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ABSTRACT

We demonstrate  that  there  is  significant  skill  in  the  GloSea5  operational  seasonal  forecasting  system for  predicting
June  mean  rainfall  in  the  middle/lower  Yangtze  River  basin  up  to  four  months  in  advance.  Much  of  the  rainfall  in  this
region during June is  contributed by the mei-yu rain band.  We find that  similar  skill  exists  for  predicting the East  Asian
summer  monsoon  index  (EASMI)  on  monthly  time  scales,  and  that  the  latter  could  be  used  as  a  proxy  to  predict  the
regional rainfall. However, there appears to be little to be gained from using the predicted EASMI as a proxy for regional
rainfall on monthly time scales compared with predicting the rainfall directly. Although interannual variability of the June
mean rainfall is affected by synoptic and intraseasonal variations, which may be inherently unpredictable on the seasonal
forecasting time scale, the major influence of equatorial Pacific sea surface temperatures from the preceding winter on the
June  mean  rainfall  is  captured  by  the  model  through  their  influence  on  the  western  North  Pacific  subtropical  high.  The
ability  to  predict  the  June  mean  rainfall  in  the  middle  and  lower  Yangtze  River  basin  at  a  lead  time  of  up  to  4  months
suggests  the  potential  for  providing  early  information  to  contingency  planners  on  the  availability  of  water  during  the
summer season.
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Article Highlights:

•  There is significant skill in GloSea5 for predicting June mean rainfall in the middle/lower Yangtze River basin up to 4
months in advance.
•  Similar skill exists for predicting the East Asian summer monsoon index on monthly time scales.
•  The main source of skill is equatorial Pacific sea surface temperatures from the preceding winter.

 
 

1.    Introduction

The  East  Asian  Summer  Monsoon  (EASM)  is  part  of
the large Asian monsoon system, which represents the main
seasonal variation in the tropics. Millions of people depend
on the rainfall  brought by the monsoon during the summer
season  for  their  livelihoods  and  water  supplies.  Although
there have been recent studies demonstrating seasonal predict-
ability of monsoon rainfall over the summer as a whole, skill-
ful predictions by dynamical models on shorter time scales
have not yet been demonstrated. Yet, there is an increasing
demand for predictions on subseasonal time scales in order
to provide information to contingency planners on the availab-
ility of water during the summer season.

The EASM rain band moves from low to mid–high latit-

udes  as  the  summer  monsoon  advances  northwards  from
early to late summer (Li et al., 2018a). However, the migra-
tion of the rain band is step-wise rather than gradual, with sev-
eral  distinct  jumps  occurring  between  relatively  stationary
stages (Qian and Lee, 2000; Ding and Chan, 2005; Wang et
al., 2009; Su et al., 2014). Ding and Chan (2005) provide a
comprehensive review of the onset, progression and variabil-
ity  of  the  EASM.  Following  the  abrupt  reversal  of  the
lower-tropospheric  winds  over  the  South  China  Sea  (SCS)
from easterly to westerly that characterizes the broadscale sea-
sonal transition (Wang et al., 2004), a planetary-scale mon-
soon  rainband  is  established  extending  from  the  Arabian
Sea to the subtropical  western North Pacific  and forms the
pre-summer  rainy  season  over  southern  China  (Qian  and
Lee, 2000; Ding and Chan, 2005). Around 10 June the rain-
band  shifts  abruptly  northwards  into  the  middle/lower
Yangtze  River  valley  (110°–120°E),  initiating  the  mei-yu
rainy  season,  which  lasts  for  around  25  days  but  accounts
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for around 45% of the total rainfall amount for June–July–Au-
gust (JJA) in this region (Ding and Chan, 2005). In late Ju-
ly,  a  third  abrupt  shift  occurs  into  North  and  Northeast
China  with  a  further  stationary  phase  forming  the  North
China rainy season lasting around one month, before the rain-
band starts to retreat southwards from mid-August onwards.

Previous  studies  of  the  northward  progression  of  rain-
fall  over  China  during  the  EASM  have  demonstrated  a
range  of  drivers  for  rainfall  variability  in  different  regions
and  at  different  times. Wang  and  LinHo  (2002) examined
the timing and amplitude of the rainy season across the en-
tire  Asian  summer  monsoon  region.  Their  analysis  illus-
trated that, while the western North Pacific subtropical high
(WNPSH) region plays a key role in the northward progres-
sion  of  the  monsoon  rainband  in  early  summer,  the  coup-
ling  through  the  WNPSH  tends  to  collapse  after  the  west-
ern North Pacific gyre forms in late July and early August.
Subsequently, in August and September, the East Asian mon-
soon rainfall is linked to the active-break cycle of the west-
ern North Pacific monsoon, primarily through tropical cyc-
lone activity (Wang and LinHo, 2002). Many previous stud-
ies have also shown that blocking anticyclones over Euras-
ia have an important influence on the location and strength
of  the  rainband  (e.g., Wang,  1992; Zhang  and  Tao,  1998;
Wu, 2002).

It has long been known that the El Niño–Southern Oscil-
lation (ENSO) is one of the main drivers of interannual variab-
ility in EASM rainfall (e.g., Ding and Chan, 2005; Wang et
al.,  2008; Chen  et  al.,  2013),  with  its  influence  greatest  in
the summer following a strong El Niño event (Wang et al.,
2000, 2001; Chen et al., 2013; Xie et al., 2016; Hardiman et
al.,  2018). Wang  et  al.  (2008) showed  that  the  principal
modes  of  interannual  precipitation  variability  have  distinct
spatial and temporal structures during the early and late sum-
mer,  and  that  these  can  be  categorized  as  either  ENSO re-
lated or  non-ENSO related.  They concluded that  it  may be
useful  to  consider  prediction  for  two  bimonthly  periods
(May–June  and  July–August)  separately,  and  that  accurate
prediction of the detailed evolution of ENSO would be critic-
al for such predictions. MacLachlan et al. (2015), Barnston
et al. (2012) and others have shown that ENSO sea surface
temperatures (SSTs) are highly predictable, and several stud-
ies (e.g., Kumar et al., 2013; Dunstone et al., 2016; Scaife et
al., 2017, 2019) have demonstrated that this drives the skill-
ful prediction of both tropical and extratropical climate.

