  the  process-based fire  parameterization
of  intermediate  complexity  (Li  et  al.,  2012),  and  the  new
establishment  and  competition  parameterization  schemes
(Song et al., 2016). These characteristics improve the perfor-
mance of the IAP-DGVM in simulating the fractional cover-
age of present-day vegetation and land carbon fluxes (Zeng,
2010; Zeng et al., 2014; Zhu et al., 2018b). Thus, the IAP-
DGVM has been coupled with the CAS-ESM2 to investigate
vegetation-climate interactions (Zhu et al., 2018a; Zhang et
al., 2020). 

2.2.    Experimental design

This  study  aims  to  investigate  the  possible  changes  in
vegetation distribution and carbon fluxes under global warm-
ing. The scenario corresponding to the Representative Con-
centration Pathway 8.5 (RCP8.5) was selected to represent a
possible scenario of future global warming and the climate
for  the  period  2081–2100  to  represent  the  future  climate.
We downloaded atmospheric forcing variables, six-hourly pre-
cipitation and solar radiation, three-hourly surface air tempera-
ture, surface pressure, specific humidity, and wind, from out-
puts of historical and RCP8.5 simulations of the 16 models
that are participating in the Coupled Model Intercomparison
Project Phase 5 (CMIP5) (Table S2 in the ESM). We recalcu-
lated the RCP8.5 outputs as the following. 

V1(i) = RCP8.52081−2100−Hist1981−2000+V0(i),
i = 1981,1982, · · · ,2000

RCP8.5 2081−2100 Hist 1981−2000where  and  are the 20-year aver-
ages for  the period 2081–2100 in CMIP5 RCP8.5 simula-
tions and the period 1981–2000 in CMIP5 historical simula-

V0(i)
V1(i)

tions, respectively. Their differences indicate the future cli-
mate  changes  predicted  by  each  CMIP5 model.  By  adding
these differences to the present-day forcing data ( ), we
finally derived the new future forcing datasets ( ).  This
method  can  reduce  the  dependence  on  CMIP5  models  and
the uncertainties in future forcing datasets and is comparable
to the present-day forcing data from Qian et al. (2006).

FCcrop
FCcrop

This  study  conducted  a  few simulations,  including  the
spin-up simulation  (Fig.  S2).  We first  ran  a  global  spin-up
simulation  by  driving  the  IAP-DGVM from a  bare  ground
condition  for  660  model  years  to  approach  an  equilibrium
state  by  cycling  the  atmospheric  forcing  data  during  the
period 1972–2004 from Qian et al. (2006). Then, we further
conducted two sets of simulations, the present-day simulation
(hereafter Pre) and the future simulation (hereafter RCP8.5).
The Pre simulation was forced by the atmospheric data during
1972–2004  from  Qian  et  al.  (2006)  and  ran  for  33  model
years, while the RCP8.5 simulations were forced by the recal-
culated  datasets  described  above  and  ran  for  600  model
years  to  approach  another  equilibrium state.  We  compared
the  results  between  the  Pre  simulation  for  the  period
1981–2000  and  the  RCP8.5  simulations  for  the  period
2081–2100. To investigate the effects of climate factors on
vegetation dynamics, we fixed atmospheric CO2 concentra-
tion at a constant value of 367.00 ppm in all simulations to
isolate  the  effects  of  CO2 fertilization.  All  the  simulations
were  run  with  a  T85  resolution  (128  ×  256  grid  cells).
Finally, we obtained future changes in vegetation distribution
and carbon fluxes  from the  differences  between the  results
of  one  present-day  simulation  and  16  RCP8.5  simulations.
To reduce the effects of cropland, we weighted the vegetation
coverage  by  a  factor  of  (100% – )  in  each  grid  cell,
where  represents  the fractional  coverage of  crops in
CLM surface dataset (Zeng et al., 2014). 

