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ABSTRACT

The terrestrial carbon (C) cycle plays an important role in global climate change, but the vegetation and environmental
drivers of C fluxes are poorly understood. We established a global dataset with 1194 available data across site-years including
gross primary productivity (GPP), ecosystem respiration (ER), net ecosystem productivity (NEP), and relevant environmental
factors to investigate the variability in GPP, ER and NEP, as well as their covariability with climate and vegetation drivers.
The results indicated that both GPP and ER increased exponentially with the increase in mean annual temperature (MAT)
for all biomes. Besides MAT, annual precipitation (AP) had a strong correlation with GPP (or ER) for non-wetland biomes.
Maximum leaf area index (LAI) was an important factor determining C fluxes for all biomes. The variations in both GPP and
ER were also associated with variations in vegetation characteristics. The model including MAT, AP and LAI explained 53%
of the annual GPP variations and 48% of the annual ER variations across all biomes. The model based on MAT and LAI
explained 91% of the annual GPP variations and 92.9% of the annual ER variations for the wetland sites. The effects of LAI
on GPP, ER or NEP highlighted that canopy-level measurement is critical for accurately estimating ecosystem–atmosphere
exchange of carbon dioxide. The present study suggests a significance of the combined effects of climate and vegetation (e.g.,
LAI) drivers on C fluxes and shows that climate and LAI might influence C flux components differently in different climate
regions.
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Article Highlights:

• NEP showed variations via the responses of GPP and ER to environmental drivers.
• Temperature, precipitation and LAI are key drivers of the variations in C fluxes.
• Climate and LAI might influence C flux differently in different climate regions.

1. Introduction

The globally averaged air temperature has shown a warm-
ing trend since the industrial revolution (IPCC, 2013). Given
that the terrestrial carbon (C) cycle plays an important role in
global warming, it is critical to understand the key controls of
the C metabolism of terrestrial ecosystems (Canadell et al.,
2007). Over the past several decades, terrestrial ecosystems
have generally been regarded as C sinks (Houghton, 2007),
and the magnitude of terrestrial ecosystems in sequestering
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atmospheric carbon dioxide (CO2) is of interest in mitigat-
ing climate changes because this terrestrial sink counters the
anthropogenic increase in atmospheric CO2 levels. Friedling-
stein et al. (2006) found that C–climate feedback was posi-
tive. Atmospheric CO2 enters terrestrial ecosystems through
photosynthesis, and terrestrial C is released back to the atmo-
sphere through a variety of processes, collectively referred to
as respiration (Trumbore, 2006).

Generally, the components of C flux include gross pri-
mary productivity (GPP), ecosystem respiration (ER), and net
ecosystem production (NEP) (the difference between GPP
and ER) (Reichstein et al., 2005). Eddy covariance is a
method used in meteorology and other applications (e.g., mi-
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crometeorology and hydrology) to determine rates of gaseous
exchange (Baldocchi, 2008). With the establishment of eddy
covariance sites and relevant meteorological and biological
measurements (Baldocchi et al., 2001; Valentini et al., 2000),
a large body of data is available on the terrestrial ecosystem
exchange of mass at stand level (Law et al., 2001; Wang et
al., 2017). Measurements of GPP, ER and NEP are needed
in order to determine the source–sink status of a specific
ecosystem and to analyze how CO2 exchange varies with the
temporal variation in environmental conditions (Flanagan et
al., 2002; Schmitt et al., 2010). Site-level observations have
greatly advanced our understanding of patterns and environ-
mental controls of terrestrial ecosystem C fluxes (Xu et al.,
2014).

The temporal and spatial dynamics of GPP, ER and NEP
are difficult to model or predict. Modeling efforts linking with
observations at yearly scales are critical to progress in the
field of terrestrial C fluxes. Analysis of global C flux data
based on eddy covariance measurements makes it possible to
identify ecosystem-scale CO2 flux patterns that are not deter-
mined well in individual studies (Baldocchi, 2003; Baldocchi
et al., 2015). The C flux measurements from individual stud-
ies have been synthesized to evaluate patterns of ecosystem
C fluxes at regional (Valentini et al., 2000; Law et al., 2002;
Kato and Tang, 2008; Chen et al., 2013; Yu et al., 2013; Xiao
et al., 2013; Chen et al., 2019) and global scales (e.g., Luys-
saert et al., 2007; Baldocchi, 2008; Yuan et al., 2009; Beer et
al., 2010; Mahecha et al., 2010; Xu et al., 2014; Shao et al.,
2015; Jung et al., 2017; Zhang et al., 2018). Although several
studies have analyzed the spatial patterns of global C fluxes
(Luyssaert et al., 2007; Migliavacca et al., 2011; Chen et al.,
2015; Jung et al., 2017; Zhang et al., 2018), their datasets did
not include all of the C flux data points worldwide and rel-
evant vegetation characteristics [e.g., litterfall (LF), tree age
(TA), diameter at breast height (DBH), tree height (TH), and
basal area (BA)]. Despite hundreds of flux measurement sites,
the availability of C flux data remains an important challenge
for global synthesis. A large number of data points have been
published in various literatures or are available publicly in the
global FLUXNET (http://fluxnet.fluxdata.org/). Establishing
such a dataset and synthesizing by using the data fusion tech-
nique can help in understanding the mechanisms of the C cy-
cle and assessing the magnitude of the C budget (Wang et al.,
2009).

It is likely that C fluxes vary across different biome types
(e.g., non-wetland versus wetland), climate zones, and veg-
etation conditions. The influence of climate on C fluxes has
been examined by several studies (e.g., Kato and Tang, 2008;
Beer et al., 2010; Mahecha et al., 2010; Xiao et al., 2013;
Chen et al., 2015). For instance, Kato and Tang (2008) in-
dicated that CO2 fluxes—particularly annual NEP—are de-
termined mainly by mean annual temperature (MAT) and
annual precipitation (AP). A global synthesis showed that
GPP and ER are also related to MAT and AP (Chen et al.,
2015). Our knowledge of ecosystem C cycling and its vari-
ability has been improved by investigating the global rela-
tionships between observed climate and site-level biosphere–