Several studies (including Wu and Wang, 2002; Kwon
et  al.,  2005)  have  suggested  that  the  relationship  with  EN-
SO  shows  interdecadal  variation  and  has  weakened  since
the late 1970s. However, Ye and Lu (2011) showed that this
apparent  weakening  might  be  related  to  changes  on  a  sub-
seasonal  time  scale;  namely,  that  while  the  pattern  of  EN-
SO-related rainfall  anomalies  in  the  early  and late  summer
tends to be similar before the late 1970s, thereafter rainfall
tends  to  be  enhanced  over  South  China  and  suppressed
between  the  Yellow  River  and  Yangtze  River  during  the
early summer following an El Niño, but the pattern of anomal-
ous rainfall is almost reversed in late summer, thereby weak-

ening  the  relationship  between  ENSO  and  the  seasonal
mean  rainfall  as  a  whole. Ye  and  Lu  (2011) also  showed
that the relationship between ENSO and both early and late
summer  rainfall  anomalies  does  not  actually  weaken  after
the  1970s.  However, Mao  et  al.  (2011) demonstrated  that
the  dominant  atmospheric  teleconnection  patterns  associ-
ated  with  extreme  wet  and  dry  years  of  early  summer
(May–June) rainfall in southern China are remarkably differ-
ent between the negative (1958–76) and positive (1980–98)
epochs of the Pacific Decadal Oscillation (PDO), with the im-
portance  of  anticyclonic  anomalies  in  the  lower  tropo-
sphere over the SCS and western Pacific for promoting en-
hanced  early  summer  rainfall  in  southern  China  diminish-
ing  in  the  later  epoch. Su  et  al.  (2014) showed  that  the
drivers  of  interannual  variations  in  rainfall  in  southern
China in July–August differ  from those in May–June,  with
those in the early summer being related to the position and
strength  of  the  WNPSH and those  in  the  later  summer  be-
ing related to the intensity of  the monsoon trough over the
SCS and western Pacific.

Despite the growing evidence in the literature of the po-
tential value of considering EASM rainfall prediction on sub-
seasonal timescales, the vast majority of predictability stud-
ies  has  focused  only  on  the  seasonal  mean  rainfall.  Those
that have considered subseasonal prediction (including Kim
et al., 2008; Wang et al., 2009; Yim et al., 2014, 2016; Xing
et al., 2016, 2017; Xing and Huang, 2019) have found bet-
ter  skill  when  using  physical-empirical  models  compared
with dynamical  models,  even with  multi-model  ensembles.
Generally, these studies have demonstrated value in separat-
ing  predictions  for  the  early  and  late  summer  season  rain-
fall,  with  greater  skill  at  earlier  lead  times  generally  being
demonstrated for the early summer (May–June).

Li et al. (2016) demonstrated skill in predicting season-
al mean rainfall over the Yangtze River basin in the Met Of-
fice’s  operational  seasonal  forecasting  system,  GloSea5.
They suggested that the sources of skill are related to skill-
ful prediction of rainfall in the deep tropics and around the
Maritime  Continent,  as  demonstrated  by Scaife  et  al.
(2019), since this affects the water vapor transport into south-
ern  China.  In  the  present  study,  we  investigate  whether
GloSea5 has  skill  in  predicting monthly  rainfall  during the
EASM as the rainband progresses northwards. We focus par-
ticularly on June mean rainfall in the middle/lower Yangtze
River valley region, since the majority of rainfall in this re-
gion at this time is contributed by the stationary phase of the
EASM that corresponds to the mei-yu rainy season.

The paper is arranged as follows: The dataset and meth-
ods used are outlined in section 2. In section 3 we show the
progression  of  the  EASM  rainfall  over  eastern  China  in
GloSea5 and demonstrate that there is robust predictive skill
for  monthly  mean  rainfall  in  the  middle/lower  Yangtze
River valley region in June, but not in July or August. In sec-
tion 4 we investigate the sources of skill, showing that it is re-
lated to ENSO SSTs through their influence on the circula-
tion around the WNPSH, even on a monthly time scale. We
conclude  in  section  5  that  there  is  significant  skill  in
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GloSea5  for  predicting  June  rainfall  in  the  middle/lower
Yangtze River valley.

2.    Data and methods

Monthly  rainfall  from  the  23-year  set  of  hindcasts
(1993–2015) made with the GloSea5 operational long-range
forecast  system  (MacLachlan  et  al.,  2015)  are  taken  from
four  start  dates  (1,  9,  17,  25)  in  each  of  February,  March
and  April,  representing  lead  times  of  up  to  4  months.
GloSea5 uses the MetUM Global Coupled model 2.0 configur-
ation (Williams et al., 2015) with an atmosphere model resolu-
tion of 0.833° × 0.556° and 85 vertical levels, and an ocean
model on a 0.25° tripolar grid with 75 vertical levels. It in-
cludes a stochastic kinetic energy backscatter scheme (Bowl-
er  et  al.,  2009)  to  introduce  small  grid-level  perturbations
throughout the integrations to create ensemble spread. The at-
mosphere  and  land  components  are  initialized  from  daily
ERA-Interim reanalyses (Dee et al., 2011), while soil mois-
ture is initialized from the JULES land surface model (Blyth
et  al.,  2006)  forced  with  the  Water  and  Global  Change
(WATCH) Forcing Data methodology applied to ERA-Inter-
im data (WFDEI; Weedon et al., 2011). The ocean and sea-
ice models are initialized from the GloSea5 ocean and sea-
ice analysis using GloSea5 Global Ocean 3.0, which is driv-
en  by  ERA-Interim  reanalyses  and  uses  the  NEMOVAR
data assimilation scheme (Blockley et al., 2014).

The  standard  operational  hindcast  set  includes  seven
members per start date. To investigate the robustness of our
results, and the dependence on ensemble size, for start dates
from February onwards we make use of an additional hind-
cast ensemble, using the same model configuration and also
with seven members per start date (except for start dates up
to  and  including  17  March,  for  which  there  are  only  three
members).  The combined ensembles for  each month there-
fore  range from 40 to  56 members.  All  of  the  analysis  de-
scribed  in  the  succeeding  sections  has  been  carried  out  for
start  dates  in  February,  March  and  April,  but  we  have
chosen  arbitrarily  to  show  only  the  results  from  March  in
the  figures  for  space  reasons,  while  the  results  from  start
dates in the other months are shown in the tables.