3.    Results
 

3.1.    Surface climate change

The  projected  future  land  surface  shows  an  overall
warm  and  wet  change  relative  to  the  present  day  (Fig.  1).
Globally,  the  annual  mean  surface  air  temperature  in  the
future  is  4.87±1.14  K  higher  than  that  in  the  present  day.
The positive temperature anomalies are stronger over north-
ern high latitudes than in other regions and are projected by
all  16  selected  models  (Fig.  1a).  Meanwhile,  the  projected
global mean precipitation is  0.45±0.07 mm d–1 higher than
that in the present day. The positive precipitation anomalies
are  more  pronounced  in  several  regions,  such  as  western
and eastern North America, Europe, northeast and southeast
Asia, equatorial Africa, and southern South America. In con-
trast, negative precipitation anomalies are seen over the Ama-
zon,  however,  it  is  worth  noting  that  the  Amazon  region
shows larger uncertainties for projected precipitation among
the  models  than  do  other  regions  (Fig.  1b).  These  climate
anomalies  are  qualitatively  consistent  with  a  large  body of
published  studies  that  reported  future  predictions  of  global
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warming  and  the  possible  drying  of  tropical  regions  in  the
future  (Yu  et  al.,  2014; Yin  et  al.,  2018; Tømmervik  and
Forbes, 2020; Wibowo et al., 2020). 

3.2.    Vegetation distribution

We first analyzed the changes in vegetation distributions
for  the  four  aggregated  vegetation  types  (trees,  shrubs,
grasses, and bare ground) between the RCP8.5 experiments
and the present-day experiment. In general, there is a greening
anomaly in the middle and high latitudes of the northern hemi-
sphere  (30°N–90°N)  with  10.10%  more  projected  vegeta-
tion.  Trees  and  grasses  contribute  the  most  to  the  positive
anomaly, while shrubs show a negative anomaly (Table 1).
In contrast, there is a slight negative anomaly in the tropics
(30°S–30°N) with 3.72% less projected vegetation. Grasses
and  shrubs  contribute  the  most  to  the  negative  anomaly,
while trees show almost no changes (Table 1).

Figure 2 shows a  poleward expansion of  the projected
vegetation.  The  vegetation-growing  regions  in  the  RCP8.5
experiments  are  farther  north  than those  in  the  present-day
experiment,  with  10°,  5°,  and  7°  for  trees,  shrubs,  and
grasses, respectively. The spatial distribution shows that the
poleward  expansion  mainly  occurred  in  northern  Canada

and  Siberia  for  trees  and  grasses,  and  in  northeastern
Canada  for  shrubs  (Fig.  S3  in  the  ESM).  These  results  are
qualitatively consistent with previous studies based on other
multiple  GCMs  (Alo  and  Wang,  2008; Yu  et  al.,  2014;
Gang et al., 2017) and with some observational-based studies
(Speed et al., 2010; Vickers et al., 2016), indicating a pole-
ward expansion of vegetation over mid-high latitudes in the
future.

The  changes  in  vegetation  distribution  can  be  seen
more directly by an estimation of the differences in the four
aggregated  vegetation  types  between  the  two  scenarios
(Fig.  2).  Over  northern  mid-high  latitudes,  the  increase  in
trees  in  the  RCP8.5  experiments  occurs  mainly  in  Alaska,
eastern Canada, and Siberia. However, a decrease in trees is
also seen in central Canada, Western Siberia, and Northeast

Table  1.   The  changes  of  trees,  shrubs,  and  grasses  between
RCP8.5 experiments and the present-day experiment in 30°–90°N
and 30°S–30°N, respectively.

FCtrees FCshrubs FCgrasses FCtotal

30°−90°N 6.39% −11.60% 15.31% 10.10%
30°S−30°N 0.002% −1.26% −2.46% −3.72%

 

 

Fig.  1. Projected  future  changes  of  (a)  annual  surface  air  temperature  (K)  and  (b)
precipitation (mm d–1) based on the 16 CMIP5 models. The stippled regions represent grids
where at least 14 of 16 models agree with the multi-model ensemble mean.
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Fig.  2. Differences  in  fractional  coverage (units:  %)  of  (a)  trees,  (c)  shrubs,  (e)  grasses,  and (g)  bare  ground
between  the  present-day  experiment  (Pre)  and  the  RCP8.5  experiments  (RCP8.5)  (RCP8.5  minus  Pre).  The
stippled regions represent grids where at least 14 of 16 models agree with the multi-model ensemble mean. (b),
(d), (f), and (h) are the zonal average fractional coverage (units: %) of trees, shrubs, grasses, and bare ground in
Pre (blue) and RCP8.5 (red). The shaded red areas represent one standard deviation.

AUGUST 2022 GAO ET AL. 1289

 

  



China. The decreased shrubs mainly occurred in northwestern
Canada,  western  America,  and  eastern  Siberia;  these  areas
are replaced by increased grasses. Over the tropics, grasses
and  shrubs  decreased  mainly  in  tropical  Africa  and  Aus-
tralia,  with  reductions  of  8.57%  and  3.00%,  respectively
(Fig.  2).  Trees  in  tropical  America  decreased  by  4.89%,
even though, on the whole, tropical trees showed almost no
changes. Figure 2 also illustrates that the changes in the pro-
jected vegetation in the above-mentioned regions are consis-
tent among the selected 16 models.

