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ABSTRACT

Assimilation configurations have significant impacts on analysis results and subsequent forecasts. A squall line system
that occurred on 23 April 2007 over southern China was used to investigate the impacts of the data assimilation frequency
of radar data on analyses and forecasts. A three-dimensional variational system was used to assimilate radial velocity data,
and a cloud analysis system was used for reflectivity assimilation with a 2-h assimilation window covering the initial stage of
the squall line. Two operators of radar reflectivity for cloud analyses corresponding to single- and double-moment schemes
were used. In this study, we examined the sensitivity of assimilation frequency using 10-, 20-, 30-, and 60-min assimilation
intervals. The results showed that analysis fields were not consistent with model dynamics and microphysics in general;
thus, model states, including dynamic and microphysical variables, required approximately 20 min to reach a new balance
after data assimilation in all experiments. Moreover, a 20-min data assimilation interval generally produced better forecasts
for both single- and double-moment schemes in terms of equitable threat and bias scores. We conclude that a higher data
assimilation frequency can produce a more intense cold pool and rear inflow jets but does not necessarily lead to a better
forecast.
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1. Introduction

When modeling meso- and convective-scale weather sys-
tems, such as squall lines, mesoscale convective systems, and
supercells, ground-based Doppler radar is the only tool that
can provide detailed structures with high spatial and tempo-
ral resolutions. The assimilation of radar observations is as-
sumed to build initial conditions for hydrometeor variables
and thus to shorten spin-up times. However, radial veloc-
ity and reflectivity data are not directly associated with the
prognostic variables of numerical weather prediction (NWP)
models (Sun and Crook, 2001; Sun and Wilson, 2003; Tong
and Xue, 2005; Hu et al., 2006a,b).

Much effort has been expended on creating convection-
allowing numerical models (CAMs) with various data assim-
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ilation (DA) methods, such as three- and four-dimensional
variational (3DVar or 4DVar, respectively) and ensemble
Kalman filter (EnKF) techniques. Within the variational
framework, Gao et al. (1999) proposed a method to assimilate
radial velocity using an anelastic mass conservation equation
as a weak constraint to reduce error accumulation. This radial
velocity operator was subsequently applied to an EnKF (Tong
and Xue, 2005). Based on the 3DVar approach, this method
has been applied to various meso- and microscale convective
systems (Gao et al., 2004; Hu et al., 2006b; Schenkman et
al., 2011a,b; Ge et al., 2012), providing significant improve-
ments in short-term forecasts. Although the framework of as-
similating radial velocity into NWP models has been well es-
tablished, reflectivity DA remains challenging.

Sun and Crook (1997) developed a 4DVar assimilating
rain/water mixing ratio retrieved from reflectivity data with a
warm rain parameterization. This method was extended to in-
clude the ice phase based on prognostic equations proposed
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by Wu et al. (2000) for CAMs (Chang et al., 2016). How-
ever, due to the high computational cost of 4DVar, current
methods remain limited to simple microphysics parameter-
ization schemes. As an alternative DA method, EnKF has
recently become popular in convection-allowing DA due to
the advantages of allowing the direct use of nonlinear ob-
servation operators and updating state variables with flow-
dependent covariances derived from ensemble forecasts em-
ploying complex physical parameterizations. (Snyder and
Zhang, 2003; Tong and Xue, 2005; Xue et al., 2006; Jung
et al., 2008a,b, 2012; Snook et al., 2015). However, the esti-
mated flow-dependent covariances are usually rank deficient
because of the smaller ensemble size compared to the free-
dom of the NWP model. Using a larger ensemble size can
effectively alleviate this problem, but computational costs
can be extremely large, particularly in convection-allowing
DA systems. Due to the computational efficiency, simplic-
ity, and ease of implementation, an indirect cloud analy-
sis scheme, which adjusts thermodynamic and microphysical
fields within the cloud based on reflectivity, has been com-
monly adopted in mesoscale rapid-refresh DA (Albers et al.,
1996; Hu et al., 2006a; Carlin et al., 2017). Various mesoscale
convective systems, including hurricanes, supercells, torna-
dos, and squall lines, have been successfully simulated via
cloud analyses (Schenkman et al., 2011b; Ge et al., 2012;
Pan et al., 2016).

In CAM DA systems, assimilation and prediction results
are quite sensitive to the DA configuration (Gao et al., 2004,
2016; Dong et al., 2011). DA frequency has been tested as
a configuration parameter in several studies. Hu and Xue
(2007) showed the ability of DA to produce consistent dy-
namic state variables and the ability of the model to gener-
ate balanced dynamic fields can directly affect the quality of
forecasts. Their results suggested that 10-min DA intervals
led to more accurate forecasts than those with 5- and 15-
min cycles for storm prediction using cloud analyses. Dong
and Xue (2013) showed in a forecast model of Hurricane Ike
with an EnKF that, given a 2-h assimilation window, fore-
casts using 30-min DA intervals produced similar results to
those experiments using 10-min intervals, and were better
than those experiments using 60-min intervals. Johnson and
Wang (2017) showed that better forecasts were obtained us-
ing a 10-min interval. However, the detailed impacts of DA
frequency on structures of the convective system and spin-
up processes have rarely been discussed; such studies typ-
ically present only comparisons between objective verifica-
tion scores. Moreover, the studies cited above were all based
on a single-moment scheme. To the best of our knowledge,
tests of the impacts of DA frequency using a double-moment
scheme have not been well documented.