Comparisons are made primarily against monthly rain-
fall from the Global Precipitation Climatology Project Com-
bined  Precipitation  Dataset,  version  2.3  (GPCPv2.3; Adler
et  al.,  2003)  at  2.5°  ×  2.5°  resolution,  for  which  observa-
tions  exist  for  the  full  period  of  the  hindcast.  In  order  to
provide a measure of observational uncertainty, we also com-
pare against monthly rainfall from the Tropical Rainfall Meas-
uring Mission 3B42 product, version 7-7A, at 2.5° × 2.5° res-
olution  (TRMM; Kummerow  et  al.,  1998; Huffman  et  al.,
2010; Huffman and Bolvin, 2013), the CPC MORPHing tech-
nique  version  1.0  at  0.25°  ×  0.25°  resolution  (CMORPH;
Joyce et al., 2004); the CPC Merged Analysis of Precipita-
tion,  version  1907,  at  2.5°  ×  2.5°  resolution  (CMAP; Xie
and Arkin, 1997); Asian Precipitation—Highly Resolved Ob-
servational Data Integration Towards Evaluation of Water Re-

sources,  at  0.25°  ×  0.25°  resolution  (APHRODITE; Yata-
gai  et  al.,  2012);  and  Climate  Research  Unit  Time  Series
3.10,  at  0.5°  ×  0.5°  resolution  (CRU; Harris  et  al.,  2014).
Note  that  APHRODITE  and  CRU  are  land-only  datasets.
We also make use of the ERA-Interim reanalyses at 0.75° ×
0.75°  resolution  (Dee  et  al.,  2011)  for  our  analysis  of  the
East  Asian  Summer  Monsoon  Index  (EASMI),  and  of
Niño3.4  SST  anomalies  from  HadISST1.1  (Rayner  et  al.,
2003),  defined  as  the  regionally  averaged  SST  anomalies
over (5°S–5°N, 170°–120°W), in section 4.

Analysis of predictive skill is made using Pearson correla-
tions  between  hindcast  ensemble  means  and  observations
for each year, over the 23 years of the hindcast period. Signi-
ficance (denoted by p) is measured using a one-tailed t-test,
because we expect a positive correlation if the model exhib-
its predictive skill.

3.    Representation of the EASM in GloSea5

3.1.    Seasonal evolution

We  first  examine  the  climatological  progression  of
pentad  rainfall  in  the  hindcasts  initialized  in  February,
March and April,  compared against  the equivalent  analysis
of observed rainfall from GPCPv2.3 (Fig. 1). The longitudin-
al  band  chosen  is  110°–120°E,  following  a  comprehensive
analysis of observed rainfall in Ding and Chan (2005, their
Fig. 7). The model has a tendency to overestimate rainfall in
the  region  between  the  latitudes  of  25°  to  32.5°  in
spring—an  error  that  spins  up  quickly  after  initialization.
There is also a large positive rainfall bias over South China
up  to  around  24°N.  However,  the  mei-yu  rainband  can  be
seen  in  the  hindcast  climatology  between  25°  and  32.5°N,
between pentads 33 (10–14 June) and 38 (5–9 July), consist-
ent with the observations and the analysis of Ding and Chan
(2005).  Therefore,  despite  the  existence  of  the  rainfall  bi-
ases described above, the occurrence of the mei-yu is repres-
ented  reasonably  well,  albeit  with  lower  intensity  than  ob-
served, in the hindcasts.

Ding and Chan (2005) note that, after pentad 38, the rain-
band  jumps  northwards  through  the  lower  Yellow  River
basin  and  beyond  39°N  into  North  China.  Such  a  move-
ment is not as evident in GPCPv2.3 (Fig. 1a), nor in any of
the  other  observational  datasets  analyzed  here,  except
CMAP (not  shown),  but  is  clearly  represented in  the  hind-
casts.

3.2.    Predictive skill for monthly rainfall

We now examine whether there is any skill for monthly
rainfall  prediction  in  GloSea5. Figures  2a–c show  correla-
tions between GPCPv2.3 rainfall  in June, July, August and
the ensemble mean predicted monthly rainfall from a 44-mem-
ber hindcast comprised of the four start dates (1, 9, 17, 25)
in March. This analysis suggests that there may be high skill
for  predicting  June  mean  rainfall  in  the  middle/lower
Yangtze  River  region,  as  indicated  by  the  red  box
(25°–32.5°N,  110°–120°E;  as  ascertained  from Fig.  1)  and
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that this is distinct from a lack of skill for this region in Ju-
ly and August. In July, a region of significant skill is seen in
the  vicinity  of  the  Sichuan  Basin  (~28°–32.5°N,  103°–
108°E); this will be investigated further in future work.

Figure 2d shows the predictive skill for the JJA season-
al  mean  rainfall,  with  the  region  identified  by Li  et  al.
(2016) for their investigation of Yangtze River basin season-
al forecast skill indicated by the black box. The correlation
coefficients within this larger region are similar to, or smal-
ler than, those for the middle/lower Yangtze River region in
June. This suggests that further analysis of the potential pre-
diction skill for the June mean rainfall is warranted.

3.3.    Predictive skill for June mean rainfall

In  light  of  the  reasonable  representation  of  the  occur-
rence of the mei-yu rain band in the hindcasts, and the poten-
tial skill for monthly rainfall prediction indicated in the previ-
ous section, we now examine the prediction skill for June rain-
fall  in  the  region  (25°–32.5°N,  110°–120°E),  as  indicated
by the red box in Fig. 2. This is measured by the correlation
between the June ensemble mean and GPCP regionally aver-
aged rainfall over the 1993–2015 period of the hindcast.

Predicted  June  mean  rainfall  in  the  middle/lower
Yangtze River region is shown in Fig. 3a for a 44-member en-

semble  comprised  of  the  four  start  dates  (1,  9,  17,  25)  in
March,  compared  with  observational  estimates  from  GP-
CPv2.3.  Observational  estimates  for  five  other  datasets  are
shown in Fig. 3b as a measure of observational uncertainty.
As  suggested  by Fig.  1,  the  ensemble  mean  rainfall  is
slightly lower than that of the GPCPv2.3 observations, and
is outside the range of the observational datasets in several
years.  The  average  interannual  standard  deviation  of  rain-
fall from 10 000 pseudo time series created by randomly se-
lecting  individual  ensemble  members  for  each  year  (see
Table 1) is 1.93 mm d−1 (with a 5th to 95th percentile range
of 1.44 to 2.43 mm d−1), indicating that the modeled interan-
nual  variability  may be slightly  larger  than that  of  the GP-
CPv2.3 observations (1.50 mm d−1). As expected, the interan-
nual  variations in  the ensemble mean predicted rainfall  are
somewhat smaller (interannual standard deviation of the en-
semble mean is 0.63 mm d−1). There is a statistically signific-
ant  correlation  of  0.56  (p <  0.005  for  a  one-tailed t-test)
between the interannual variations of the ensemble mean pre-
dicted rainfall and that from GPCP, indicating significant pre-
diction skill.