To figure out  the contribution of  each PFT to the four
aggregated vegetation types, we further compared the frac-
tional coverage of vegetation at the PFT level in the two sce-
narios (Fig. 3). The increased trees are shown in Fig. 2. The
dominant contribution of these trees comes from the category
of  “broadleaf  deciduous  temperate  tree ”  (BDM;  3.37%),
while  the “needleleaf  evergreen boreal  tree” (NEB) makes
the largest  negative contribution of –1.13%. The decreased
shrubs  in  the  future  are  dominated  by  reductions  in
“broadleaf deciduous boreal shrub” (BDBsh; –5.18%). For
the  increased  grasses,  positive  contributions  are  mainly
from “C3 arctic  grass” (C3Ar;  3.74%) and “C3 non-arctic
grass” (C3NA; 4.17%), but “C4 grass” (C4) makes a negative
contribution of –2.01%. The six mentioned PFTs show the
largest sensitivities to global warming and are the main con-
tributors to the global vegetation changes. 

3.3.    LAI

Over the whole globe, the projected LAI in the RCP8.5
experiments increased by 0.65±0.30 m2 m–2,  relative to the
present-day experiment. This increase is seen over most lati-
tudes, especially in the middle and high latitudes (Fig. 4b).
Figure 4a shows the spatial pattern of the differences in LAI
between the RCP8.5 experiments and the present-day experi-
ment.  Over  the  northern  mid-high  latitudes,  the  increased
LAI  mainly  occurred  in  Alaska,  eastern  Canada,  central

North  America,  and  eastern  Siberia,  with  more  than
2.00 m2 m–2. However, a strong decrease in LAI is also seen
in  central  Canada,  Western  Siberia,  and  Northeast  China,
which correspond to the regions that show a projected replace-
ment of trees and shrubs by grasses (Fig. 2). Over the trop-
ics, the projected LAI decreased in the Amazon and equatorial
Africa by values that exceeded 1.00 m2 m–2, while southeast-
ern Asia showed an increase in the projected LAI by more
than 1.00 m2 m–2. 

3.4.    Carbon fluxes

The  analysis  here  focuses  on  the  changes  of  carbon
fluxes  for  the  GPP,  NPP,  and  autotrophic  respiration  (Ra)
between the RCP8.5 experiments and the present-day experi-
ment.  Globally,  positive  anomalies  were  observed  for  all
three carbon fluxes (Fig. 5). GPP shows the largest anomaly
with  18.36%±5.52%,  which  is  followed  by  Ra  and  NPP,
with 12.32%±3.24% and 6.04%±2.42%, respectively. Consid-
ering that  the  CO2 concentration is  the  same in  all  simula-
tions,  the  overall  positive  anomalies  in  GPP  and  NPP  are
caused by the warmer and wetter climate in the future, a favor-
able  climatic  condition that  can enhance photosynthesis  by
lengthening the growing season or by reducing water limita-
tion. Further analysis is shown in section 4.

Figure 6 clearly shows that positive anomalies occurred
over  most  of  the  latitudes,  while  negative  anomalies  were
only seen over a few tropical latitudes. The spatial patterns
further  show that  the  positive  anomalies  are  more  globally
widespread  than  the  negative  anomalies  (Figs.  6a, c, e).
Over middle and high latitudes, the regions with remarkable
positive anomalies are mainly in Alaska, eastern North Amer-
ica,  Europe,  eastern  Siberia,  and  southern  South  America.
Regions  with  negative  or  slightly  positive  anomalies  are
seen in Northeast China and Western Siberia. Over the trop-
ics,  the  negative  anomalies  for  the  three  carbon  fluxes  are
observed mainly in the Amazon, while tropical Asia shows

 

 

Fig.  3. Global  weighted  average  fractional  coverage  (%)  of  each  PFT  for  Pre  (blue)  and
RCP8.5 (red). The abbreviations of the PFT correspond to the information in Table S1.
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remarkable positive anomalies. Figure 6 also illustrates that
the  projected  positive  anomalies  are  more  consistent  than
the projected negative anomalies among the 16 RCP8.5 exper-
iments, which reflects more uncertainty for the projected car-
bon fluxes over regions with negative changes. 

