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ABSTRACT

An  exceptionally  prolonged  heavy  snow  event  (PHSE)  occurred  in  southern  China  from  10  January  to  3  February
2008, which caused considerable economic losses and many casualties.  To what extent any dynamical model can predict
such an extreme event is  crucial  for  disaster  prevention and mitigation.  Here,  we found the three S2S models (ECMWF,
CMA1.0  and  CMA2.0)  can  predict  the  distribution  and  intensity  of  precipitation  and  surface  air  temperature  (SAT)
associated  with  the  PHSE  at  10-day  lead  and  10−15-day  lead,  respectively.  The  success  is  attributed  to  the  models’
capability  in  forecasting  the  evolution  of  two  important  low-frequency  systems  in  the  tropics  and  mid-latitudes  [the
persistent  Siberian  High  and  the  suppressed  phase  of  the  Madden−Julian  Oscillation  (MJO)],  especially  in  the  ECMWF
model. However, beyond the 15-day lead, the three models show almost no skill in forecasting this PHSE.
　  The bias in capturing the two critical circulation systems is responsible for the low skill in forecasting the 2008 PHSE
beyond the 15-day lead. On one hand, the models cannot reproduce the persistence of the Siberian High, which results in
the  underestimation  of  negative  SAT  anomalies  over  southern  China.  On  the  other  hand,  the  models  cannot  accurately
capture the suppressed convection of the MJO, leading to weak anomalous southerly and moisture transport, and therefore
the underestimation of precipitation over southern China.
　  The Singular Value Decomposition (SVD) analyses between the critical circulation systems and SAT/precipitation over
southern China shows a robust historical relation, indicating the fidelity of the predictability sources for both regular events
and extreme events (e.g., the 2008 PHSE).
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Article Highlights:

•  The  unprecedented  prolonged  heavy  snow  event  in  early  2008  over  southern  China  included  four  intensive  and
successive subseasonal phases.

•  The  useful  prediction  skill  of  each  phase  of  this  extreme  prolonged  heavy  snow  event  from  ECMWF  and  CMA  S2S
prediction models is only up to 10 days.

•  The failure to forecast the Siberian High and the MJO could cause the low subseasonal forecast skill of this event.
 

 
  

1.    Introduction

During early 2008, southern China experienced an excep-

tional prolonged heavy snow event (PHSE) accompanied by
a severe cold surge and freezing rain, leading to massive eco-
nomic  losses  and  numerous  casualties.  This  unprecedented
extreme  event  severely  damaged  public  infrastructure  and
caused  an  inordinate  amount  of  traffic  congestion  in  many
provinces in southern China (Zhao et al., 2008).
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Given  its  severity,  huge  efforts  have  been  devoted  to
understanding the  physical  mechanism of  this  disaster.  For
example, it is suggested that during this PHSE, the Siberian
blocking  high  over  the  mid−high  latitudes  persisted  for
three weeks at around 65°E, bringing cold, dry air to south-
ern China and causing the extremely cold event (Bueh et al.,
2011).  Meanwhile,  abundant  water  vapor  was  persistently
transported from the tropical oceans to the subfreezing areas
in  southern  China,  leading  to  the  prolonged  heavy  snow
event(Tao  and  Wei,  2008; Zhou  et  al.,  2009).  The  water
vapor  was  advected  by  anomalous  southerly  winds,  which
was  induced  by  the  tropical  diabatic  cooling  that  occurred
when  the  suppressed  tropical  convection  propagated  to  the
Maritime  Continent  (Hong  and  Li,  2009; Ma et  al.,  2011).
In addition,  the autumn Arctic  sea ice (Wu et  al.,  2011; Li
and Wu, 2012),  the westerly jet  stream (Wen et  al.,  2009),
and  the  anomalous  Tibetan  Plateau  warming  (Bao  et  al.,
2010) may also have played roles in the formation and main-
tenance  of  this  extreme  event.  The  PHSE  in  early  2008
caused severe impacts at an unprecedented scale. However,
due to the complicated nature of the influence factors and its
long  duration  (exceeding  three  weeks),  accurate  prediction
of this event was quite challenge.

Forecasting  information  of  such  a  persistent  extreme
event not only requires correct climate mean background con-
dition, but also detailed intraseasonal evolution of the event.
For  the  sake  of  successful  disaster  mitigation  and  preven-
tion,  accurate  prediction  of  this  type  of  extreme  event
10−30 days in advance is imperative and is the main target
of  the  subseasonal  to  seasonal  (S2S)  prediction  project
(Vitart et al., 2017).

Previous  studies  have  evaluated  the  skill  in  predicting
Northern winter climates on the subseasonal timescale. For
example, Li et al. (2017) indicated that even though the S2S
model shows encouraging skill beyond two weeks in predict-
ing East Asia cold surges, the forecast Siberian High and asso-
ciated  anomalous  northerly  winds  are  considerably  weaker
than observed. Zhou et al. (2019) evaluated the subseasonal
forecast  skill  of  2-m  air  temperature  in  winter  over  China
based on 11 S2S models and suggested the European Centre
for Medium-Range Weather Forecasts (ECMWF) model per-
formed  best,  with  useful  forecast  skill  up  to  four  pentads,
while the model from China Meteorological Administration
(CMA)  exhibited  useful  prediction  skill  to  about  three
pentads. Lyu et al. (2019) suggested that the Madden−Julian
Oscillation  (MJO)  and  North  Atlantic  Oscillation  (NAO)
are  important  subseasonal  predictability  sources  for  the
winter  cold  surges  in  China,  but  the  ECMWF  model  can
only  reproduce  the  relationship  between  MJO/NAO  and
cold surges up to four days. Xiang et al. (2020) reported that
the  ECMWF  model  exhibit  skillful  prediction  of  cold
extremes over  a  great  fraction of  the Northern Hemisphere
with  a  lead  time  of  2−4  weeks.  They  also  found  that  the
winter  climate  modes  over  Eurasia  are  more  predictable
than those of North America. Li et al. (2020) suggested that
the  ECMWF  and  CMA  models  can  skillfully  forecast

Tibetan Plateau snow cover within a 2-week lead time dur-
ing winter, but they all overestimated the area of Tibetan Plat-
eau snow cover, leading to a cold bias of the surface air tem-
perature. Cui  et  al.  (2021) suggested  the  11  S2S  models
could  skillfully  forecast  the  winter  surface  temperature
intraseasonal  mode  over  mid-to-high  latitudes  of  Eurasia
with a 10−20-day lead time, and the maximum attainable pre-
dictability of this mode can up to 25 days.