Similar  analysis  is  carried  out  for  the  combined  en-
sembles  comprised  of  the  four  start  dates  in  February  and
April. Table 1 shows that the correlation coefficients are all

 

 

Fig. 1. Observed and modeled progression of climatological EASM rainfall: latitude–time plots of pentad rainfall (in
mm  accumulated  over  each  pentad)  averaged  between  110°  and  120°E  from  (a)  GPCPv2.3,  and  from  hindcast
ensembles with start dates in (b) February, (c) March and (d) April.
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consistently > 0.5, indicating significant skill at the < 1% sig-
nificance level  (for  a  one-tailed t-test)  for  lead times of  up
to 4 months.

3.4.    Robustness of skill

To assess the influence of ensemble size on the predic-
tion skill of June mean rainfall, we randomly sample small en-

sembles of increasing numbers of members from each of the
ensembles  with  start  dates  in  February,  March  and  April,
and recalculate the correlation between the ensemble-mean
time series and that  from the observations for  different  en-
semble  sizes. Figure  4 shows that  the  prediction  skill  rises
quickly with ensemble size,  exceeding the 1% significance
level in the ensembles from all start dates for a 30-member

 

 

Fig.  2.  Skill  of  monthly  rainfall  forecasts:  pointwise  correlations  for  the  period  1993–2015  between  GPCPv2.3
monthly mean rainfall and the ensemble mean predicted monthly rainfall from a 44-member hindcast comprised of
the  four  start  dates  (1,  9,  17,  25)  in  March:  (a)  June;  (b)  July;  (c)  August;  (d)  JJA  seasonal  mean.  Color  shades
indicate correlations significant at different p values (for a one-tailed t-test) for correlations over 23 years: r = 0.35
(p = 0.05), r = 0.48 (p = 0.01), r = 0.525 (p = 0.005), r = 0.61 (p = 0.001), 0.7 (p = 0.0001). The red box indicates the
location of the mei-yu rainband in June as defined by Ding and Chan (2005) and used in section 3.3. The black box
indicates the region used by Li et al. (2016). GloSea5 hindcast data have been regridded conservatively to the 2.5° ×
2.5° grid of the GPCPv2.3 data.

 

 

Fig. 3.  (a) Year-to-year prediction of June mean rainfall (units: mm d−1) in the middle/lower Yangtze River region
(25°–32.5°N,  110°–120°E)  from  GloSea5  ensemble  predictions  initialized  on  1,  9,  17  and  25  March  (green  dots
represent  individual  members  of  the  44-member  ensemble)  and  their  ensemble  mean  (green  line),  compared  with
June mean rainfall from GPCPv2.3 (black line). r(ens, obs) indicates the Pearson correlation coefficient between the
ensemble mean predicted rainfall and the GPCPv2.3 rainfall. The yellow line indicates the observed SST anomalies
(units: K) from HadISST1.1 during the preceding DJF averaged over the Niño3.4 region (5°S–5°N, 170°–120°W).
r(ens, sst) and r(obs, sst) indicate the Pearson correlation coefficients between the observed Niño3.4 SST in DJF and
the predicted June mean rainfall  and that  from GPCPv2.3 respectively.  (b)  June mean rainfall  in  the  middle/lower
Yangtze River region from six observational datasets.
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ensemble or larger, and is robust (correlation coefficients aver-
aged over all ensemble-mean time series are statistically signi-
ficant at the 5% level for a one-tailed t-test) for around 10 en-
semble  members  or  more.  In  contrast, Table  1 illustrates
that there is no significant skill for this region in July and Au-
gust for any of the start dates analyzed. Table 1 also shows
the  interannual  standard  deviation  of  the  observed  and

modeled  monthly  rainfall  in  July  and  August  for  the  en-
semble means and from 10 000 pseudo time series  created
by  randomly  selecting  individual  ensemble  members  for
each year. This shows that, while the interannual variability
of the monthly mean rainfall is captured reasonably well by
individual ensemble members, the interannual standard devi-
ation of the ensemble mean rainfall is considerably smaller
than observed in July and August. This, combined with the
low skill in these months, suggests that other sources of rain-
fall  (such  as  tropical  cyclones),  occurring  after  the  break
that  follows the  end of  the  mei-yu,  may dominate  the  July
and August mean rainfall and that, while they may be repres-
ented  by  the  model  in  individual  ensemble  members,  they
are less predictable on seasonal time scales.

In order to assess whether the skill  for predicting June
mean rainfall in the middle/lower Yangtze River region is use-
ful, we provide a contingency table (Table 2) illustrating the
“hit rate” and “false alarm” rate for above-normal and be-
low-normal  rainfall  predictions  respectively,  along  with  an
overall score, for the combined predictions made using Febru-
ary,  March  and  April  start  date  ensembles.  This  illustrates
that the forecasts are useful (in the sense of being of the cor-
rect sign) in more than half of the above-normal and below-
normal  cases,  with  the  forecasts  being  useful  58%  of  the
time overall.

The presence of significant skill  for prediction of June
mean rainfall  despite  the climatological  dry bias in this  re-
gion  is  consistent  with  the  conclusions  of Scaife  et  al.
(2019) for tropical seasonal mean rainfall. The skill for pre-
dicting  June  mean  rainfall  in  the  middle/lower  Yangtze
River region is also consistent with the findings of Li et al.
(2016) for JJA rainfall  over the large Yangtze River basin,
suggesting  that  the  skill  for  the  season  as  a  whole  may  be
largely influenced by the contribution from the mei-yu rain-
fall in June. This perhaps reflects the particular characterist-
ics of the mei-yu rainband—a distinct and unique feature of
the EASM occurring as part  of the seasonal progression of

Table  1.   Skill  for  predicting  rainfall  in  the  middle/lower  Yangtze  River  region  (25°–32.5°N,  110°–120°E)  in  June,  July  and  August
from GloSea5,  using  GPCPv2.3  observations  as  the  reference,  for  different  hindcast  start  dates.  Start  dates  are  1,  9,  17  and  25  of  the
month. Pearson correlation coefficients (r) that are statistically insignificant (for a 23-year hindcast period) at the < 5% level for a one-
tailed t-test are set in italics. Also shown is the interannual standard deviation (in mm d−1) of the hindcast ensemble means [denoted s.d.
(ens)]  and  the  average  interannual  standard  deviation  (in  mm  d−1)  over  10  000  pseudo  time  series  created  by  randomly  selecting
individual ensemble members for each year [denoted s.d. (mem)]. Values in parentheses indicate the (5th, 95th) percentile values from
the 10 000 pseudo time series. The final column shows the interannual standard deviation of monthly mean rainfall from GPCPv2.3.