atmosphere fluxes (Stoy et al., 2009). We have understood
broadly how temperature and precipitation affect different C
cycle processes. What we do have, however, is a quantita-
tive understanding of the individual effects of temperature
and precipitation and their comprehensive effects. Further-
more, the vegetation and environmental drivers of C fluxes
are poorly understood and need to be further addressed. Par-
ticularly lacking, to the best of our knowledge, is compiled
data focusing on synchronous measurements of NEP and veg-
etation characteristics and a comprehensive analysis of such
data. Whether the dependency of C fluxes on climate differs
with biome type, vegetation characteristics, or other factors is
not well quantified. A better understanding of C flux dynam-
ics will come from elucidating the integrated effects of cli-
mate and vegetation constraints on GPP, ER and NEP. Many
more data on C cycling and vegetation characteristics in var-
ious biomes [e.g., forest, grassland (GL), wetland] make it
possible to investigate the vegetation drivers of terrestrial C
fluxes. In addition, the C cycle in wetlands is different from
that in non-wetlands because of its special ecohydrology. The
water layer in wetlands reduces soil CO2 emissions, result-
ing in different C cycle patterns between wetlands and non-
wetlands (Bridgham et al., 2006). Some studies that have syn-
thesized flux observations from wetlands at regional scales
typically used observations from a few sites (Turetsky et al.,
2014; Petrescu et al., 2015). A recent article by Lu et al.
(2017) reported that ecosystem CO2 fluxes of both inland and
coastal wetlands are mainly regulated by MAT and AP, and
the combined effects of MAT and AP can explain 71%, 54%
and 57% of the variations in GPP, ER and NEP, respectively.
However, the combined effects of MAT, AP, and vegetation
characteristics [e.g., leaf area index (LAI)] on C fluxes have
not been well explained, although many flux and vegetation
measurements in wetlands worldwide have been well docu-
mented (e.g., Hirano et al., 2007; Hao et al., 2011; Beringer
et al., 2013; Knox et al., 2015). The key questions that need
to be addressed are whether the main drivers of C fluxes in
wetlands are different from those in non-wetlands, and how
to model C fluxes in wetlands using climate and vegetation
characteristics.

In the present work, we assembled a comprehensive
global dataset for terrestrial ecosystems that includes C fluxes
(i.e., GPP, ER and NEP), biome categories, climate factors
(temperature and precipitation), and vegetation traits (e.g.,
LAI). Although previous hypotheses have proposed that cli-
mate and vegetation characteristics may individually influ-
ence GPP, ER and NEP, the combined modeling of C fluxes
on the basis of large-sample data on in-situ simultaneous
measurements of climate and vegetation characteristics at the
global scale remains lacking. Therefore, our present publicly
available dataset is dedicated to re-examining previously hy-
pothesized global relationships and developing new models.
The objectives of the study were to: (1) present the dataset’s
structure and explain the global patterns of GPP, ER and
NEP; (2) identify climate and vegetation drivers of these three
fluxes for different biomes [e.g., forest, GL, cropland (CL),
and wetland]; (3) determine the relative contributions of dif-
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ferent drivers to the interannual and inter-site variabilities of
these fluxes; and (3) establish models that fit the spatial and
temporal variations in C fluxes in different biomes (wetland,
forest, GL, and CL).

2. Materials and methods

2.1. The dataset
We compiled a dataset of 327 references from 296 sites

that were useful for the synthesis analysis [Table S1 in elec-
tronic supplementary material A (ESM A)]. All of the refer-
ences compiled in this study were published in peer-reviewed
journals and covered C flux data from all continents except
Antarctica. The oldest measurement year was 1991. The lit-
erature survey was intended to be as inclusive as possible
up to 2016. Published studies that report annual NEP, GPP
and ER were compiled using bibliographic databases includ-
ing ISI Web of Science and Chinese Journal Net. The GPP,
ER and NEP data compiled in this study were not directly
downloaded from FLUXNET, because some of the eddy co-
variance data from FLUXNET have not been corrected. In-
stead, the C fluxes that appeared in the literature were used,
but only where an appropriate correction method for the raw
eddy covariance data was applied. We performed the data
collection carefully to ensure the C fluxes (e.g., GPP, ER and
NEP) and relevant environmental factors in the reviewed lit-
erature were used and that no part of them were removed.
Studies were included if they met the following criteria: (1)
they comprised annual NEP measurements only, i.e., stud-
ies of seasonal NEP measured during the growing season
were not used; (2) the NEP field measurements were unma-
nipulated; and (3) flooded rice paddies, fenland, peatland,
swamps, bogs, and marshes were considered as wetlands.
Rice paddies were considered together with natural wetlands
because the seasonal NEP patterns for flooded rice paddies
are significantly different from upland fields, and land-use
change from paddy rice cultivation to upland crop cultivation
causes significant losses of C (Nishimura et al., 2008).

Measurement sites were distributed from 35◦39′S to
79◦56′N latitude and from 157◦25′W to 172◦45′E longitude,
with most sites situated in the Northern Hemisphere (ESM A,
Table S1). A total of 1194 measurements of annual NEP were
collected from 296 sites, and most included annual GPP and
ER measurement data. There are 870 data points for annual
GPP and ER. The amount of site-year measurements included
in the present dataset is more than that in previous studies
(Luyssaert et al., 2007; Migliavacca et al., 2011; Chen et
al., 2015). For example, the information on C fluxes, climate
data and ecosystem properties (e.g., TA, TH and LAI) in the
study of Luyssaert et al. (2007) was only available for forest
ecosystems. Our dataset includes six ecosystem types [CL,
forest, GL, shrubland (SL), tundra (TD), and wetland]. In
our dataset, most sites used the u* correction method to avoid
underestimating the nighttime C effluxes (Lloyd and Taylor,
1994; Massman and Lee, 2002). Other methods, which was
applied at relatively fewer sites, were used if the u* thresh-

old was difficult to determine (e.g., Saitoh et al., 2005; Kato
and Tang, 2008). We used the reported NEE values with the
correction method that best considered the specific circum-
stances at each site.

For each study, whenever possible, we also noted the lo-
cation (i.e., site name and country), latitude and longitude,
measurement period, climate conditions, elevation, maxi-
mum C fluxes, soil and heterotrophic respiration (SR and
HR), net primary productivity (NPP) and aboveground NPP
(ANPP), vegetation characteristics, and soil properties (ESM
A, Table S1). Variable categories such as climate conditions
and vegetation characteristics are listed in Table 1. Vegeta-
tion characteristics included LF, fine root biomass (FR), NPP,
ANPP, growing season length (GSL), TA, plant density of
tree (PD), DBH, TH, BA, and maximum LAI. Soil proper-
ties included soil organic C storage (SOC), soil total nitrogen

Table 1. Variable categories included in the dataset.