However, it remains to be determined: What is the opera-
tional  S2S  models’ prediction  skill  for  the  disaster  events
such as PHSE over southern China in 2008? Are there any
universal  predictability  sources  for  such  disastrous  events?
These are elusive issues remaining as unresolved. Building
upon the current advances in S2S models, this article exam-
ines the prediction skill of the PHSE over southern China in
early 2008 using three S2S prediction models (ECMWF and
two CMA models)  and aims to  detect  the most  useful  pre-
dictability sources for improving the S2S prediction skill of
such  events.  The  remainder  of  the  paper  is  organized  as
follows: Section 2 introduces the data and methods; section
3 evaluates the skills of the three models in forecasting the
PHSE  and  examines  the  possible  reasons  behind  their
forecast  skills.  Summary  and  discussion  are  provided  in
section 4. 

2.    Data and methods
 

2.1.    Data

Both of the S2S databases from ECMWF and CMA are
employed in the present study. The ECMWF model is con-
sidered  as  the  best  operational  model  (Zhou  et  al.,  2019),
while  the  CMA  model  is  the  independently  developed
Chinese  operational  model.  The  CMA includes  two differ-
ent  models,  CMA1.0  and  CMA2.0.  The  CMA2.0  is  oper-
ated in the second phase of the S2S Projection, and includes
advancements in parameterization, assimilation and initializa-
tion schemes over those in CMA1.0 (Liu et al., 2017, 2021).
The  ECMWF  ensemble  model  has  11  members,  while  the
CMA models have 4 members.

The CMA1.0 model  is  initialized every day,  while  the
ECMWF  and  CMA2.0  model  are  initialized  twice  a  week
(every  Monday  and  Thursday).  For  a  fair  comparison,  we
rearranged  the  ECMWF and CMA2.0  model  data  to  be  an
everyday-lead based on the method proposed by Yang et al.
(2018a). Firstly, we extracted the forecast data from the lead
day N−2 to day N+2 of one target day (date M) of the ori-
ginal data array. Secondly, the extracted data are used as the
forecast data of N days lead from day M−2 to day M+2 of
the  new data  array,  so  that  the  new data  are  in  daily  inter-
vals. If the forecast dates in the new data array overlap, the
value of the forecast date is treated as the mean of the two val-
ues forecast from different initialization dates. This method
can  maintain  consistency  between  the  original  data  array
and the new data array. Note that the new data array is only
available  after  a  lead  time  of  3  days.  Thus,  only  the  data
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from a  3-day  lead  in  ECMWF and  CMA are  available  for
comparison.

The  observed  daily  mean  surface  air  temperature  at  2
meters  altitude  (SAT)  and  precipitation  data  derived  from
gauges over China are gridded to a horizontal resolution of
0.25°  ×  0.25°  as  provided  by  the  National  Meteorological
Information Center (CN05.1; Xu et al., 2009; Wu and Gao,
2013). The atmospheric circulation data are from the ERA-
Interim reanalysis dataset (Dee et al., 2011), while the OLR
(the net outgoing longwave radiation at the top of the atmo-
sphere,  OLR)  are  from  the  National  Oceanic  and  Atmo-
spheric Administration (Liebmann and Smith,  1996).  Fore-
cast  SAT,  total  precipitation,  OLR,  geopotential  height  at
500 hPa, mean sea level pressure, and zonal and meridional
wind at 850 hPa are derived from the three models. The data-
base  consists  of  1998−2010  (2005−19)  winters  from
ECMWF  and  CMA1.0  (CMA2.0)  (Vitart  et  al.,  2017).  In
the present study, the observed anomalies are calculated by
subtracting the climatological annual values, while the anom-
alies in models are calculated by removing their own climato-
logical annual values from the hindcast, computed as a func-
tion of both lead time and initialization date. 

2.2.    Methods

The PHSE in early 2008 can be divided into four success-
ive  phases  based  on  the  varying  location  and  strength  of
PHSE’s subseasonal evolution. Figure 1 shows a time−latit-
ude  cross  section  of  the  precipitation  and  SAT  anomalies
over southern China. It can be seen that the first phase (P1)
of the PHSE occurred during 10−14 January, with the precipit-
ation  anomalies  mainly  to  the  north  of  30°N  and  rapidly
decreasing SAT fell below 0°C from 12 January. The region
south  of  30°N  was  relatively  dry  and  warm  in  P1.  During
the second phase (P2) from 18 to 23 January, the SAT anom-
aly  was  around  −2°C  to  −4°C,  and  the  positive  precipita-
tion  anomaly  propagated  southwards  and  was  situated
around 30°N. From 25−29 January (P3), two positive precipit-

ation  anomaly  centers  appeared  over  20°−25°N  and
25°−30°N, respectively. The last phase (from 30 January to
3  February,  P4)  was  the  coldest  with  the  SAT  anomaly
below −6°C, and the largest  positive precipitation anomaly
covered the entire region south of 30°N. The division of this
PHSE is consistent with the previous works of Tao and Wei
(2008) and Zhou et al. (2009).

The  normalized  root-mean-square  error  (NRMSE)  and
the  pattern  correlation  coefficient  (PCC)  are  the  metrics  to
assess  the  models’ performances  in  forecasting  the  PHSE.
The NRMSE can reflect  the skill  in capturing the intensity
of  the  predictand  (i.e.,  SAT  and  precipitation),  while  the
PCC measures the skill  in forecasting the spatial pattern of
the predictand.

The NRMSE is defined as
 

NRMSE =

√
1
N

∑N

I=1
(RFI−ROI)2√

1
N

∑N

I=1
(ROI−

−
RO)

2
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and the equation of the PCC is
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where N indicates the number of grids in the study area, and
 ( )  denotes  the  value  of R in  the  model  forecasting

(observation).  and 

indicate  the  area-mean  of  variables.  A  small  NRMSE sug-
gests that the prediction is in good agreement with the obser-
vation in intensity, while a high PCC indicates high skill in
predicting the spatial pattern of the predictand.
 