Hindcast start dates/No. of members
s.d. (GPCP; mm d−1)

February/40 March/44 April/56

June r 0.50 0.56 0.52 1.50
s.d. (ens) 0.56 0.63 0.66

s.d. (mem) 1.92 (1.50, 2.36) 1.93 (1.44, 2.43) 2.00 (1.53, 2.48)
July r 0.25 0.19 0.12 1.58

s.d. (ens) 0.32 0.33 0.31
s.d. (mem) 1.66 (1.27, 2.06) 1.71 (1.30, 2.16) 1.75 (1.32, 2.20)

August r 0.04 0.11 −0.03 1.02

s.d. (ens) 0.27 0.35 0.31
s.d. (mem) 1.51 (1.15, 1.88) 1.54 (1.17, 1.91) 1.68 (1.26, 2.13)

 

Fig.  4.  Effect  of  ensemble  size  on  the  skill  of  June  mean
rainfall  predictions  over  the  middle/lower  Yangtze  River
region.  Curves  indicate  the  correlation  between  ensemble
means  from  start  dates  in  February,  March  and  April  and
GPCPv2.3  observations,  denoted r(month  ens,  obs).  For  each
choice  of  ensemble  size,  10  000  ensemble-mean  pseudo  time
series are generated by randomly selecting the chosen number
of  ensemble  member  June  mean  rainfall  predictions
(independently  and  without  replacement)  from  all  of  the
individual June mean rainfall values diagnosed in each year in
the combined ensemble and averaging over the chosen number
of  ensemble  members.  Thin  horizontal  dot-dashed  lines
indicate the values of r that  are significant  at  the 1% and 5%
levels for a one-tailed t-test.
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the subtropical high (Chen et al., 2004)—and its occurrence
as  a  “stationary  phase ”  in  the  seasonal  evolution  of  the
EASM (Ding and Chan, 2005) that is present in the middle
and lower  Yangtze  River  valley  largely  during  June  alone.
The rainfall associated with the mei-yu is the main contribut-
or to the June mean rainfall, and although the mei-yu rainy
season extends into the first week of July, this does not ap-
pear to influence the skill for July. This suggests that other
sources  of  rainfall  (such  as  tropical  cyclones),  occurring
after the break that follows the end of the mei-yu, dominate
the  July  mean  rainfall  and  are  less  predictable  on  seasonal
time scales.

We investigate possible sources of skill in the next sec-
tion.

4.    Sources of skill

Wang et al. (2008) showed that the leading mode of vari-
ability in the EASM is characterized by a suppressed west-
ern  North  Pacific  monsoon  trough  and  easterly  vertical
shear in the southern SCS, a southwestward extension of the
WNPSH,  an  enhanced  southwesterly  monsoon  over  south-
ern China, and a strong mei-yu in China, changma in Korea
and  baiu  in  Japan.  This  mode  of  variability  is  captured  by
the reversed Wang–Fan (Wang and Fan, 1999) index, which
measures the horizontal shear in westerly winds at 850 hPa
between Southeast Asia (5°–15°N, 90°–130° E) and south-
east China/the western Pacific (22.5°–32.5°N, 110°–140°E).
Wang et al. (2008) showed that the northeast-minus-southw-
est difference in 850-hPa westerly winds between these two
regions  captures  the  leading  modes  of  both  EASM rainfall
and low-level  wind variability,  and proposed this  as  a  uni-
fied EASMI. Wang et al. (2008) commented that this index
is  such that  “a strong Chinese summer monsoon means an
abundant mei-yu”.

The EASMI is strongly related to the strength of the WN-
PSH. Su et al. (2014) showed that the drivers of interannual
variations in rainfall in southern China in the early summer
are related to the position and strength of the WNPSH. Fig-
ure 5a shows the June mean 850-hPa winds from the ERA-In-
terim  reanalyses  regressed  upon  the  GPCPv2.3  June  mean

rainfall  anomalies  in  the  middle/lower  Yangtze  River  re-
gion (as used in section 3) between 1993 and 2015. Similar
to the findings of Su et al.  (2014, their Fig. 9), the circula-
tion anomalies associated with increased June mean rainfall
in the middle/lower Yangtze River region are characterized
by  an  anticyclonic  circulation  anomaly  over  the  SCS  and
the  Philippine  Sea  and  anomalous  southwesterly  winds
across southern China and to the south of Korea and Japan.
Figure 5a shows the two boxes used in the EASMI defini-
tion; it is clear that the main characteristics of the 850-hPa cir-
culation anomalies associated with June mean rainfall vari-
ations in the middle/lower Yangtze River region will be cap-
tured by this index. Figure 5b shows a similar regression for
the hindcast ensemble with start dates in March. The anom-
aly pattern agrees well with that from the observations/reana-
lyses,  although  the  anomalies  in  the  hindcast  are  rather
stronger over the SCS and to the east of the Philippines and
rather more westerly to the south of Japan.

Wang et al. (2013) demonstrated that, on seasonal time
scales,  WNPSH  variations  are  highly  predictable  by  both
physically  based  empirical  models  and  dynamical  models.
Camp et al. (2019) demonstrated skill in GloSea5 for predict-
ing  the  intensity  of  the  WNPSH  using  the  index  proposed
by Wang et al. (2013). Several other studies have also demon-
strated skill for predicting the seasonal mean EASMI in vari-
ous  dynamical  models,  including  GloSea5  (e.g., Li  et  al.,
2012, 2018b; Liu et al., 2015, 2018). However, as noted by
Wang  et  al.  (2008),  an  advantage  of  the  EASMI  is  that  it
can be monitored on a variety of time scales and is known
to  be  an  excellent  indicator  of  variations  in  the  SCS  sum-
mer monsoon onset (Wang et al., 2004). Martin et al. (2019)
recently  demonstrated  significant  predictive  skill  for  the
SCS summer monsoon onset in GloSea5. We next investig-
ate  the  predictive  skill  for  the  monthly  mean  EASMI  in
GloSea5.

4.1.    Prediction skill for monthly mean EASMI

Figure  6 shows  the  prediction  skill  for  the  EASMI  in
June (using start dates in March) compared with the EASMI
from ERA-Interim, while Table 3 shows the prediction skill
for  JJA  for  start  dates  in  February,  March  and  April.  The

Table  2.   Contingency  table  for  hindcast  predictions  of  June  mean  rainfall  in  the  middle/lower  Yangtze  River  region  (25°–32.5°N)
during  1993–2015.  Event  counts  are  based  on  the  GPCPv2.3  observations  and  ensemble  mean  hindcasts  for  June  using  start  dates  in
February, March and April,  as shown in Table 1. The hit rate (false alarm rate) is the ratio of the number of hits for above-average or
below-average rainfall  to the number of times each of those conditions were observed (not observed).  The overall  hit  rate (false alarm
rate) is the ratio of the total number of successful (unsuccessful) hindcasts to the total number of samples (23 years × 3 ensemble means).