Abbreviation Variable Units

GPP Gross primary productivity mol C m−2 yr−1

ER Ecosystem respiration mol C m−2 yr−1

NEP Net ecosystem production mol C m−2 yr−1

MAT Mean annual temperature ◦C
AP Annual precipitation m
LAI Leaf area index m2 m−2

EL Elevation m
GPPmax Max GPP over the growing season mol C m−2 d−1

ERmax Max ER over the growing season mol C m−2 d−1

NEPmax Max NEP over the growing season mol C m−2 d−1

SR Soil respiration mol C m−2 yr−1

HR Heterotrophic respiration mol C m−2 yr−1

LF Litterfall kg C m−2 yr−1

FR Fine root kg C m−2 yr−1

NPP Net primary productivity kg C m−2 yr−1

ANPP Aboveground NPP kg C m−2 yr−1

GSL Growing season length d
TA Tree age yr
PD Plant (tree) density n ha−1

DBH Diameter at tree breast height cm
TH Tree height m
BA Basal area of tree m2 ha−1

PAR Photosynthesis active radiation μmol m−2 s−1

AET Actual evapotranspiration m yr−1

VPD Vapor pressure deficit kPa
SOC Soil organic C kg C m−2

STN Soil total nitrogen kg N m−2

C/N Ratio of C to nitrogen None
pH Soil pH None
CLA Soil clay content %
SAN Soil sand content %
BD Soil bulk density g cm−3
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storage (STN), the ratio of C to N (C/N), pH, clay content
(CLA), sand content (SAN), and bulk density (BD). Where
MAT and AP were not available in the literature, they were
derived from the Center for Climatic Research at the Uni-
versity of Delaware (http://climate.geog.udel.edu/∼climate/
html pages/archive.html). The climate data were matched
to the coordinates of the NEP study sites using a nearest-
neighbor method. The maximum LAI (an important variable)
data were compiled based only on studies that carried out
manual measurements, rather than remote sensing, in order
to avoid discrepancies between different datasets. Other po-
tential variables (e.g., normalized difference vegetation in-
dex and greenness) were not compiled, as they are difficult
to measure in-situ when C fluxes are measured at a specific
site. The data were categorized into 10 biomes: broadleaf and
needleleaf mixed forest (BNMF), CL, deciduous broadleaf
forest (DBF), deciduous needleleaf forest (DNF), evergreen
broadleaf forest (EBF), evergreen needleleaf forest (ENF),
GL, SL, tundra (TD), wetland [including forested wetland
(FWL) and non-woody wetland (NWWL)] (Fig. 1). The FWL
included mangroves and swamps, while the NWWL included
marshland, mires, rice paddies, etc. The reason these 10
biome types were used was based on the consideration that
leaf traits (i.e., broadleaf and needleleaf) may have a consid-
erable influence on photosynthesis and respiration.

2.2. Data analysis and ecosystem modeling
We examined the distribution of annual C fluxes (i.e.,

GPP, ER and NEP) within and across biome types using the
box-and-whisker plot. The box-and-whisker plot summarizes
a data sample through five statistical measures: the mini-
mum, lower quartile, median, upper quartile, and maximum.
The mean values of each C flux were also computed for each
biome type.

To clarify the issue as to how MAT and AP influenced
the C flux component processes differently, for the growing
season length (GSL) and the maximum GPP, ER and NEP,
we grouped the global land ecosystems into 12 land climate
classes. The scale for AP was divided into less than 0.4 m,

0.4–0.8 m, 0.8–1.5 m, and greater than 1.5 m, while that for
MAT was less than 10◦C, 10◦C–20◦C, and greater than 20◦C.
The AP of 0.4 m, 0.8 m and 1.5 m represents the thresholds
between semiarid and semihumid zones, between semihumid
and humid zones, and between humid and rainy zones, re-
spectively. The 10◦C and 20◦C parts of the scale represent the
temperature for active growth and vigorous growth of plants,
respectively. The GPP, ER and NEP values were grouped into
12 land climate classes. The distribution of annual C fluxes
(i.e., GPP, ER and NEP) in each climate class was determined
using the box-and-whisker plot. Moreover, the GSL across
different measurement sites and years could be explained as
the MAT-related and AP-related functions, as the GSL was
positively correlated with temperature in most climate zones
and was closer to the seasonal precipitation pattern in tropi-
cal and subtropical regions (Liu et al., 2010; Ngeticha et al.,
2014).

To identify the key factors controlling C fluxes, we con-
ducted univariate regression analyses. In the univariate re-
gression analyses, we examined the regulatory mechanisms
of C fluxes by climate factors (MAT and AP), vegetation
characteristics (e.g., LAI), and soil properties (e.g., SOC).
The univariate regression analyses were used based on the
following considerations. First, only potential factors influ-
encing C fluxes with substantial determination coefficients
(R2) and very low P values (P < 0.001) in the univariate re-
gression analyses can be considered as the variables in the
following multivariate models. Second, the distribution pat-
terns of C fluxes and potential drivers can be directly deter-
mined in the regression plots, which are necessary in choos-
ing an appropriate mathematical expression in multivariate
models. Third, MAT, AP and LAI have been commonly con-
sidered as independent predictive factors of C fluxes in previ-
ous univariate regression studies (Luyssaert et al., 2007; Lu et
al., 2017; Hursh et al., 2017). Eventually, AP only explained
∼10% (R2 = 0.108) of variations in LAI with a correlation
coefficient (r) of 0.328 (ESM A, Table S1), while most of the
variations in LAI (∼90%) could not be explained by AP and
may contribute to the variations in C fluxes. No significant

Fig. 1. The C flux sites compiled in this study.
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correlation between MAT and LAI was found on the basis of
available data (ESM A, Table S1).

Several aspects were considered in choosing the key
drivers for the C flux models. First, the models for non-
wetlands and wetlands might include different drivers. Sec-
ond, both MAT and AP were considered as potential drivers
in the model, as they have been found in previous investiga-
tions to be important controls of the variability in GPP and
ER (Kato and Tang, 2008; Chen et al., 2013; Reichstein et
al., 2013; Yu et al., 2013; Xiao et al., 2013). Third, only
the potential vegetation and soil variables with enough data
points and high significance can be included in the C flux
models. When the mainly responsible drivers (climate and
other site variables) were determined, they were all included
in the model.

Before establishing the model, the relative contribution
of each potential factor to each C flux was evaluated using
the standardized coefficient in stepwise linear regression. To
explain the dependence of annual C fluxes on MAT, AP, and
one specific environmental control (Xi), we established the
following model:

Yc = f1(MAT) f2(AP) f3(Xi)

= C0eαMAT
(

AP
AP+β

)(
Xi

Xi+γ

)
. (1)

This model considers the interaction effects among the three
variables of MAT, AP and LAI, whereas linear models can-
not account for the interactions among variables. An expo-
nential model has been commonly used to explain the rela-
tionship between C fluxes (GPP, ER and NEP) and temper-
ature (Migliavacca et al., 2011; Ballantyne et al., 2017). A
Michaelis–Menten function suggests declining positive ef-
fects of increasing precipitation or another environmental
control (Xi) on C fluxes, which has been associated with the
water and substrate supply on C assimilation and emission
(Migliavacca et al., 2011; Exbrayat et al., 2013; Ballantyne
et al., 2017). This model started from a widely used climate-
driven model proposed by Raich et al. (2002) and further
modified by Reichstein et al. (2003) in the form of a climate-
and-LAI-driven model. In the equation, Yc denotes a specific
C flux item (e.g., GPP); C0 is the Yc at 0◦C without precipita-
tion and Xi (one specific environmental control) limitations;
α (◦C−1) determines the increasing rate of Yc with the in-
crease of MAT; and β (m) and γ represent the half-saturation
constants of the Michaelis–Menten function determining the
relationship between Yc and precipitation or Xi, respectively.
The relationship between precipitation (or Xi) and observed
Yc can be approximated using a Michaelis–Menten function,
with increasing rates of precipitation (or Xi) having lesser im-
pacts on fluxes. The model’s parameters (C0, α, β and γ) were
estimated using a least sum of residual squares method. The
modeling errors were determined by performing a bootstrap-
ping procedure using resampling from the original dataset to
create 100 different datasets (Cameron et al., 2008; Keenan
et al., 2013). The GPP, ER and NEP within each of the 12
climate classes were modeled by the climate (MAT and AP)

and vegetation variable (LAI) within each climate class. The
model structure was the same as in Eq. (1).