 

 

Fig.  1.  Latitude−time  cross  section  of  the  SAT  anomaly  (contours;  °C,  with  a  2°C  interval)  and  precipitation  anomaly
(shading; mm d−1) averaged over land from 105°−125°E from 7 January to 6 February 2008. The black contour denotes 0°C.
The solid black vertical lines divide the four successive phases of the PHSE.
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3.    Results
 

3.1.    Spatial distribution of precipitation and SAT during
PHSE

Figure 2 shows the spatial patterns of SAT and precipita-
tion  anomalies  over  southern  China  during  the  four  indi-
vidual phases of the PHSE. In P1, the cold SAT anomalies
are observed over the middle reaches of the Yangtze River
basin, with its center below −3°C, while the southeast coast
shows positive SAT anomalies. In P2, the cold SAT anom-
alies move further to the south and intensify to below −6°C
over the southwest part of southern China, while the posit-
ive SAT anomalies are greatly weakened and confined to a
small  region  over  Fujian  Province.  In  P3  and  P4,  the  cold
SAT  anomalies  are  further  intensified  and  dominate  the
whole of southern China. The cold anomaly center in Guang-
dong and Guangxi provinces is below −8°C in P4. Note that
the cold SAT center gradually moves southward and south-
westward  with  increasing  intensity  from  P1  to  P4  (also
shown in Fig. 1).

Corresponding to the southward propagation and ampli-
fication of the cold SAT anomaly, the spatial distribution of
precipitation anomalies during the four phases of the PHSE
also shows large disparities. P1 and P2 both exhibit a dipole
rainfall  pattern.  In  P1,  the  wet  anomalies  appear  over  the
middle and lower reaches of the Yangtze River and dry anom-
alies are observed to the south. In P2, the dipole rainfall pat-
tern  shifts  southwards,  with  its  wet  pole  over  the  lower
reaches of the Yangtze River basin and dry pole over much
of the area to the south. In P3, the positive rainfall anomaly
extends  southward  and  southwestward,  which  dominates
almost the whole of southern China. In P4, the positive rain-
fall anomaly over the area to the north of the Yangtze River
disappears, and the positive rainfall anomaly over the south
further intensifies.

Therefore, each phase of this PHSE shows distinct fea-
ture, meaning we should not investigate the PHSE’s predic-
tion skill by assessing its time-mean state. Can the S2S mod-

els  forecast  the  PHSE’s  intraseasonal  evolution?  Based  on
the above knowledge of the 2008 PHSE, in the next subsec-
tion we assess the skill of the ECMWF and CMA models in
predicting  the  SAT  during  each  of  the  four  phases  of  the
PHSE. 

3.2.    Prediction skill for PHSE in the S2S models

The overall performance of the S2S models in forecast-
ing the PHSE can be evaluated using the NRMSE and PCC
with respect to the two key variables (i.e., SAT and precipita-
tion)  of  the  PHSE. Figure  3 shows the  NRMSE skills  as  a
function  of  lead  time  for  each  process.  In  general,  the
ensemble  mean  (solid  line)  displays  better  skill  due  to  the
reduced systematic errors. Thus, we will mainly discuss the
results of ensemble mean hereafter. For all the four phases,
the  NRMSE  generally  increases  with  lead  time.  The
NRMSE of SAT (Fig. 3a) are consistently higher than those
of precipitation (Fig. 3b) in both CMA models. In ECMWF,
the NRMSE of SAT appears promising, with values around
1.0  in  P1−P3,  but  the  NRMSE  is  quite  high  in  P4—espe-
cially after  a lead time of 14 days (with an NRMSE larger
than 2.0). In CMA 2.0, the NRMSE skills for both SAT and
precipitation are better than that of CMA1.0 but still  lower
than  that  of  ECMWF.  In  general,  the  NRMSE for  SAT of
ECMWF is much lower than that of the two CMA models,
while  it  is  comparable  with  CMA for  precipitation  in  each
phase.

Figure  4 shows  the  PCC skill  of  the  PHSE as  a  func-
tion of lead time for each phase, which denotes whether the
model can forecast the actual spatial distribution of the pre-
dictand. Note that the spread of PCC skill in precipitation is
considerable wider than SAT in both models, indicating lar-
ger discrepancy among different ensemble members in simu-
lating precipitation pattern. The PCC skill of both CMA mod-
els is relatively lower than that of ECMWF in precipitation
at all lead times for P1, P2 and P3, and is comparable with
ECMWF  in  P4.  The  CMA2.0  has  a  higher  PCC  than
CMA1.0 for SAT, especially for P4. The high PCC skill (lar-
ger than 0.5) from a lead time of 3 to 15 days suggests that

 

 

Fig. 2. Spatial distribution of (a) SAT (shading; °C) and (b) precipitation (shading; mm d−1) anomalies over southern China
in each of the four phases P1,…P4. The green line indicates the Yangtze River.

1876 SUBSEASONAL PREDICTION SKILLS OF EXTREME EVENT VOLUME 38

 

  



the three models have promising skill in forecasting the spa-
tial pattern of the SAT (Fig. 4a) and precipitation (Fig. 4b)
anomalies  in  P1,  P2  and  P3  within  a  15-day  lead  time,
although  the  PCC  skill  of  precipitation  forecast  by  both
CMA  drops  dramatically  beyond  the  10−15-day  period.
Note  that  in  P4,  the  SAT forecast  by  the  three  models  has
very  limited  PCC skill.  Both  CMA and  ECMWF show no
skill (PCC below 0.5) in forecasting SAT even from a very
short lead time (Fig. 4a).