Ensemble means from Feb, Mar and Apr start dates (23 years)

Observed

Above average
(3 × 11 years)

Below average
(3 × 12 years)

Predicted Above normal 17 13
Below normal 16 23

Hit rate
52% (17/33) 64% (23/36)

  58% (40/69)

False alarm rate
36% (13/36) 48% (16/33)

  42% (29/69)
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EASMI  from  GloSea5  exhibits  a  noticeable  negative  bias
compared  with  the  values  from  ERA-Interim.  This  is  re-
lated to the eastward extension and acceleration of the west-
erly outflow from the South Asian summer monsoon across
the SCS and into the western Pacific in the model. Despite
this  systematic  bias,  the  interannual  variability  of  the  pre-
dicted EASMI is realistic [the average interannual standard
deviation  of  EASMI  from  10  000  pseudo  time  series  cre-
ated  by  randomly  selecting  individual  ensemble  members
for  each  year  is  3.05  m  s−1 (with  a  5th  to  95th  percentile
range  of  2.37−3.75  m  s−1),  compared  with  2.71  m  s−1 for
ERA-Interim],  while  the  interannual  variations  in  the  en-
semble mean predicted EASMI are somewhat smaller (inter-
annual  standard  deviation  of  the  ensemble  mean  predicted
EASMI is 1.60 m s−1). For EASMI in June and August the
prediction skill r(ens,ERAI) > 0.5 (p < 0.01), and in July r >
0.7 (p < 0.0001) (Table 3).

As  suggested  by Wang  et  al.  (2008),  in  observations
there  is  a  strong  relationship  between  the  EASMI  and  the
mei-yu rainfall on seasonal time scales. For 23 years of June

mean rainfall from GPCPv2.3 in the middle/lower Yangtze
River region used in the present study, the correlation with
the EASMI from ERA-Interim is 0.48 (p = 0.01). This sug-
gests  that  the  skillfully  predicted  June  mean  EASMI  from
GloSea5  could  be  used  as  a  proxy  predictor  for  the  June
mean rainfall. Figure 6 and Table 4 show the skill for predict-
ing  the  GPCPv2.3  June  mean  rainfall  in  the  middle/lower
Yangtze  River  region (25°–32.5°N,  110°–120°E) using the
monthly  predicted  EASMI  from  GloSea5  as  a  proxy.  The
skill  for  predicting  June  mean  rainfall  using  the  EASMI
from GloSea5 [r(pEASMI,GPCP)] is very similar to that for
predicting the rainfall directly (see Table 1). There is also a
similar lack of skill for predicting July and August mean rain-
fall in this region using the EASMI as a proxy (Table 4), des-
pite  the  high  skill  shown  in Table  3 for  predicting  the
EASMI  itself  in  these  months.  This  highlights  once  again
the lack of relationship between the EASMI and rainfall in
this region in July and August, and provides additional confid-
ence  in  the  prediction  skill  for  June  rainfall  using  either
proxy indices or explicit rainfall forecasts.

 

 

Fig.  5.  (a,  b)  Regression of  June mean 850-hPa winds onto June mean rainfall  in  the middle/lower Yangtze River
region [shown by the red box in (c,  d)]  from (a)  ERA-Interim and GPCPv2.3,  and (b) GloSea5 ensemble member
predictions initialized on 1, 9, 17 and 25 March. (c, d) Regression of June mean 850-hPa winds and rainfall from (c)
ERA-Interim and GPCPv2.3,  and (d) GloSea5 ensemble member predictions initialized on 1,  9,  17 and 25 March,
onto observed preceding DJF Niño3.4 SST anomalies from HadISST1.1. In both cases, the regressions for GloSea5
are  calculated  for,  and  then  averaged  over,  10  000  single-member  pseudo  time  series  generated  by  randomly
selecting an ensemble member (independently and without replacement) from all of the available ensemble members
for each year in the combined ensemble with March start dates. The black boxes in (a, b) indicate the two regions
used  in  the  EASMI  calculation.  The  values  in  each  panel  are  scaled  by  the  interannual  standard  deviation  of  the
independent variable.

36 PREDICTING JUNE MEAN RAINFALL VOLUME 37

 

  



4.2.    Relationship with SSTs

Wang et al. (2008) stated that “the fundamental causes
for  interannual  variation  of  EASM  on  seasonal  timescales
are the impacts of ENSO and the monsoon-warm pool interac-
tion”. However, Chen et al. (2013) noted several studies indic-
ating that the influence of ENSO on the EASM depends on
the phase of ENSO, i.e., whether it is developing or decay-
ing  during  the  summer.  The  influence  of  ENSO  has  been
shown  to  be  greatest  in  the  summer  following  a  strong  El
Niño event (Wang et al., 2000, 2001; Wu et al., 2010; Xie et
al., 2016; Hardiman et al., 2018). Hardiman et al. (2018) in-
vestigated this asymmetric relationship in terms of the season-
al mean Yangtze River basin rainfall. They showed that an an-
omalously  strong  anticyclone  forms  in  the  Northwest  Pa-
cific  in  summer  (JJA)  in  response  to  an  El  Niño  event  in
winter. This drives moisture-bearing winds northwards from
the  SCS,  through  Southeast  China  to  the  Yangtze  River
basin, leading to anomalously high precipitation there. In con-
trast, Hardiman et al. (2018) showed that there was no signi-

ficant  signal  in  the  large-scale  circulation,  or  the  precipita-
tion in the Yangtze River basin, following a winter La Niña
event.

Several studies (including Kim et al., 2008; Ye and Lu,
2011; Su et al., 2014; Li et al., 2018a) have further demon-
strated that the teleconnection with ENSO SSTs varies sub-
seasonally. Using a combination of observations and model-
ing, each of these studies demonstrated that the relationship
with  ENSO  SSTs  is  strongest  in  early  summer. Su  et  al.
(2014) showed that  rainfall  anomalies  associated  with  EN-
SO vary spatially and temporally according to the seasonal
variation in the basic flow associated with the northward pro-
gression of the EASM. Their results suggested that the EN-
SO-related positive subtropical rainfall anomalies shift north-
wards with the upper-tropospheric westerly jet and the WN-
PSH between early and late summer, even under an almost
identical tropical forcing. Further, the recent study by Li et
al. (2018b) suggested that El Niño SST anomalies in the trop-
ical Pacific during the previous winter, combined with SST
anomalies  in  the  Indian  Ocean  and  the  North  Atlantic  in
spring that are often, but not exclusively, associated with a
decaying El Niño, all contribute to atmospheric circulation an-
omalies over Eurasia and the western Pacific that influence
the EASM rainfall in early summer.