Six statistical measures, including the adjusted coefficient
of determination (R2), probability of obtaining a test statistic
(P), root-mean-square error (RMSE), model efficiency (ME),
mean absolute error (MAE) (Janssen and Heuberger, 1995),
and Akaike information criterion (AIC) (Akaike, 1974), were
used to evaluate the performance of the established models.
The RMSE, ME, MAE and AIC were computed by the fol-
lowing equations:

RMSE=

√∑n
i=1(Yc,MOD,i−Yc,OBS,i)2

n
; (2)

ME=
[
∑n

i=1(Yc,OBS,i−Yc,OBS)2−∑n
i=1(Yc,MOD,i−Yc,OBS,i)2]

[
∑n

i=1(Yc,OBS,i−Yc,OBS)2]
;

(3)

MAE=
∑n

i=1 |Yc,MOD,i−Yc,OBS,i|
n

; (4)

AIC=2k−2ln(L) . (5)

In above equations, Yc,MOD and Yc,OBS are the modeled
and observed values of C fluxes, respectively; Yc,OBS denotes
the mean of Yc,OBS,i; n is the number of samples; k defines
the number of parameters in the statistical model; and L is
the maximized value of the likelihood function for the esti-
mated model.

All statistical analyses were performed with SPSS19.0 for
Windows. All levels of significance reported are P < 0.05 un-
less otherwise noted.

3. Results

3.1. Variability in GPP, ER and NEP across biomes

The magnitude of annual C fluxes varied across biomes
(Figs. 2a–c). Annual GPP and ER of terrestrial ecosystems
ranged from 3.417 to 305.500 mol C m−2 yr−1 and from
2.833 to 325.583 mol C m−2 yr−1, respectively. On aver-
age, EBF had the highest annual GPP and ER, while TD
had the lowest annual GPP and ER. The highest annual GPP
and ER were from Simpang Pertang (Malaysia) and Palangka
Raya (Indonesia), respectively, while the lowest annual GPP
and ER were from Inner Mongolia (China) and Daring Lake
(Canada), respectively. The range of annual GPP and ER
was greatest for wetlands, as they included peatland in the
tropical zone and fenland in the frigid zone (ESMA, Ta-
ble S1). For each biome, the mean annual GPP was slightly
higher than the mean annual ER. Annual NEP varied from
−113.333 to 116.667 mol C m−2 yr−1 (Fig. 2c). Compared
with GPP and ER, annual NEP showed lower variance across
biomes. Mean annual NEP was 20.417, 17.167, 22.417,
19.917, 25.833, 18.750, 8.083, 4.833, 2.833, 12.538 and
7.065 mol C m−2 yr−1 for the BNMF, CL, BDF, DNF, EBF,
ENF, GL, SL, TD, FWL and NWWL biomes, respectively.
Among the biomes, the highest and lowest mean annual NEP
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Fig. 2. Box-and-whisker plots for C fluxes: (a) global GPP; (b) ER; (c) NEP.

was for EBF and TD, respectively. More than 80% NEP val-
ues were greater than zero, indicating most examined ecosys-
tems across sites and years were C sinks. The present GPP
and ER dataset for different forest biomes also validated the
theory that broadleaf forest has higher photosynthesis and
respiration rates than needleleaf forest. The net C assimila-
tion (NEP) was also slightly higher for broadleaf forest than
needleleaf forest.

As indicated in the box-and-whisker plots (Fig. 3), the
distribution of annual NEP showed clear patterns with the
changing climate classes. These results indicated that MAT
and MAP influence the C flux component processes differ-
ently. The median of NEP declined with the increase in the
MAT scale when AP was scarce (< 0.4 m). However, NEP
increased with the increase in MAT when AP ranged from
0.4 to 1.5 m. The maximum NEP appeared in the MAT range
of 10◦C–20◦C when AP was plentiful (> 1.5 m). Across the
12 climate classes, the maximum NEP appeared at the up-
per end of the MAT scale (MAT > 20◦C) and in the moderate
part of the AP scale (0.8 m < AP < 1.5 m). These patterns of
NEP depended on the variations in GPP and ER. Both GPP
and ER increased with the increase in MAT and AP, with the
maximum GPP and ER at the upper end of the MAT scale
(MAT > 20◦C) and AP scale (AP > 1.5 m). For all levels of
precipitation zones (< 0.4 m; 0.4–0.8 m; 0.8–1.5 m; > 1.5 m),
the median of GPP generally increased with the increase in
MAT [Table S1 in electronic supplementary material B (ESM
B)]. A similar phenomenon could be seen for the median of
ER (ESM B, Table S1), although the tendency was not as ob-
vious as for GPP.

3.2. Drivers of GPP

Annual GPP exhibited strong relationships with climate
factors. For all biomes, GPP was positively related to MAT
and AP (Figs. 4a and b). About 17.6% and 32.7% of the
variations in GPP could be explained by MAT and AP, re-
spectively. The relationship between GPP and MAT was fit-
ted by an exponential equation. GPP increased exponentially
with the increase in MAT for both non-wetland and wet-
land (i.e., FWL and NWWL) biomes (Figs. 4d and g). Com-
pared with temperature, precipitation had a stronger correla-
tion with GPP for non-wetland biomes. AP explained 42.9%
of the variability in GPP for non-wetland biomes (Fig. 4e).

GPP was also strongly correlated with LAI (Fig. 4c).
LAI was an important factor determining GPP for both
non-wetland and wetland (i.e., FWL and NWWL) biomes,
explaining 34.5% (P < 0.001) and 74.6% (P < 0.001) of
the variability, respectively. For all biomes, LAI explained
40.2% of the variability in GPP. For wetland (i.e., FWL and
NWWL), GPP was significantly correlated to MAT and LAI
(Figs. 4g and i); GPP was not significantly correlated with
AP in this ecosystem (Fig. 4h).