To  show more  detailed  information  on  the  model  per-
formance  in  forecasting  the  PHSE,  the  SAT and  precipita-
tion anomaly patterns over southern China in each phase of
the  PHSE ensemble  mean  forecasts  at  lead  times  of  5,  10,
15 and 20 days are presented in Figs. 5 and 6, respectively.
Figure 5 shows the forecasted SAT by ECMWF and CMA.
It  can  be  seen  that  ECMWF  and  CMA2.0  generally  fore-
cast the cold surge during each individual phase. However,
in P1, ECMWF underestimates the cold anomalies over the
middle  reaches  of  the  Yangtze  River  basin  and  forecast  a
much larger area of the warm anomalies compared with the
observed  one  over  southeastern  coast,  especially  beyond  a

15-day  lead.  CMA 2.0  shows  no  skill  after  15-day  lead.  It
can also be seen that CMA1.0 fails to forecast the cold SAT
even with a 5-day lead, consistent with the high NRMSE in
Fig.  3a.  None of  the  three  models  can forecast  the  cooling
anomaly  center  over  the  middle  reaches  of  the  Yangtze
River after the 15-day lead, resulting in the higher NRMSE
(Fig. 3a).

Compared  to  the  observations,  in  P2,  P3  and  P4,  all
three  models  underestimate  the  pronounced  negative  SAT
anomalies over the areas south of the Yangtze River. This is
especially  the  case  in  P4,  which  explains  the  limited  PCC
skill in this period (Fig. 4a). CMA and ECMWF possess reas-
onable skill in forecasting SAT anomalies from a lead time
of 3 to 20 days in P2 and P3, but unsatisfactory skills in P1
due to missing the cold anomaly over the middle of Yangtze
River basin, and in P4 due to the underestimated cold anom-
aly over  the area south of  the Yangtze River.  In  summary,
all the models missed the cold anomalies over the middle of
Yangtze River basin in P1 beyond the 10-day lead. In P2 to
P4,  ECMWF  always  underestimates  the  cold  anomalies
south  of  30°N.  In  both  of  the  two  CMA models,  the  fore-

 

 

Fig. 3. NRMSE of (a) SAT and (b) precipitation averaged over the land from 105°−125°E, 20°−35°N in forecasts of the four
phases of the PHSE from the three models. The blue, red, orange line denotes the ECMWF, CMA1.0, CMA2.0 respective
ensemble mean, and the corresponding shading indicates the spread of the ensemble members for each model.

 

 

Fig. 4. As in Fig. 3 but for PCC.
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Fig.  5.  Spatial  distribution  of  forecast  SAT  anomaly  (shading;  °C)  over
southern  China  for  the  four  phases  of  the  PHSE  (top  to  bottom)  at  lead
times from 5−20 days (left to right) by ECMWF (upper panels), CMA1.0
(middle  panels)  and  CMA2.0  (lower  panels)  ensemble  mean.  The  green
line indicates the Yangtze River.
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Fig. 6. As in Fig. 5 but for the precipitation anomaly (shading; mm d−1).
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cast cold anomalies center always shifts northwestward, and
a  warm  anomaly  even  appears  over  the  southeast  coast  in
P2 at the 5- and 20-day lead and in P4 at the 15- and 20-day
lead in CMA1.0, resulting in the low PCC skill as shown in
Fig. 4a.

Figure 6 displays the forecast precipitation anomalies in
each phase. Consistent with the SAT, the pattern of precipita-
tion anomalies in each individual phase can be generally fore-
cast  within  a  10-day  lead.  However,  beyond  the  10-day
lead,  the  forecast  skill  for  precipitation  drops  dramatically
(as  shown  in Fig.  4b).  Specifically,  for  P1,  P3  and  P4,
ECMWF can  basically  forecast  the  pattern  of  precipitation
anomalies within a 10-day lead time, while the dipole rain-
fall pattern in P2 fails to have been forecast even at the 10-
day or  longer  lead time (also see Fig.  3b).  CMA1.0 shows
good skill for precipitation with a 10-day lead in P3 and P4
but  no  skill  even  beyond  a  5-day  lead  in  P1  and  P2.  In
CMA2.0,  the  wet  anomaly  is  underestimated  over  middle-
lower Yangzi River in P3−P4 at a 10-day lead. In summary,
while  both  models  show no  skill  with  respect  to  precipita-
tion beyond the 15-day lead time,  ECMWF clearly outper-
forms  CMA  in  all  phases  within  a  15-day  lead  (also  see
Fig. 4b).

Questions are raised as to why the three models cannot
skillfully forecast the SAT and precipitation beyond the 10-
day lead time, as well  as why they both show very limited
skill  for  SAT  in  P4.  Evaluation  of  the  models’ perform-
ances  in  forecasting  the  critical  circulation  systems  associ-
ated with the PHSE should provide useful clues for further
improvement  and  development  of  the  S2S  models.  There-
fore,  the  next  subsection  investigates  the  capacity  of  the
three  models  in  forecasting  these  critical  circulation  sys-
tems during the four phases and attempts to explain their fore-
cast skills. 

3.3.    Potential predictability sources of the PHSE

Here  we  evaluate  the  ability  of  the  models  to  forecast
the critical circulation systems on the subseasonal time scale

to tentatively explore the reasons behind the model errors in
SAT and precipitation during the four phases of the PHSE.
Firstly, we need to identify the observed critical circulation
anomalies  that  determine  the  SAT and precipitation  anom-
alies during the PHSE.

Figure  7a shows  the  observed  500-hPa  geopotential
height  and  sea  level  pressure  anomalies  over  the  Northern
Hemisphere during the four phases of the PHSE. The 500-
hPa geopotential height is characterized by a Siberian High
anomaly that persists from P1 to P4 over the mid−high latit-
udes of the Eurasian continent. The Siberian High is a mani-
festation of the outbreak of the cold surge, and a precursor
of  the  cold  SAT  over  East  Asia  (Yang  et  al.,  2018b).
Although the  Siberian  High is  weakened from P1 to  P4,  it
moves gradually southward and eastward. Together with the
500-hPa  Siberian  blocking  high  anomaly  is  a  positive  sea
level  pressure  anomaly  which  also  propagates  southeast-
ward, leading to strengthened anomalous northerlies on the
eastern  side  of  the  surface  high-pressure  anomaly,  which
advects  cold air  into southern China.  Therefore,  during the
southeastward-propagating movement  of  the  Siberian High
and the positive sea level pressure anomalies from P1 to P4,
southern China becomes colder and colder, and the anomal-
ous  cold  center  shifts  gradually  from north  of  the  Yangtze
River to the south (Figs. 1 and 2a).