Figure  5c shows  the  June  mean  850-hPa  winds  from
ERA-Interim  and  rainfall  from  GPCPv2.3  regressed  onto
the  observed  Niño3.4  SST  anomalies  for  the  period
1993–2015. Consistent with previous studies (e.g., Wang et
al., 2009; Mao et al., 2011; Ye and Lu, 2011) positive Decem-
ber–January–February  (DJF)  Niño3.4  SST  anomalies  from
the previous winter are associated with positive rainfall anom-
alies  over  southern  China  and  negative  anomalies  over  the
SCS  and  to  the  east  of  the  Philippines.  These  are  them-
selves  associated  with  an  anomalous  anticyclone  over  the
SCS and the Philippines; this Philippine Sea anomalous anti-
cyclone was described by Wang et al. (2000) and others as
“the critical system that conveys delayed El Niño impact to
the EASM” in the summer following an El Niño, and particu-
larly  in  the  early  summer  (Wang  et  al,  2009; Mao  et  al,
2011). Figure 5d shows similar analysis from the hindcast en-
semble initialized using start dates in March. The pattern of
rainfall and circulation anomalies is captured fairly well, al-

Table  3.   Skill  for  predicting  the  EASMI:  Pearson  correlation
coefficients  between  the  predicted  EASMI  in  June,  July  and
August  from  GloSea5  and  that  from  ERA-Interim  for  hindcast
start  dates  in  February,  March  and  April  (1,  9,  17  and  25  of  the
month).

February March April

June 0.54 0.51 0.50
July 0.70 0.76 0.80

August 0.51 0.51 0.60

Table  4.   Skill  for  predicting  June  mean  rainfall  in  the
middle/lower Yangtze River region using the EASMI as a proxy:
Pearson  correlation  coefficients  between  the  predicted  EASMI  in
June,  July  and  August  from  GloSea5  and  GPCP  rainfall  in  the
middle/lower  Yangtze  River  region  for  hindcast  start  dates  in
February,  March  and  April  (1,  9,  17  and  25  of  the  month).
Correlation  coefficients  statistically  insignificant  (for  a  23-year
hindcast  period)  at  the  <  5% level  for  a  one-tailed  test  are  set  in
italics.

February March April

June 0.50 0.52 0.58
July −0.04 0.14 0.26

August 0.19 −0.24 −0.19

 

Fig. 6. Prediction of June mean EASMI [difference in westerly
winds  at  850 hPa averaged over  (22.5°–32.5°N,  110°–140°E)
minus  (5°–15°N,  90°–130°E)]  from  the  GloSea5  ensemble
initialized  on  1,  9,  17  and  25  March  (green  dots  represent
individual  members  of  the  44-member  ensemble)  and  their
ensemble  mean  (green  line),  compared  with  June  mean
EASMI from ERA-Interim (black line) and June mean rainfall
over  the  middle/lower  Yangtze  River  region  (25°–32.5°N,
110°–120°E)  from  GPCPv2.3  (yellow  line). r(pEASMI,
ERAI), r(pEASMI,  GPCP)  indicate  the  Pearson  correlation
coefficients  between  the  predicted  EASMI  and  the  ERA-
Interim  EASMI,  and  between  the  predicted  EASMI  and  the
GPCPv2.3 rainfall respectively.
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though it is generally shifted slightly to the south. Figure 5c
also  shows  a  small  region  of  negative  rainfall  anomalies
over the Yellow Sea and the Sea of Japan associated with an
anomalous cyclonic pattern. This was also seen in the analys-
is of Mao et al. (2011) and Wang et al. (2009), but is not cap-
tured by the hindcast.

The  correlation  between  June  mean  rainfall  from  GP-
CPv2.3 and the  preceding observed DJF Niño3.4 SSTs for
the period 1993–2015 is r(obs, sst) = 0.38 (p < 0.05). This in-
dicates  that  there  are  other  factors  than  the  preceding
winter’s  Niño3.4  SSTs  that  are  influencing  the  June  mean
rainfall anomalies in the observations, such as snow anom-
alies over Eurasia (Wu et al., 2009) and the Tibetan Plateau
(Ren et  al.,  2016),  and intraseasonal  and synoptic  variabil-
ity  (Ding  and  Chan,  2005).  For  the  GloSea5  hindcast  en-
semble initialized with start dates in March, the average cor-
relation between the preceding DJF Niño3.4 SSTs and 10 000
pseudo time series of  June mean rainfall  generated by ran-
domly  choosing  an  individual  ensemble  member  hindcast
for each year from the ensemble initialized with start dates
in March is r(members, sst) = 0.21, with a 5th to 95th percent-
ile range of −0.13 to 0.52 (see Table 5 for similar  analysis
with the February and April start dates), indicating that the in-
fluence of the DJF Niño3.4 SSTs on the June mean rainfall
in  individual  ensemble  members  is  slightly  lower  than
r(obs,  sst).  This  may  indicate  that  the  model  is  capturing
some,  but  not  all,  of  the  other  factors  influencing  the  June
mean rainfall, or that the internal variability in the model is
larger than in reality (consistent with the larger interannual
variability  of  June  mean  rainfall  across  the  ensemble  de-
scribed in section 3.3).

There  are  strong  correlations  between  the  ensemble
mean predicted rainfall and the observed SST anomalies in
the  Niño3.4  region  during  the  preceding  DJF  [r(ens,  sst);
see Table 5]. There is particularly good agreement between

the ensemble mean predicted rainfall and both the observed
rainfall anomalies and the winter Niño3.4 SST anomalies dur-
ing  summers  following  large  El  Niño  events  (e.g.,  1995,
1998, 2010) (Fig. 3). This suggests that the winter Niño3.4
SST anomalies are driving the forced June mean rainfall sig-
nal  in  the  model,  consistent  with  the  previous  studies  de-
scribed above.