4.    Discussion
 

4.1.    Linkage between climate and vegetation anomalies

To investigate drivers of the changes in vegetation distri-
bution,  we  further  analyzed  the  relationships  between  the
changes in fractional coverage (FC) of the above-mentioned
six PFTs and the temperature and precipitation, respectively
(Fig. 7). The temperature changes exhibit significant negative
correlations with the changes in the PFT categories of “needle-
leaf  evergreen  boreal  tree ”  (NEB),  “broadleaf  deciduous
boreal shrub” (BDBsh), and “C4 grass” (C4), with correlation
coefficients (cc) of –0.89, –0.65, and –0.51, respectively. In
contrast, significantly positive correlations are seen between
the changes in temperature and “broadleaf deciduous temper-

ate  tree ”  (BDM;  cc=  0.88),  “C3  arctic  grass ”  (C3Ar;  cc=
0.85), and “C3 non-arctic grass” (C3NA; cc= 0.64). Figure
7b shows that the changes in precipitation are significantly
correlated with the changes in NEB (cc= –0.48), BDBsh (cc=
–0.60),  and C3Ar (cc= 0.63),  while the correlations for the
other three PFTs are not significant. Together with the partial
correlation coefficients (Table S3), the stronger correlations
between fractional coverage of vegetation and surface air tem-
perature indicate that temperature is the dominant driver of
the changes in vegetation distribution as opposed to precipita-
tion.

The dominant role of surface air temperature in driving
vegetation distribution strongly suggests that temperature is
a key limiting factor for vegetation growth. The warmer cli-
mate in the future can lead to an expansion of the growing sea-
son and increased photosynthesis rates in the boreal and tem-
perate regions. High temperatures also lead to higher mortal-
ity  rates  for  boreal  woods  (NEB  and  BDBsh)  due  to  heat
stress and thus a decrease in FC. However, the heat stress is
neglected in DGVMs, because temperate vegetation adjusts
to the warmer climate and thus results in an increase in FC
for BDM and C3 grasses. For C4 grass that grows in the trop-
ics  (Fig.  S4),  warming has  little  or  even a  negative  impact
on the rate of photosynthesis but significantly increases the
rate of respiration, thus suppressing productivity and leading
to decreased FC.

We  next  investigate  the  relationship  between  the  pro-
jected changes in the three categories of  carbon fluxes and
changes  in  LAI,  surface  air  temperature,  and  precipitation.
The  three  carbon  fluxes  are  known  to  be  impacted  greatly
by LAI, temperature, and precipitation. Their net effects can
be very different in different ecosystems, so the changes in
the  three  carbon  fluxes  show  large  differences.  Thus,  we
selected six regions (Table S4 in the ESM) to discuss these
differences by using regional boundaries defined in previous
studies  (Giorgi  and  Francisco,  2000; Xue  et  al.,  2010).  In

 

 

Fig.  4. (a)  Spatial  distribution  of  differences  in  leaf  area  index  (LAI)  between  Pre  and  RCP8.5  (RCP8.5
minus Pre). The stippled regions represent grids where at least 14 of 16 models agree with the multi-model
ensemble mean and the bars in the left bottom represent the global means of LAI in Pre (blue) and RCP8.5
(red). (b) The zonal average of LAI in the present-day experiment (Pre; blue) and the RCP8.5 experiments
(RCP8.5; red), respectively. The shaded red areas represent one standard deviation. All units are m2 m–2.

 

Fig.  5. Global  means  of  carbon  fluxes  in  Pre  (blue)  and
RCP8.5  (red).  The  bars  represent  one  standard  deviation.  All
units are PgC yr–1.
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these  regions,  the  projected  changes  for  the  three  carbon
fluxes have either remarkably increased, slightly increased,
or decreased (Fig. S5 in the ESM).

Over  northern  mid-high  latitudes,  it  is  known  that  an
increase in LAI, temperature, and precipitation is generally
favorable  for  an  increase  in  GPP,  NPP,  and  Ra. Figure  8
shows a remarkable increase in the projected carbon fluxes
in  Alaska  (ALA),  Northern  Europe  (NEU),  and  eastern
North America (ENA) due to the combined effects of LAI,
temperature, and precipitation. However, in Western Siberia
(WSI), the replacement of trees and shrubs by grasses (Fig.
S6 in the ESM) leads to a decrease in LAI and in the carbon
fluxes, which partly offsets the increase in the carbon fluxes

caused by the increased temperature and precipitation.  The
net result ultimately leads to a slight incremental increase of
the carbon fluxes by no more than 0.50 PgC yr–1 in WSI.