On  the  other  hand,  during  the  whole  period  of  the
PHSE,  suppressed  convection  of  a  strong  MJO propagates
eastwards  from  the  Indian  Ocean  to  the  western  Pacific,
providing abundant water vapor by way of inducing persist-
ent anomalous southerly flow (Fig. 7b). In P1 and P2, an anti-
cyclonic anomaly is stimulated over the southern part of the
Bay  of  Bengal  as  a  Matsuno−Gill-type  Rossby  wave
response  (Gill,  1980)  to  the  northwest  of  the  MJO  sup-
pressed  convection  (diabatic  cooling),  whilst  a  cyclonic
wind shear is induced over the South China Sea as a Kelvin
wave response to the diabatic cooling. The strong southwester-
lies  to  the  northwest  of  the  anticyclonic  anomaly  merge
with the northerly flow over the South China Sea and trans-

 

 

Fig.  7.  Spatial  distribution  of  (a)  500-hPa  geopotential  height  anomaly  (contours;  gpm)  and  sea  level  pressure  anomaly
(shading; hPa) and (b) 850-hPa water vapor transport flux (vectors; kg m−1 s−1) and outgoing longwave radiation anomaly
(shading; W m−2) observed in the four phases during the PHSE. Only the vectors larger than 5 kg m−1 s−1 are shown. The red
line outlines the domain of southern China. The OLR positive (negative) anomaly indicates reduced (increased) upward heat
flux.
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ports  the  warm,  moist  air  farther  into  the  cold  Yangtze
River basin, leading to the snow/frozen rain in the Yangtze
River basin and relatively dry conditions over the south part
of southern China in P1 and P2 (Fig. 2b). Therefore, due to
the  MJO  suppressed  convection  over  the  eastern  Indian
Ocean,  the  precipitation anomalies  present  a  dipole  pattern
over southern China. In P3 and P4, the suppressed convec-
tion further propagates eastward to the western Pacific, and
the Gill-type Rossby wave response in terms of an anticyc-
lonic  anomaly  is  induced  (Fig.  7b)  to  its  northwest,  mer-
ging  into  the  anomalous  western  North  Pacific  subtropical
High.  Therefore,  a  large  anticyclonic  anomaly  dominates
the  entirety  of  the  South  China  Sea  and  the  western  North
Pacific,  and  the  southwesterly  flow  along  the  northwest
flank of the anticyclonic anomaly transports abundant water
vapor into the cold region of southern China, leading to the
snow/frozen  rain  over  most  of  southern  China  during  P3
and P4 (Fig. 2b).

In summary, during the 2008 PHSE, the characteristics
of  the  Siberian  High  anomaly  in  the  mid-to-high  latitudes
determined  the  intensity  and  distribution  of  the  SAT  over
southern China, whereas the features of the MJO controlled
the water vapor transport into southern China. Additionally,
these  two  critical  circulation  anomalies  jointly  influenced
the  anomalous  western  North  Pacific  subtropical  high,  and
they ultimately determined the intensity  and spatial  pattern
of SAT and precipitation, and eventually the PHSE. There-
fore, these two independent and critical circulation systems
from both the tropics and mid-to-high latitudes were persist-
ently at play and contributed to the entire intraseasonal evolu-
tion of the PHSE.

To track  the  dynamic  sources  related  to  forecast  skills
of  PHSE,  the  PCC  skill  for  500-hPa  geopotential  height
over  (20°−90°N,  30°−180°E)  and  OLR  over  (30°S−30°N,
30°−180°E) were calculated in each phase (Fig. 8). In gen-
eral, all models show reasonable PCC skills for 500-hPa geo-
potential  height  within  a  15-day-lead  and  for  OLR  within
10-day-lead, while poor skills are found in P4 for CMA1.0.
In addition, large spread of PCC skills can be seen between

different ensemble members, and the ensemble mean shows
superior  PCC skill  to  that  of  individual  member.  The PCC
skills  in  forecasting  both  500-hPa  geopotential  height  and
OLR  from  the  two  CMA  models  are  generally  lower  than
that of ECMWF, other than in P2 for 500-hPa geopotential
height  for  CMA1.0.  The  CMA2.0  possesses  a  comparable
PCC  of  500-hPa  geopotential  height  and  OLR  with
CMA1.0, except for the 500-hPa geopotential height in P3.

Figure 9 plots the 5-, 10-, 15- and 20-day-lead 500-hPa
forecasted spatial pattern of the 500-hPa geopotential height
and sea level pressure anomalies by these three models. At
the  5-  to  15-day lead time in  P1 and P2,  the  ECMWF and
CMA models generally forecast well the Siberian High anom-
aly at 500-hPa and the corresponding sea level pressure anom-
alies,  which  creates  the  relatively  high  forecast  skill  for
SAT  within  a  15-day  lead,  particularly  for  ECMWF
(Fig.  4a).  In  P2,  the  Siberian  High  anomaly  in  CMA2.0  is
maintained up to a lead time of 20 days, in accordance with
higher PCC skill (Fig. 8a) in contrast with the other models.
However,  in  P3,  the  Siberian  High  forecast  by  both  CMA
models is very weak and shifted northward beyond the 10-
day  lead,  eventually  disappearing  by  the  20-day  lead  time
(15-  and  20-day  lead)  for  CMA1.0  (CMA2.0),  resulting  in
the poor skill with respect to SAT (Fig. 4a). In P4, none of
the models could reproduce the Siberian High anomalies bey-
ond 15-day lead time in terms of both the intensity and loca-
tion.  The positive sea level  pressure  anomalies  over  inland
China are greatly underestimated or even missing after only
a  5-day  lead  time,  leading  to  the  failure  in  forecasting  the
cold SAT anomalies over the south of the Yangtze River in
P3 and P4 (Fig. 5). Moreover, because CMA1.0 always over-
estimates the subtropical western North Pacific high (Fig. 9)
as shown in P1 for all the lead times, and P2 and P4 at the
15-day and 20-day lead, the strength of the cold anomalies
over  southern  China  cannot  be  reproduced  well.  Instead,  a
warm  SAT  anomaly  is  forecast  over  southern  China  (see
Fig. 5 for P1, P2 and P4 in CMA1.0), which is induced by
the  overestimated  subtropical  western  North  Pacific  high
because of greater downward solar radiation.