Both Hardiman  et  al.  (2018) and Liu  et  al.  (2018)
showed that the seasonal mean EASMI, and its relationship
with the preceding winter’s ENSO SSTs, are predicted skill-
fully  by  GloSea5.  Good  agreement  is  also  found  between
the  ensemble  mean  predicted  June  EASMI  and  that  from
ERA-Interim  (Fig.  6)  in  the  summers  following  strong  El
Niño events (1998 and 2010), with a small ensemble spread
indicating  that  the  EASMI  in  individual  members  respon-
ded  strongly  to  this  SST  forcing.  The  average  correlation
between  the  preceding  DJF  Niño3.4  SSTs  and  10  000
pseudo time series of June mean EASMI generated by ran-
domly  choosing  an  individual  ensemble  member  hindcast
for each year from the ensemble initialized with start dates
in  March  is r(EASMImembers,  sst)  =  0.38,  with  a  5th  to
95th percentile  range of  0.09–0.64 (see Table 6 for  similar
analysis with the February and April start dates), which is stat-
istically similar to the correlation between the June EASMI
from ERA-Interim and the DJF Niño3.4 SSTs [r(ERAI, sst) =
0.30].

Once again, there are strong correlations between the en-
semble mean predicted June EASMI and the observed preced-
ing DJF Niño3.4 SSTs, r(pEASMI, sst) (see Table 6). This in-
dicates that the model is able to represent the known influ-
ence  of  the  preceding  winter’s  equatorial  Pacific  SSTs  on
the large-scale circulation of the WNPSH and the major influ-
ence  that  this  has  in  determining  the  June  mean  rainfall  in
the middle and lower Yangtze River Basin region.

Table 5.   Modeled relationship between predicted June rainfall  in the middle/lower Yangtze River region and observed winter ENSO
SSTs:  Average  of  Pearson  correlation  coefficients  [r(members,  sst)]  between  the  observed  preceding  DJF  Niño3.4  SSTs  and  10  000
pseudo  time  series  of  June  rainfall  generated  by  randomly  choosing  an  individual  ensemble  member  hindcast  for  each  year  from  the
ensembles initialized with start dates in February, March and April (1, 9, 17 and 25 of the month). Numbers in parentheses indicate the
(5th,  95th)  percentile  values.  The  correlation  coefficient  between  the  ensemble  mean  predicted  June  rainfall  and  the  observed  DJF
Niño3.4 SSTs is indicated as r(ens, sst).

February March April

r(members, sst) 0.15 (−0.19, 0.48) 0.21 (−0.13, 0.52) 0.21 (−0.12, 0.52)
r(ens, sst) 0.53 0.66 0.66

Table  6.   Modeled  relationship  between  predicted  June  EASMI  and  observed  winter  ENSO  SSTs:  Average  of  Pearson  correlation
coefficients [r(EASMImembers, sst)] between the observed preceding DJF Niño3.4 SSTs and 10 000 pseudo time series of June EASMI
generated by randomly choosing an individual ensemble member hindcast for each year from the ensembles initialized with start dates in
February,  March  and  April  (1,  9,  17  and  25  of  the  month).  Numbers  in  parentheses  indicate  the  (5th,  95th)  percentile  values.  The
correlation  coefficient  between  the  ensemble  mean  predicted  June  EASMI  and  the  observed  DJF  Niño3.4  SSTs  is  indicated  as
r(pEASMI, sst).

February March April

r(EASMImembers, sst) 0.41 (0.11, 0.65) 0.38 (0.09, 0.64) 0.41 (0.12, 0.65)
r(pEASMI, sst) 0.78 0.74 0.73
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5.    Conclusions

We have  demonstrated  that  there  is  significant  skill  in
GloSea5  for  predicting  monthly  regional  rainfall  over  the
middle and lower Yangtze River basin in June at lead time
of up to 4 months. Previous work has demonstrated skill for
predicting  seasonal  mean  rainfall  over  the  wider  Yangtze
River basin, but this is the first time that significant skill for
predicting monthly rainfall in a dynamical seasonal forecast-
ing system has been demonstrated for this region.

The potential for predictability of rainfall on subseason-
al timescales has been discussed in several studies over the
past  decade  (e.g., Kim et  al.,  2008; Wang  et  al.,  2009; Ye
and Lu, 2011; Yim et al., 2014). The existence of predictabil-
ity  on  monthly  time  scales  for  the  middle/lower  Yangtze
River basin region is related to the particular characteristics
of the mei-yu rainband—namely, its occurrence as a “station-
ary phase” of the seasonal progression of the EASM (Ding
and  Chan,  2005)  that  is  present  in  the  middle  and  lower
Yangtze River basin largely during June alone. Interannual
variations in mei-yu rainfall have been linked in many previ-
ous  studies  to  the  circulation  associated  with  the  WNPSH,
whose position and strength determine the southwesterly mon-
soon flow over southern China in early summer.  The WN-
PSH  has  a  known  association  with  ENSO,  with  its  influ-
ence depending on the phase and stage of development/de-
cay  (Huang  and  Wu,  1989; Wang  et  al.,  2000; Wu  et  al.,
2003; Feng et  al.,  2011; Chen et  al.,  2013; Su et  al.,  2014;
Xie et al., 2016; Hardiman et al., 2018; Li et al., 2018a). As
Wang et  al.  (2008) pointed  out,  while  the  EASM rainband
migrates northwards during the summer, the interannual vari-
ability of the rainfall is a “persistent” mode with an anom-
aly pattern related to the variations in the large-scale EASM
that persists through the whole summer.

Wang et  al.  (2008) demonstrated that  variations  in  the
low-level circulation around the WNPSH are adequately cap-
tured by the EASMI. Recent studies have demonstrated skill
for predicting the seasonal mean EASMI in various dynamic-
al  models,  including  GloSea5  (e.g., Li  et  al.,  2012, 2018b;
Liu  et  al.,  2015, 2018).  We demonstrate  here  that  signific-
ant  skill  is  also  present  in  GloSea5  for  predicting  the
EASMI  on  monthly  time  scales,  and  that  the  latter  can  be
used  as  a  proxy  to  predict  the  regional  rainfall.  However,
there appears to be little to be gained from using the EASMI
as a proxy for regional rainfall on monthly time scales com-
pared with predicting the rainfall directly.

While it  is recognized that the mei-yu rainfall  is influ-
enced by synoptic events, intraseasonal variability and region-
al air–sea interactions with little or no predictability on the
seasonal time scale, the ability to predict the June mean rain-
fall  in the middle and lower Yangtze River basin region in
GloSea5 at lead times of up to 4 months offers exciting pos-
sibilities  for  providing  useful,  early  information  to  contin-
gency planners on the availability of water during the sum-
mer season.  We would encourage other forecasting centers
to  investigate  the  skill  for  predicting  June  mean  rainfall  in
their operational forecasting systems.
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