3.3. Drivers of ER

Similar to GPP, ER responded to a suite of drivers, in-
cluding temperature, precipitation and vegetation productiv-
ity (Fig. 5). In the univariate regressions, MAT, AP and LAI
were the site-specific variables that correlated most strongly
with ER. For all biomes, 19.1%, 32.4% and 33.2% of the
variations in ER could be explained by MAT, AP and LAI, re-
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Fig. 3. Box-and-whisker plots for C fluxes at different MAT and AP scales. The median values of NEP
are shown above the NEP plot.

spectively (Figs. 5a–c). Ecosystems with higher temperature,
precipitation and LAI had a larger value of ER as C output.
For wetland (i.e., FWL and NWWL), the drivers of ER were
MAT and LAI (Figs. 5g and i); ER did not exhibit clear pre-
cipitation dependency in this ecosystem (Fig 5h). Similar to
GPP, ER was also not significantly correlated with soil prop-
erties (ESM A, Table S1). The relation between annual ER
and GPP is shown in Fig. 6. The slope of the relation was
0.805 for all biomes, 0.767 for non-wetland, and 1.140 for
wetland (i.e., FWL and NWWL) (intercepts of 4.903, 7.847
and −11.498 mol C m−2 per year, respectively). The ER/GPP

ratio averaged 0.805 across all sites and years, with values
greater than 1 (i.e., net loss of CO2) for wetland (i.e., FWL
and NWWL).

3.4. Drivers of NEP
Annual NEP was weakly correlated with climate factors

(i.e., MAT and AP) (Figs. 7a, b, d, e, g and h). Similar to
GPP and ER, NEP was significantly (P < 0.001) correlated
with LAI when all biomes (Fig. 7c) and non-wetland (Fig. 7f)
were examined. No significant correlation between NEP and
LAI was found for wetland (i.e., FWL and NWWL) (Fig. 7i).
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Fig. 4. Relationship between GPP and environmental variables: (a–c) MAT, AP and LAI, respectively,
for all biomes; (d–f) MAT, AP and LAI, respectively, for non-wetland sites; (g–i) MAT, AP and LAI,
respectively, for wetland sites. The P values in all panels are less than 0.001.

Although the R2 for the function explaining the relationship
between NEP and LAI was relatively low (R2 = 0.106), the
number of independent data points for the fitting was large,
ensuring the reliability of the regression function. Moreover,
annual NEP was significantly correlated with GPP (ESM B,
Fig. S1). The slope of the relation was 0.195 for all biomes,
0.234 for non-wetland, and −0.140 for wetland (i.e., FWL
and NWWL). Annual NEP increased with the increase in
GPP for non-wetland, and decreased with the increase in GPP
for wetland (i.e., FWL and NWWL).

NEP in our dataset varied with measurement period
across the global 24-year C fluxes measurements (ESM B,
Fig. S2). A quadratic function could explain the relationship
between GPP (or NEP) and measurement period, suggesting
the interannual variability of the GPP (or NEP). NEP dur-
ing the 1993–97 and 2009–14 time periods was less than that
during other time periods (ESM B, Fig. S3).

NEP at some multiple-year flux sites showed consider-
able variability when the interannual variation of NEP was
considered. NEP could be quite high in the first few years
after a long dry period, and then became quite low or neu-
tral even though MAT and AP did not change much for a few

years after the long dry period (ESM A, Table S1). The repre-
sentative sites that had such phenomenon were Qianyanzhou
(China), Duke forest (USA), Turkey Point (Canada), Pell-
ston (USA), Prince Albert (Canada), Hyytiälä (Finland), Al-
buquerque (USA), Dresden (Germany), and Twitchell (USA)
(ESM A, Table S1). Plants might show marked responses to
increasing precipitation after a long dry period, which could
be explained as priming effects. After the dry and humid pe-
riod, the priming effects of plants to changing precipitation
might not be obvious, because plants have acclimatized to
the precipitation fluctuation.

3.5. Modeling GPP, ER and NEP
The relative contribution of MAT, AP and LAI to each C

flux is indicated in Table S2 (ESM B). For the non-wetland,
the relative contribution of AP to GPP/ER/NEP in the climate
factor–based model was higher than that of MAT, while the
relative contribution of LAI to GPP/ER/NEP in the climate-
and LAI-based model was higher than that of both MAT and
AP. For the wetland (i.e., FWL and NWWL), the relative con-
tribution of MAT to GPP/ER/NEP was higher than that of
both AP and LAI.
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Fig. 5. Relationship between ER and environmental variables: (a–c) MAT, AP and LAI, respectively,
in all biomes; (d–f) MAT, AP and LAI, respectively, for non-wetland sites; (g–i) MAT, AP and LAI,
respectively, for wetland sites. The P values in all panels are less than 0.001.

(a) (b) (c)

Fig. 6. Relationship between ER and GPP: (a) all biomes; (b) non-wetland; (c) wetland. The P values in
all panels are less than 0.001.

The models including climate factors and LAI are shown
in Table 2. For all biomes, the climate factor model named
MAT&AP-model explained 38.3% of variations in GPP. The
combined contribution of MAT and AP to the spatial and
temporal variations in GPP increased significantly compared
with the single-factor contribution of MAT or AP (Fig. 4

and Table 2). For all biomes, the RMSE, ME, and MAE for
the climate-based GPP model were 46.265 mol C m−2 yr−1,
0.383, and 35.993 mol C m−2 yr−1, respectively. For non-
wetland, the climate factor model explained 42.9% of varia-
tions in GPP. Statistical analyses indicated that the climate-
and LAI-based model named MAT&AP&LAI-model per-
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Fig. 7. Relationship between NEP and environmental variables: (a–c) MAT, AP and LAI, respectively,
in all biomes; (d–f) MAT, AP and LAI, respectively, for non-wetland sites; (g–i) MAT, AP and LAI,
respectively, for wetland sites. The P values in (a–f) are less than 0.001; the P values in (g–i) are 0.003,
0.019, and 0.921, respectively.

Table 2. Models simulating the inter-site and interannual variability in GPP, ER and NEP (mol C m−2 yr−1).

Flux Biome type n Model R2 P RMSE ME MAE AIC

GPP All biomes 870 GPP = 133.444e0.026MAT
(

AP
AP+0.479

)
0.383 < 0.001 46.265 0.383 35.993 6675.8

553 GPP = 142.828e0.032MAT
(

AP
AP+0.100

)(
LAI

LAI+1.871

)
0.532 < 0.001 36.424 0.527 26.072 3982.3

WL 40 GPP = 108.957e0.075MAT
(

LAI
LAI+8.762

)
0.914 < 0.001 23.387 0.887 16.688 256.2

Non-WL 779 GPP = 161.575e0.023MAT
(

AP
AP+0.668

)
0.429 < 0.001 45.202 0.382 34.437 5941.8

515 GPP = 141.031e0.029MAT
(

AP
AP+0.114

)(
LAI

LAI+1.466

)
0.480 < 0.001 36.308 0.480 26.248 3705.8

CL 56 GPP = 39.571e0.094MAT
(

AP
AP+0.141

)
0.315 < 0.001 30.672 0.315 24.976 387.4

20 GPP = 240.469e−0.025MAT
(

AP
AP−0.129

)(
LAI

LAI+3.777

)
0.725 < 0.001 14.084 0.725 10.870 111.8

GL&SL 161 GPP = 723.116e0.001MAT
(

AP
AP+5.709

)
0.645 < 0.001 34.319 0.879 25.370 1142.5
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Table 2. (Continued)