 

 

Fig.  8.  As in Fig.  3 but  for  (a)  500-hPa geopotential  height  over  (20°−90°N, 30°−180°E) and (b)  OLR over  (30°S−30°N,
30°−180°E).
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Fig.  9.  Spatial  distribution  of  forecast  500-hPa  geopotential  height  (contours;  gpm)  anomaly
and sea level pressure (shading; hPa) anomaly for the four phases of the PHSE (top to bottom)
at  lead  times  from  5−20  days  (left  to  right)  by  ECMWF  (upper  panels),  CMA1.0  (middle
panels)  and  CMA2.0  (lower  panels)  ensemble  mean.  The  red  line  outlines  the  domain  of
southern China.
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Figure  10 plots  the  5-,  10-,  15-  and  20-day-lead  OLR
and water  vapor  flux anomalies  at  850-hPa forecast  by the
three  models.  In  general,  all  models  forecast  the  signals  of
eastward propagation of the MJO from P1 to P4. However,
the  three  models  gradually  fail  to  forecast  the  suppressed
MJO convection with the increase of lead time, and the bias
is obviously much larger in both CMA models than that in
ECMWF, which generates considerably lower PCC skill for
OLR  in  CMA  (Fig.  8b). Corresponding  to  the  weakened
MJO suppressed convection, the southerly water vapor flux
is greatly underestimated at  the 10- and 15-day lead in P1,
P2  and  P3  by  all  models.  Note  that  CMA1.0  forecasts  an
overly  strong  western  Pacific  subtropical  high  anomaly
(Fig. 9), which prevents the water vapor transport into south-
ern  China  in  P1 and P2 at  the  10−15-day lead time and in
P3 at the 15−20-day lead time, leading to relatively dry condi-
tions  in  the  region.  Also  note  that  because  both  ECMWF
and  CMA1.0  forecast  persistently  strong  southwestward
water vapor flux in P4, they still show skill in forecasting pre-
cipitation  at  least  at  a  15-day  lead  (Fig.  4b),  regardless  of
the  failure  in  forecasting the  Siberian High and the  corres-
ponding  cold  anomalies  over  southern  China  (Fig.  5).  For
CMA2.0, although the intensity of suppressed convection is
stronger than that of CMA1.0 beyond 15-day lead, the sup-
pressed  convection  is  underestimated  in  the  eastern  Indian
Ocean  in  P1−P2  and  shifts  eastward  over  the  western
Pacific Ocean in P3−P4 especially at a lead time of 20 days.
Moreover,  the  western  Pacific  subtropical  high  forecasted
by CMA2.0 is  largely underestimated and shifted eastward
(Fig. 9) from 15- to 20-day lead in P3 and P4. These factors
cause the bias of water vapor flux anomaly (Fig. 10), lead-
ing to the dry anomalies over southern China in CMA2.0 in
each phase at 15−20-day lead (Fig. 6).

In summary, all models possess encouraging skill in fore-
casting  the  SAT  and  precipitation  during  this  PHSE  over
southern China at a 10-day lead time, except for the SAT in
P4, which is forecast with very limited skill even at a 5-day
lead time. While all models have the capacity to forecast the
Siberian High and the corresponding positive sea level pres-
sure anomalies over inland China within a 15-day lead from
P1 to P3, they fail to forecast the positive sea level pressure
anomalies over inland China in the last phase of the PHSE,
leading  to  the  forecast  failure  for  SAT  in  P4.  It  is  note-
worthy that all models poorly forecast the MJO suppressed
convection  anomalies  with  increase  in  lead  time,  particu-
larly in the CMA models, resulting in the absence of the posit-
ive rainfall anomalies in ECMWF from P2 to P4 at the 15-
to 20-day lead, in CMA1.0 from P1 to P2 at the 10- to 15-
day lead and from P3 to P4 at the 15- to 20-day lead, and in
CMA2.0 beyond 15-day lead in every phase.

Given  that  the  PHSE  resulted  from  a  combination  of
cold SAT and positive precipitation anomalies, a successful
forecast of this PHSE would require not only an accurate fore-
cast  of  precipitation (Zheng et  al.,  2020)  but  also a  correct
forecast  of  SAT.  Therefore,  based  on  our  evaluation,  the
skill  of  ECMWF  and  CMA  in  forecasting  this  PHSE  in

2008  is  in  general  only  successful  within  the  10-day  lead
time. 

3.4.    SVD  analysis  between  predictable  sources  and
predictands

From  the  above  analysis,  the  Siberian  High  and  MJO
can  be  considered  as  the  predictable  sources  of  PHSE  in
2008. Is the relationship between Siberian High (MJO) and
SAT  (precipitation)  statistically  robust  from  the  historical
records? To address this question, Singular Value Decomposi-
tion (SVD) analyses were conducted between pentad mean
500-hPa  geopotential  height  and  SAT anomalies (Fig.  11),
and between pentad mean OLR and precipitation anomalies
(Fig.  12)  in  January  from  1999−2010.  In  the  first  SVD
mode,  the  500-hPa  geopotential  height  mode  mainly  fea-
tures  a  north-south  dipole  pattern  with  positive  anomaly
centered  north  of  Lake  Baikal  and  negative  anomaly  over
East  Asia  between  30°−40°N.  The  corresponding  SAT
mode  is  characterized  by  uniform  negative  anomalies.
These two fields are highly correlated with a correlation coef-
ficient of 0.71, suggesting a robust relationship between the
500-hPa  geopotential  height  over  mid-to-high  latitudes  of
Eurasia and SAT pattern over southern China. It can be seen
from  that  the  temporal  coefficients  of  geopotential  mode
and SAT mode both present a peak in late January of 2008,
corresponding to the observed Siberian High and cold south-
ern China in P3−P4 in 2008 (Fig. 2a).