Over the tropics, warmer climate anomalies may reduce
vegetation productivity due to a suppression of photosynthe-
sis caused by a higher vapor pressure deficit, while wetter cli-
mate anomalies can enhance vegetation productivity by reduc-
ing water stress. Figure 8 shows weaker positive anomalies
for the projected temperature and stronger positive anomalies
for the projected precipitation in Southeast Asia (SEA) than
for  the  Amazon  Basin  (AMZ).  These  differences,  on  one
hand,  explain  the  opposite  responses  regarding  the  carbon
fluxes for the two regions. On the other hand, the increased

 

 

Fig.  6. Spatial  distribution  of  differences  between  the  present-day  experiment  (Pre)  and  the  RCP8.5
experiments  (RCP8.5)  (RCP8.5  minus  Pre)  in  (a)  GPP,  (c)  NPP,  and  (e)  Ra.  (units:  gC  m–2 yr–1).  The
stippled regions represent grids where at least 14 of 16 models agree with the multi-model ensemble mean.
(b), (d), and (f) are the zonal average (units: kgC m–2 yr–1) of GPP, NPP, and Ra in Pre (blue) and RCP8.5
(red). The shaded red areas represent one standard deviation.
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LAI caused by increased trees in SEA also makes large contri-
butions to the enhanced carbon fluxes, while the decreased

LAI, caused by decreased trees in the AMZ, makes large con-
tributions to the decreased carbon fluxes. Overall, the combi-
nation of the effects caused by LAI, temperature, and precipi-
tation  result  in  opposite  behaviors  between  SEA  and  the
AMZ regarding the response to carbon fluxes. 

4.2.    Uncertainties and significance

This work mainly focuses on the impact of climate warm-
ing on vegetation dynamics and carbon fluxes, so the atmo-
spheric CO2 concentration is kept at a constant value in all
simulations to  isolate  the CO2 fertilization effects.  This  set
of our simulations may add to our full understanding of vege-
tation  responses.  Thus,  we  further  conducted  a  simulation
with an elevated CO2 of 850 ppm (hereafter eCO2) by refer-
ring to Yu et  al.  (2014).  We compared the results  with the
above  results  to  discuss  the  differences  in  the  effects  of
global warming and CO2 fertilization on vegetation dynamics
and carbon fluxes.

The results show that the eCO2 simulation also produced
more  vegetation  than  the  Pre  simulation.  The  value  of  the
greening anomaly is comparable to that of the RCP8.5 simula-
tion  (Fig.  S7  in  the  ESM).  However,  there  is  no  poleward
expansion of vegetation in the eCO2 simulation over the north-

 

 

Fig. 7. Relationship between the changes in fractional coverage (FC, %) of the six PFTs (NEB, BDM, BDBsh, C3Ar,
C3NA,  C4)  with  (a)  annual  mean  surface  2-m  temperature  (K),  and  (b)  precipitation  (mm  d–1)  among  the  16
ensembles.  The  changes  in  fractional  coverage  have  been  standardized.  The  lines  represent  the  corresponding
regression lines. The abbreviations of the PFT correspond to the information in Table S1.

 

Fig.  8. Changes  in  carbon  fluxes  (GPP,  NPP,  and  Ra;  PgC
yr–1), LAI (m2 m–2),  temperature (T;  K),  and precipitation (P;
mm  d–1) over  the  six  selected  regions.  The  abbreviations  of
these regions correspond to the information in Table S4.
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ern  high  latitudes  (Fig.  S8  in  the  ESM).  The  three  carbon
fluxes are also enhanced in the eCO2 simulation relative to
the Pre simulation. Their global annual totals are comparable
to those in the RCP8.5 simulation (Fig. S9 in the ESM). The
spatial distribution shows that the enhancement of the three
carbon fluxes of the eCO2 simulation is seen over almost all
vegetated  land  grids  (Fig.  S10  in  the  ESM),  while  the
RCP8.5 simulation shows a negative anomaly in the three car-
bon fluxes over more vegetated grids (Fig. 6). The comparable
results between the RCP8.5 and eCO2 simulations illustrate
that  the  effects  of  global  warming  on  vegetation  dynamics
and carbon fluxes are just as important as those of CO2 fertil-
ization.