Flux Biome type n Model R2 P RMSE ME MAE AIC

57 GPP = 32.986e0.127MAT
(

AP
AP+8.421

)(
LAI

LAI+3.928

)
0.569 < 0.001 35.547 0.550 23.991 413.1

FOR 547 GPP = 108.666e0.031MAT
(

AP
AP+0.176

)
0.366 < 0.001 42.578 0.366 33.042 4108.0

437 GPP = 124.131e0.032MAT
(

AP
AP+0.080

)(
LAI

LAI+1.062

)
0.457 < 0.001 36.286 0.457 26.203 3144.9

ER All biomes 870 ER = 114.026e0.027MAT
(

AP
AP+0.500

)
0.364 < 0.001 46.265 0.364 30.904 6478.1

553 ER = 113.621e0.033MAT
(

AP
AP+0.163

)(
LAI

LAI+1.356

)
0.476 < 0.001 33.030 0.476 24.134 3874.1

WL 40 ER = 108.957e0.075MAT
(

AP
AP+8.762

)
0.929 < 0.001 21.151 0.929 14.811 248.1

Non-WL 779 ER = 143.875e0.023MAT
(

AP
AP+0.774

)
0.454 < 0.001 39.969 0.297 31.645 5750.1

515 ER = 256.625e0.017MAT
(

AP
AP+0.519

)(
LAI

LAI+2.780

)
0.419 < 0.001 38.163 0.154 29.271 3757.1

CL 56 ER = 39.284e0.072MAT
(

AP
AP+0.113

)
0.260 < 0.001 23.084 0.260 19.665 355.6

20 ER = 77.994e0.009MAT
(

AP
AP−0.122

)(
LAI

LAI+1.020

)
0.504 < 0.001 12.241 0.504 9.964 106.2

GL&SL 161 ER = 598.494e0.001MAT
(

AP
AP+5.083

)
0.634 < 0.001 31.642 0.875 22.930 1116.3

57 ER = 257.236e0.021MAT
(

AP
AP+0.454

)(
LAI

LAI+2.865

)
0.566 < 0.001 33.481 0.540 23.803 406.3

FOR 547 ER = 95.120e0.032MAT
(

AP
AP+0.245

)
0.390 < 0.001 34.448 0.390 26.634 3876.2

437 ER = 101.779e0.031MAT
(

AP
AP+0.137

)(
LAI

LAI+0.705

)
0.406 < 0.001 31.098 0.406 23.337 3010.1

NEP All biomes 1194 NEP = 23.697e0.024MAT
(

AP
AP+0.700

)
0.073 < 0.001 23.042 0.156 16.467 7495.9

706 NEP = 34.511e0.023MAT
(

AP
AP+0.052

)(
LAI

LAI+4.010

)
0.138 < 0.001 19.051 0.138 14.422 4165.4

WL 133 NEP = 0.776e0.153MAT
(

AP
AP+0.074

)
0.146 < 0.001 31.930 0.146 21.294 925.3

Non-WL 1061 NEP = 27.487e0.017MAT
(

AP
AP+0.698

)
0.077 < 0.001 19.980 0.106 15.586 6484.1

661 NEP = 30.972e0.033MAT
(

AP
AP−0.007

)(
LAI

LAI+4.321

)
0.166 < 0.001 18.680 0.183 14.378 3874.1

CL 30 NEP = 2902.000e−0.123MAT
(

LAI
LAI+103.751

)
0.411 < 0.01 14.010 0.411 11.341 164.4

GL&SL 88 NEP = 32.986e0.127MAT
(

AP
AP+8.421

)(
LAI

LAI+3.928

)
0.268 < 0.001 10.268 0.426 7.582 415.9

FOR 536 NEP = 25.132e0.037MAT
(

AP
AP−0.018

)(
LAI

LAI+2.613

)
0.134 < 0.001 19.389 0.134 14.911 3184.2

Notes: Non-wetland included CL, GL, SL, FOR and TD. TD was not modeled in this Table 1 because of insufficient data. For wetland (i.e., FWL and
NWWL), AP was not the limiting factor of GPP (Fig. 4h) and ER (Fig. 5h), while LAI was not the limiting factor of NEP (Fig. 7i).
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formed well in simulating the temporal and spatial variabil-
ity in GPP across various biomes (Table 2). The model fit
of GPP of the climate-based equation related to MAT and AP
was improved when the LAI was incorporated into the model,
suggesting that GPP increases with increasing LAI. For all
biomes, MAT&AP&LAI-model appeared to be the best fit
for the variations in GPP when the statistical measures of
n, R2, P, RMSE, ME, MAE and AIC were comprehensively
evaluated (Table 2). Moreover, for FWL and NWWL, the fit
of MAT&LAI-model for GPP had high values of R2 (0.914)
and ME (0.887) and low values of RMSE (23.387) and MAE
(16.688), suggesting that they strongly explain the variations
in GPP.

The climate factor model named MAT&AP-model ex-
plained 36.4% of variations in ER. The RMSE, ME, and
MAE for the climate-based ER model were 46.265 mol C
m−2 yr−1, 0.364, and 30.904 mol C m−2 yr−1, respectively.
For non-wetland, the climate factor model explained 45.4%
of variations in ER. By integrating the interaction between
climate and LAI, the explanation of the regression equa-
tion with respect to ER also increased in comparison with
MAT&AP-model, when the statistical measures of n, R2, P,
RMSE, ME, MAE and AIC were comprehensively evaluated
(Table 2). Moreover, for FWL and NWWL, MAT&AP-model
explained 92.9% (R2 = 0.929) of the variations in ER, with
low values of RMSE (21.151 mol C m−2 yr−1) and MAE
(14.811 mol C m−2 yr−1).

Compared with GPP and ER, MAT&AP-model explained
a lower proportion of the variability in NEP for FWL and
NWWL. For all biomes, the RMSE, ME, and MAE for the
climate-based NEP model were 23.042 mol C m−2 yr−1,
0.156, and 16.467 mol C m−2 yr−1, respectively (Table 2).
The climate factor model explained 7.7% and 14.6% of the
variations in NEP for non-wetland and wetland (i.e., FWL
and NWWL).

To explore the effects of land use or disturbance (i.e., TA,
TH, DBH and BA) on NEP, we further examined the rela-
tionship between NEP and these variables (Figs. 8a–d). As
shown in Fig. 8a, NEP increased significantly (P < 0.001)
with the increase in TA when TA was less than 15 yr. How-
ever, NEP declined significantly (P< 0.001) with the increase
in TA when TA was more than 15 yr, indicating that young
trees aged from 10 to 20 yr can absorb more C from the at-
mosphere. Similar to TA, the trees with height ranging from
10 to 20 m had the highest ability to absorb C. The relation-
ship between NEP and DBH could be well explained by a
quadratic model, with a determination coefficient of 0.185.