The  500-hPa  geopotential  height  in  the  second  SVD
mode also shows a north-south dipole pattern but with its loca-
tion shifted westwards about 20°−30°. A zonal geopotential
dipole pattern dominates East Asia, with positive anomalies
over the East China Sea and negative anomalies over cent-
ral  Asia.  The  associated  SAT  anomalies  exhibit  a  northw-
est-southeast dipole pattern. These two patterns are highly cor-
related  with  a  correlation  coefficient  0.76.  The  coupled
fields  reoccurred  in  P1−P2  in  2008  in  the  observations  as
shown in Fig. 7a and reflected in the high value of their tem-
poral coefficients in early January of 2008 (Fig. 11b). Note
that  the  temporal  coefficients  exceed  two  standard  devi-
ations  in  both  two  SVD  modes  in  January  2008  (Fig.  11),
indicating how extreme is the PHSE.

The SVD mode for OLR and precipitation shows the rela-
tionship between a tropical zonal dipole convection pattern
and enhanced precipitation over all of southern China (Fig.
12). The temporal coefficient of this coupled mode shows a
peak  in  late  January  of  2008,  consistent  with  the  observa-
tions in P3−P4 as shown in Figs. 2b and 7b.

The SVD analyses implied that the two critical systems,
the  persistent  Siberian  High  and  the  propagated  MJO,  are
the key origins for the intraseasonal variations of SAT and
precipitation over southern China in January. The abnormal
Siberian High and MJO in early 2008 are the direct reasons
for  the  PHSE.  Here,  from the  SVD analyses,  we  conclude
that  these  two  predictability  sources  for  January  climate
over  southern  China  are  not  only  suitable  for  one  single
case  (e.g.,  the  PHSE  in  2008),  but  also  shed  light  on  sub-
seasonal  prediction  of  normal  condition  and  other  extreme
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Fig.  10.  Spatial  distribution  of  forecast  850-hPa  water  vapor  transport  flux  (vectors;
kg m−1 s−1) and outgoing longwave radiation anomaly (shading; W m−2) for the four phases
of the PHSE (top to bottom) at lead times from 5−20 days (left to right) by ECMWF (upper
panels),  CMA1.0  (middle  panels)  and  CMA2.0  (lower  panels)  ensemble  mean.  The  red
line outlines the domain of southern China. Only the vectors larger than 5 kg m−1 s−1 are
shown. The red line outlines the domain of southern China.
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events over southern China. 

4.    Summary and discussion
 

4.1.    Summary

The present study evaluated the subseasonal prediction
skills  of  the  ECMWF  and  two  CMA  (CMA1.0  and
CMA2.0) operational models from the S2S database for the
four successive phases (from P1 to P4) of the PHSE in early
2008 over southern China. In general, the three models pos-
sess promising skill in forecasting the spatial pattern of the
SAT and precipitation anomalies in P1, P2 and P3 within a
15-day lead, although the PCC skill of the precipitation fore-
casted  by  CMA  drops  dramatically  after  a  10-day  lead.
However, all three models failed to capture the SAT in P4.
The  CMA1.0  (CMA2.0)  possessed  no  PCC  skill  with
respect  to  SAT  after  a  9-day  lead  (12-day  lead),  while
ECMWF  showed  no  PCC  skill  even  from  the  very  begin-
ning.

Previous studies have investigated the underlying mech-
anisms  for  the  PHSE,  and  in  doing  so  emphasized  factors
such as the Eurasian westerly jet stream (Wen et al., 2009),

the  autumn  Arctic  sea  ice  (Wu  et  al.,  2011; Li  and  Wu,
2012)  and  diabatic  heating  of  the  Tibetan  Plateau  (Bao  et
al., 2010) in influencing the mean state of the PHSE. Given
the strong subseasonal variation of this PHSE in 2008, here
we divided the whole PHSE into four individual phase and
identified that the persistent Siberian High over the mid-to-
high  latitudes  Eurasia  and  the  eastward  propagated  MJO
from the tropical Indian Ocean to western Pacific were the
two critical circulation systems for the whole PHSE.

The reason behind the forecast skill for this PHSE lies
in the performance in forecasting these two critical factors.
While all models have the capacity to forecast the Siberian
High  and  the  corresponding  inland  positive  sea  level  pres-
sure  within  a  15-day lead from P1 to  P3,  they fail  to  fore-
cast the positive sea level pressure in that last  phase of the
PHSE (P4), leading to the low forecast skill for SAT in P4.
It  is  noted that  all  models  underestimated the intensity and
misrepresented  the  location  of  the  suppressed  convection
anomalies of MJO as the lead time increased, leading to the
absence of precipitation from P1 to P3 at the 15- to 20-day
lead time. Given that the PHSE resulted from the combina-
tion of cold SAT and positive precipitation anomalies, a suc-
cessful forecast of this PHSE would require an accurate fore-

 

 

Fig. 11. The first two SVD modes between pentad mean (left) 500-hPa geopotential height and (right) SAT in January from
1999−2010.  The blue dash (red solid)  line  denotes  the  normalized temporal  coefficient  of  the  left  (right)  SVD mode.  The
black  dash  lines  indicate  two standard  deviations.  The  yellow shading  masks  the  period  of  January  2008.  The  correlation
between the  two temporal  coefficients  is  shown in  the  upper  right  of  the  middle  panels.  The  green  line  in  the  right  panel
indicates the Yangtze River.

 

 

Fig. 12. As in Fig. 11 but for the first SVD mode between (left) OLR and (right) precipitation.
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cast  of  the  evolution  of  Siberian  High  and  MJO  eastward
propagation. Therefore, based on our evaluation, the skill of
ECMWF and CMA in forecasting this  PHSE in 2008 is  in
general only useful within the 10-day lead time. 