Furthermore,  in  our  study,  the  projected  results  were
based on the forcing from the RCP8.5 scenario, which corre-
sponds to a very high baseline emission scenario to maximize
the  climate  signal  (Taylor  et  al.,  2012).  Liu  et  al.  (2020)
assessed the future changes in the climate-vegetation system
over  East  Asia  under  different  emission  scenarios.  They
found a slight increase in vegetation cover over most of the
region and the magnitude of these changes increased gradu-
ally from low to high RCPs. Thus, more simulations and anal-
yses are needed to investigate the dependence of the results
on the scenarios at the global scale.

Despite  the  uncertainties  mentioned  above,  our  study
makes  a  valuable  contribution  to  the  development  of  the
model and the understanding of the responses of vegetation
to  global  warming.  First,  the  results  show  opposite
responses to warming between the PFT categories, “needle-
leaf evergreen boreal tree” (NEB) and “broadleaf deciduous
temperate tree” (BDM) due to the different values for heat
stress threshold in the model. This phenomenon reveals that
the differences in parameters assigned to PFTs have signifi-
cantly  different  effects  on  the  vegetation  in  response  to
future climate changes. Meanwhile, this result also reminds
us that it is necessary to further improve the parameterization
of heat stress in IAP-DGVM because of the limitation of the
different heat stress threshold settings for different PFT cate-
gories  Thus,  optimizing  the  parameterization  of  vegetation
processes in the model is crucial for simulating a more realis-
tic  vegetation  change.  Second,  this  study  demonstrates  an
application of the CAS-ESM2 for studying the response of
vegetation  dynamics  to  climate  change.  In  the  process  of
developing  the  IAP-DGVM,  this  application  represents  a
new  frontier  after  the  successful  coupling  of  IAP-DGVM
with CAS-ESM2, and provides a valuable sample for compari-
son with both the CAS-ESM2 community and other model
communities. We have coupled IAP-DGVM with the atmo-
spheric general circulation model (IAP-AGCM; Zhang et al.,
2013), so CAS-ESM2 can be used to investigate interactions
between vegetation dynamics and climate. We now are able
to use this coupled version of CAS-ESM2 to run the Diagnos-
tic, Evaluation, and Characterization of Klima (DECK) experi-
ments  of  phase  6  of  the  Coupled  Model  Intercomparison
Project (CMIP6). Third, the poleward expansion of vegeta-
tion in northern mid-high latitudes simulated in our work is
consistent  with  numerous  studies  on  future  projections

(Mahowald et al., 2016; Yu et al., 2016; Gang et al., 2017;
Tharammal et al.,  2019) and with recent observations (Zhu
et al., 2016; Zeng et al., 2018; Yao et al., 2019), indicating
that  the  “greening”  trend  may continue  in  the  future.  This
greening  can  provide  critical  feedback  to  the  local  climate
by shading, changing surface albedo, and regulating the parti-
tioning of evapotranspiration between evaporation and transpi-
ration  (Blok  et  al.,  2010; Zhu  and  Zeng,  2015, 2017).  Our
investigation further shows the dominant role of surface air
temperature in the greening phenomenon. The investigation
provides for a better understanding of vegetation processes
and  expands  upon  our  knowledge  of  model  behavior  in
response  to  global  warming,  which  favors  projections  of
changes in  terrestrial  ecosystems and climate  in  the  future.
Overall,  this  work  evaluates  the  responses  of  vegetation  to
global warming and shows the tight linkage between vegeta-
tion  and  climate  changes,  which  is  a  necessary  step  for
model development and a significant foundation for further
study of vegetation-climate interactions. 

5.    Summary

This  study  investigated  the  changes  in  the  distribution
of vegetation and carbon fluxes in response to global warming
by using IAP-DGVM in CAS-ESM2. The results, based on
the present-day simulation and RCP8.5 simulations, showed
a greening in the northern middle- and high-latitudes and a
slight browning in the tropics. The results also showed posi-
tive  anomalies  in  GPP,  NPP,  and  Ra  over  most  latitudes,
while negative anomalies occurred, with higher uncertainty,
in the Amazon. We argue that surface air temperature is the
dominant  driver  in  changing  the  vegetation  distribution,  as
opposed to precipitation, and that the changes in GPP, NPP,
and Ra can be explained by the combined effects of LAI, tem-
perature, and precipitation.

The results of this investigation not only remind us that
optimizing  the  parameterization  of  vegetation  processes  in
the model is crucial, but also provides a better understanding
of  vegetation  processes  that  could  prove  beneficial  in  the
design and improvement of model parameterizations for simu-
lating a more realistic vegetation change.
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