Moreover, with over 1000 annual observations for each
of those three fluxes from about 300 stations, a number of
sites had multiple-year observations. In our analysis, multi-
ple observations from one station were treated as indepen-
dent observations. Therefore, both inter-site and interannual
variations in C fluxes could be determined and modeled. If
the multiple-year observations from one station were con-
sidered as one sample and modeled on the basis of the av-
eraged multiple-year fluxes and multiple-year environmental
variables at each site, the relationship between C fluxes and

environmental variables on the basis of integrated site-year
data (ESM B, Fig. S4) was similar to that on the basis of all
inter-site and interannual data (Figs. 4, 5 and 7).

4. Discussion

4.1. Climate control of ecosystem CO2 fluxes

AP was the most important factor controlling annual GPP
and ER across non-wetland biomes. Compared with temper-
ature, precipitation explained a higher proportion of the vari-
ance in GPP and ER. The univariate regressions indicated that
precipitation explained 42.9% of the variations in GPP and
44.6% of the variations in ER for non-wetland (Figs. 4e and
5e). Temperature was another important climatic factor con-
trolling the variability in GPP and ER. Overall, warmer and
wetter sites had higher GPP and ER, while drier and/or colder
sites had lower GPP and ER.

The relationship between GPP (or ER) and climate fac-
tors has been reported by a number of regional and global
studies (Law et al., 2002; Kato and Tang, 2008; Chen et al.,
2013; Reichstein et al., 2013; Yu et al., 2013; Xiao et al.,
2013; Xu et al., 2014). For instance, Chen et al. (2013) re-
ported that the combined effects of MAT and AP accounted
for 85% and 81% of the spatial variations in GPP and ER
in the Asian region, respectively. Xu et al. (2014) exam-
ined the global patterns and environmental controls of for-
est C balance, and found that both production and respira-
tion increased with MAT and exhibited unimodal patterns
along a gradient of precipitation. For wetland (i.e., FWL and
NWWL), only MAT was responsible for the spatial and tem-
poral variations in GPP and ER. AP was not significantly cor-
related with annual GPP and ER, as water is not the common
limitation to vegetation growth in wetland.

Our study showed that NEP was significantly correlated
with MAT and AP (Fig. 7), which was in agreement with
the results of some regional studies showing that higher air
temperature and/or precipitation can lead to higher net C up-
take (Yu et al., 2013; Xiao et al., 2013). Chen et al. (2013)
reported that MAT and AP explained 36% of the variations
in NEP in Asian ecosystems. Annual NEP was also found
to be positively related to annual temperature and precipi-
tation in Chinese terrestrial ecosystems (Xiao et al., 2013).
Moreover, studies have shown that climate variation can be
directly responsible for short- but not long-term variation in
forest–atmosphere C exchange (Richardson et al., 2007). At
global scales, our study showed that explaining NEP variabil-
ity only via climatic variables is ineffective.

In this study, precipitation was used as a proxy of water
availability. Although precipitation is relevant, other proxies
(e.g., evapotranspiration, dryness, soil moisture) are also rele-
vant. Yi et al. (2010) showed that NEP was generally a func-
tion of temperature at colder sites, relative to a function of
dryness at warmer sites. This suggests that NEP is controlled
by a complex interaction of climate factors (i.e., tempera-
ture and dryness). Models incorporating soil moisture per-
form differently to models using precipitation when simulat-
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ing soil C fluxes (McGuire et al., 2000; Exbrayat et al., 2013;
Chen et al., 2014; Hursh et al., 2017). Although factors rel-
evant to the relationship between precipitation, dryness and
soil moisture are difficult to disentangle at broad scales, tem-
perature and soil texture are thought to be the potential key
drivers (Davidson et al., 2000). Addressing this relationship
requires more measurement data across a larger number of
site-years. Long-term observations of GPP, ER and NEP in
various climate zones are needed to verify their variability at
different time scales and in different regions.

4.2. Vegetation control of ecosystem CO2 fluxes
Vegetation drivers have been shown to be critical to the

inter-site and interannual variations in C fluxes (Jung et al.,
2011). In the present study, LAI was an important factor de-
termining GPP and ER for both non-wetland and wetland
(i.e., FWL and NWWL) biomes. Previously, few investiga-
tions have reported the correlation between annual GPP and
LAI (Luyssaert et al., 2007). On an annual basis, Law et al.
(2002) found a poor correlation between GPP and LAI, pos-
sibly because the amount of data points was limited in their
study. Indeed, LAI is a unique biophysical factor account-
ing for the differences in phenological development, assimi-
lation and biomass growth in plant canopies (Schmitt et al.,
2010). Leaf area exerts a major influence on canopy pho-
tosynthesis (Tappeiner and Cernusca, 1996; Saigusa et al.,
1998; Restrepo-Coupe et al., 2013; Wu et al., 2016; Baldoc-
chi et al., 2018), which also provides assimilates for the res-
piration of roots and soil microorganisms (Reichstein et al.,
2003; Bahn et al., 2008, 2009; Bond-Lamberty and Thomson,
2010). By testing the pairwise relationship between ER and
different site characteristics, Migliavacca et al. (2011) found
that the ecosystem LAI showed the closest correlation with
ER, and thus LAI was the best explanatory variable of the
ER variability.

Besides LAI, modeling and in-situ measurement stud-
ies have highlighted the importance of biotic drivers, such
as stand age, to spatial patterns of C fluxes (Migliavacca et
al., 2011). Substrate supply is thought to be more important
than temperature in determining ER across European forests
(Janssens et al., 2001). The endogenous processes regulate a
large part of the daily variation in terrestrial NEP (de Dios
et al., 2012). Moreover, ecosystems under the climate opti-
mum often reach their photosynthetic and respiratory poten-
tials, resulting in the larger contribution of biological effects
(compared with climate effects) to the interannual variabil-
ity in NEP (Shao et al., 2015). A number of previous stud-
ies have shown that NEP is affected by interactions of mi-
croclimate, canopy structure, and the photosynthetic and res-
piratory physiology of plants (Flanagan and Johnson, 2005;
Luyssaert et al., 2007; Schmitt et al., 2010), which is essen-
tially in agreement with our results.

4.3. Implications for modeling the terrestrial C cycle
MAT&AP-model, MAT&AP&LAI-model, and MAT&

LAI-model relied on statistical relations between annual
GP/ER/NEP and some key controls (climate or LAI), rather

than a complete understanding of the mechanisms involved. It
was necessary that these simulations generated the correct or-
der of magnitude of measured values and the general patterns
from low to high C fluxes. Although previous studies have
employed climate variables to simulate C fluxes (Schmitt et
al., 2010; Migliavacca et al., 2011; Yu et al., 2013; Chen
et al., 2015), our models included the most inclusive data
points of C fluxes and relevant climate and vegetation vari-
ables, increasing the simulation efficiency. These results ob-
tained with the bootstrap estimation of MAT&AP-model and
MAT&AP&LAI-Model indicated that the developed model
described the GPP and ER for all biomes well.