4.2.    Discussion

Whereas  MJO  is  a  planetary  scale  intraseasonal  phe-
nomenon,  the  forecasted  OLR  anomalies  as  shown  in
Figs. 8b and 10 may not only involve MJO but also other trop-
ical waves (e.g., the Kelvin waves). One may doubt the inac-
curacy in  evaluating the MJO activity  simply based on the
OLR  anomalies  over  a  rectangle  domain  in  the  Indian
Ocean  and  western  Pacific  (30°S−30°N,  30°−180°E).  To
address  this  issue,  the  OLR-based  MJO  index  (OMI)
developed by Kiladis et al. (2014) was employed to repres-
ent  the  MJO  activity.  This  OMI  index  has  better  capacity
for  tracking  the  seasonality  of  the  propagating  features  of
both the MJO and Boreal Summer Intraseasonal Oscillation
(Wang et al., 2019). We calculated the bivariate correlation
skills of OMI predicted by three models from Jan. 6 to Feb.
6 in 2008. As shown in Fig. 13, both CMA1.0 and CMA2.0
models  show  reasonable  skills  (relatively  higher  than
ECMWF)  in  predicting  OMI  within  a  13-day  lead  time,
whilst the ECMWF model can capture the OMI up to a 20-
day  lead.  The  results  are  similar  to  that  measured  by  PCC
skills as shown in Fig. 8b. Moreover, based on the perfect pre-
diction  assumption  in  OMI  (first  defined  by Wang  et  al.,
2019),  we  can  determine  whether  the  forecasting  errors  in
forecasting MJO activity  is  from the bias  in  forecasting its
amplitude  (COR_a)  or  its  propagation  phase  (COR_p).  It
can be seen that the two CMA models have much better cap-
ability  in  predicting  the  amplitude  than  the  phase  of  MJO
after a week’s lead. While the three models all show compar-
ably promising skills in forecasting MJO amplitude (higher
than 0.8) (Fig. 13b), the ECMWF maintained a good skill in
forecasting the MJO propagation after 10-day lead, which is
the main reason for the overall outperformance in forecast-
ing MJO activity up to 20 days (Figs. 13a and 8b). Note that
we  used  band-pass  filtered  OMI  index  here,  which  may
slightly  underestimate  the  MJO  prediction  skill  compared
with real-time OMI index (Kiladis et al., 2014; Wang et al.,

2019), but this does not influence the results much.
In the present study, we conclude that the forecast fail-

ure at longer lead times of the PHSE is mainly attributed to
the fact that the models cannot reproduce the persistence of
the Siberian High and accurately capture the MJO propaga-
tion. However, one may argue that the forecast failure could
be model dependent due to different reasons (e.g., initial con-
ditions,  data  assimilation  schemes).  To  support  our  claim
that  the  capacity  in  forecasting  this  PHSE  event  mainly
relies  on  the  models’ skills  in  forecasting  critical  circula-
tion  systems  (i.e.,  Siberian  High  and  MJO),  we  calculated
the linear correlation between the prediction skills (PCC) of
Siberian  High  (MJO)  and  SAT  (precipitation)  over  south-
ern China. As clearly shown in Fig. 14, in EC and CMA 2.0
ensemble members, the PCC skill for 500-hPa geopotential
height (representing the Siberian High) is significantly correl-
ated with that of SAT over southern China, whilst the PCC
skill for OLR (denoting the MJO) is highly correlated with
that of precipitation over southern China, indicating that the
models’ capability in predicting Siberian High and MJO is
indeed the key for forecasting skill of PHSE. However, it is
also  noted  that  the  correlation  between  prediction  skills  of
500-hPa geopotential height (OLR) and SAT (precipitation)
is quite low for CMA1.0, suggesting that the forecast error
may also relate to the data assimilation scheme. Therefore,
both data assimilation schemes (given that the CMA1.0 and
CMA2.0  have  totally  different  data  assimilation  schemes)
and capacity in capturing dynamic sources (two critical circu-
lation  systems)  are  responsible  for  the  forecast  error  of
PHSE. Although both CMA models show lower skills than
that of ECWMF in forecasting PHSE, it is encouraging that
the CMA2.0 is on the right track considering its ability in cap-
turing the observed relationship between the critical circula-
tion  systems  and  regional  meteorological  variables  (Fig.
14).

It is noteworthy that the snow cover or soil moisture are
also  potential  factors  of  the  subseasonal  prediction  of  the
PHSE  via  influencing  the  land-  atmosphere  coupling  and
model’s  initialization.  The  feedback  between  snow  cover
and  atmosphere  may  maintain  the  extreme  event  (Tao  and
Wei, 2008; Zhou et al., 2009; Xiang et al., 2020), and the ini-

 

 

Fig. 13. Bivariate correlation skills based on (a) OMI (COR), (b) OMI with perfect phase (COR_a) and (c) OMI with perfect
amplitude (COR_p) in three models from Jan. 6 to Feb. 6, 2008. The blue, red, orange line denotes the ECMWF, CMA1.0,
CMA2.0  ensemble  mean,  and  the  corresponding  shading  indicates  the  spread  of  the  ensemble  members  for  each  model.
Assuming  the  phase  (amplitude)  is  perfectly  forecast,  the  COR_a  (COR_p)  is  determined  completely  by  the  amplitude
(phase) correlation.
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tial condition of snow cover and the corresponding land pro-
cesses  (Jeong  et  al.,  2012; Orsolini  et  al.,  2013; Li  et  al.,
2019)  can  also  interfere  with  the  subseasonal  prediction
skills. Thus, the effect of land processes on subseasonal pre-
diction  of  PHSE  or  such  extreme  events  deserves  further
investigation.

The  SVD  analyses  revealed  a  good  relationship
between  two  dynamic  sources  and  PHSE.  Therefore,  an
empirical model using large-scale circulation system (predict-
ors, e.g., Siberian High, MJO) can be established to predict
regional  climates  (predictands,  e.g.,  SAT,  precipitation).
Given that the large-scale circulation generally presents bet-
ter  prediction  skills  than  regional  meteorological  variables
(e.g.,  SAT  and  precipitation)  in  S2S  model  (Vitart,  2017;
also see Fig. 4 and Fig. 8 in this article), especially beyond
10-day lead, the circulation predictors forecast by S2S mod-
els can be introduced to make empirical subseasonal predic-
tion. By this dynamical-statistical combined method, the sub-
seasonal prediction skill for SAT and precipitation over south-
ern China is expected to be improved. Currently, we are devel-
oping  the  dynamical-statistical  hybrid  models  for  sub-
seasonal prediction of extreme events in China. The results
will soon be reported elsewhere.
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