The derived parameterization of MAT&AP&LAI-model
recorded in Table 2 may be considered as an optimized pa-
rameterization for the application of the model at global
scales. One of the main advances introduced by this model
formulation is the incorporation of LAI as a driver of the GPP
and ER. This variable was necessary to improve the descrip-
tion of both the temporal and spatial dynamics of GPP and
ER. In this study, wetland (i.e., FWL and NWWL) was in-
sensitive to precipitation, possibility owing to the presence of
water. For wetland, MAT&LAI-model explained more than
90% of variations in GPP and ER, suggesting MAT and LAI
are the two main drivers of GPP and ER.

However, the models shown in Table 2 are relatively
crude and did not vary by more specific biome types (i.e.,
between EBF, ENF, GL, TD, etc.), in spite of the significant
variation in biotic controls that would be expected. The unex-
plained variability in the multiple regressions indicated that
GPP, ER and NEP are probably related to a number of fac-
tors, including species composition, vegetation characteris-
tics, and spatial variability in nutrient availability (Bahn et
al., 2006; Schmitt et al., 2010). The information about veg-
etation characteristics other than LAI was limited, making it
impossible to incorporate these factors into the model. More-
over, the lack of vegetation data for each site and each year
increased the difficulties of biome-specific modeling. More
sophisticated analyses are expected if more such vegetation
data become available.

The NEP was relatively constant across all types of
biomes (Fig. 2c). The low variability in NEP constituted a
major reason why its measurement and modeling remained
so difficult. By contrast, GPP and ER showed great variability
across biomes, and even across sites and years for a specific
biome (Figs. 2a and b); the variability in GPP and ER was
generally in accordance with that in temperature and precip-
itation. NEP responded to climate drivers with relatively low
R2 (Fig. 7). Each biome (from EBF in the tropical area to TD
in the frigid zone) can act as a net C sink (i.e., NEP> 0), while
controls on the balance between photosynthesis and respira-
tion varied with sites and time scales. The weather conditions
like drought, the phenology of plants, and the supply of de-
composable litter or exudates may create temporary C stor-
age or loss in ecosystems (Trumbore, 2006). However, we
did find the climate and vegetation controls on NEP (Figs. 7
and 8), providing the clues for modeling NEP. The simulation
efficiency of NEP may be improved if available site-specific
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Fig. 8. Relationship between NEP and tree characteristics (TA, TH, DBH and BA) due to land use or
disturbance: (a) TA; (b) TH; (c) DBH; (d) BA. The several black outliers are not used for establishing
the regression line in panel (d). The P values in all panels are less than 0.001.

vegetation data are enough for a particular biome in the fu-
ture.

The models simulating the variations in the C fluxes of
GPP, ER and NEP varied at the different scales of MAT and
AP (ESM B, Table S3). LAI was a key driver of C fluxes of
GPP, ER and NEP when the MAT was at the scale of less than
10◦C. The influence of MAT on C fluxes was significant at the
scale of lowest MAT (MAT < 10◦C) and least AP (AP < 0.4
m). AP was one of the key drivers of C fluxes of GPP, ER
and NEP from the semiarid to -rainy zones (0.4 m <AP < 1.5
m) when the MAT was above 20◦C. The LAI was the only
driver of GPP and ER when the MAT and AP was greater
than 20◦C and 1.5 m, respectively. Overall, the variations in
GPP, ER and NEP were mainly controlled by LAI (a key indi-
cator of plant growth) when the MAT and AP were relatively
low or high, while their variations were controlled by MAT,
AP or LAI at the moderate scale of MAT and AP. The dis-
tribution of C fluxes and modeling in 12 land climate classes

would not only help to determine how temperature, precipita-
tion and vegetation influence C flux components differently,
but also provide new clues as to how to improve world cli-
mate classification (e.g., Köppen–Geiger climate classifica-
tion) (Rubel and Kottek, 2010) using C flux patterns (Fig. 3).
A new climate classification scheme in the future on the ba-
sis of C flux patterns may be more effective as it considers
the plant growth and C assimilation. Further subdivision of
the climate classes (e.g., dividing the semiarid zone into AP
less than 0.2 m and within the range of 0.2 to 0.4 m) is also
needed by compiling more field measurement data.

Further analysis using Pearson’s correlation coefficient
suggested that maximum C fluxes of GPPmax, ERmax and
NEPmax over the growing season were significantly (P <
0.001) correlated with climate factors (MAT and AP) (ESM
B, Table S4). The variations in GPPmax and NEPmax were
controlled by LAI, while the variations in ERmax were not
significantly (P > 0.05) correlated with LAI. MAT, AP and
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LAI significantly (P < 0.001) influenced the variations in
GSL, and GSL was significantly (P < 0.001) correlated with
annual C fluxes (GPP, ER and NEP). Overall, the maximum
C fluxes, annual C fluxes, GSL and climate factors had close
relationships.

In our study, ER was strongly correlated with GPP, which
could be validated by a number of studies at different spa-
tial and temporal scales (Lasslop et al., 2010). Larsen et al.
(2007) observed that ER depended strongly on photosynthe-
sis in a temperate heath. Janssens et al. (2001) and Reichstein
et al. (2007) reported that the annual ER increased linearly
with GPP across European forests. Yu et al. (2013) found that
the spatial patterns of GPP and ER of all terrestrial ecosys-
tems in China showed a positive correlation. The spatial and
temporal variations in ER and GPP were also coupled when
this analysis was expanded to global ecosystems (Chen et al.,
2015). Overall, this tight coupling confirms that the variation
in photosynthate availability is the dominant driver of respi-
ration and the coupling of GPP and ER should be taken into
account in terrestrial C cycle models.

5. Conclusions

Our study provides new insights into the drivers of the
interannual and inter-site variability of NEP, GPP and ER.
Across terrestrial biomes, climate factors were found to
play an important role in determining the GPP and ER.
For non-wetland, GPP and ER tended to increase towards
a warmer and wetter environment. For wetland (i.e., FWL
and NWWL), higher GPP and ER appeared in warmer con-
ditions, while precipitation was not the factor limiting site
productivity and respiration. Meanwhile, the climate roles
were mediated by the vegetation characteristics, such as LAI.
However, climate only showed little impact on the variabil-
ity in NEP, which was relatively constant across all types
of biomes. In addition, the vegetation controls (e.g., LAI
and TA) on NEP provided the clues to model NEP. Over-
all, the effects of LAI on GPP, ER and NEP indicated that
canopy-level measurement is critical for accurately estimat-
ing ecosystem–atmosphere exchange of CO2. Climate and
LAI can influence C flux components differently in differ-
ent climate regions. This synthesis study highlights that the
responses of ecosystem–atmosphere exchange of CO2 to cli-
mate and vegetation variations are complex, which poses
great challenges to models seeking to represent terrestrial
ecosystem responses to climatic variation.
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