In this study, the DA frequency of radar data was in-
vestigated based on cloud analyses using both single- and
double-moment microphysics schemes. The remainder of the
paper is organized as follows: section 2 describes the ex-
perimental design; section 3 discusses the experimental re-
sults and analyses; and section 4 presents the discussion and
conclusion.

2. Experimental design

2.1. Advanced Regional Prediction System cloud analyses
and 3DVar

We used the Advanced Regional Prediction System
(ARPS) for DA and forecasts. Radial velocity data were as-
similated by 3DVar using the observation operator proposed
by Gao et al. (2004) with the anelastic mass conservation
equation as a weak constraint. Reflectivity data were ana-
lyzed by ARPS cloud analyses following ARPS 3DVar as-
similation. Within the cloud analysis framework, precipita-
tion types were diagnosed based on observed reflectivity and
background states, and then hydrometeor state variables were
retrieved and updated by applying radar reflectivity operators.

Three sets of observation operators were used to convert
reflectivity to hydrometeor mixing ratios. The first set of op-
erators combined the Kessler reflectivity equation (Kessler,
1995) for warm rain and the Rogers and Yau (1989) reflectiv-
ity formula for snow and hail, which we refer to as KRY. The
second set of operators (SMO) were defined by Smith et al.
(1975); their equations have also been applied using EnKF
techniques to successfully form storm-scale analyses (Tong
and Xue, 2005; Xue et al., 2006; Jung et al., 2012). However,
both KRY and SMO are limited to single-moment micro-
physics schemes. The third set of operators (N0D), which use
mixing ratio retrieval equations with diagnosed intercept pa-
rameters (Zhang et al., 2008; Wainwright et al., 2014), were
developed by Pan et al. (2016). These operators can be used
in forecasting with double-moment microphysics schemes.
Detailed descriptions of these procedures and equations can
be found in Pan et al. (2016).

2.2. DA design and forecasts
The mature stage of a trailing stratiform squall line that

occurred in southern China on 23 April 2004 is shown in Fig.
1a. As shown in the cross section along A–B (Fig. 1b), the
convective tower with the most intense radar echo (marked
by the thick red line) was located at the leading edge of the
system, and followed by a second, larger area of enhanced
radar echo known as a tailing stratiform region (marked by
the thick blue line). The leading convective line and the strat-
iform region were separated by a weak reflectivity region re-
ferred to as a transition zone. The leading edge lines of the
convective region of the squall line at 2200 UTC 23 April
to 0400 UTC 24 April, with a 2-h interval, are shown in
Fig. 2 to demonstrate the southeastward squall-line move-
ment across Guangdong Province, China. Six China New
Generation 1998 Doppler radars (CINRAD-98D), including
those at Guilin, Shaoguan, Guangzhou, Xiamen, Fuzhou, and
Jianyang, captured the evolution of the squall line.

The domain configuration is defined in Fig. 2. The outer
domain consisted of 323 × 323 grid points with 9-km grid
spacing, and the inner domain consisted of 579× 579 grid
points with 3-km grid spacing. The vertical grids of both
domains were 53 levels and stretched using 400-m averaged
grid spacing with near-surface vertical spacing of about 50
m. The model top was at 20.4 km.
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Fig. 1. Observed squall line, in its mature stage (at 0200 UTC 24 April), which occurred on 23 April 2007: (a)
composite mosaic radar reflectivity (color scale; units: dBZ); (b) cross sections of mosaic reflectivity (color
scale; units: dBZ) along A–B, with the convective and stratiform region denoted by red and blue thick lines.

Fig. 2. Map of the 9-km and 3-km horizontal resolution model domains.
The thick solid line indicates the fine domain. Circles indicate the maxi-
mum ranges (460 km) of the following radars: Guilin (GLRD), Shaoguan
(SGRD), Guangzhou (GZRD), Xiamen (XMRD), Fuzhou (FZRD), and
Jianyang (JYRD), which are indicated by blue triangles. Solid orange lines in-
dicate frontal edges of the convective region of the squall line from 2200 UTC
23 April to 0400 UTC 24 April at 2-h intervals.

National Centers for Environmental Prediction Global
Forecast System analyses were used as the initial condition
for the outer domain. Forecasts were carried out for 16 h.
Two control experiments were conducted by employing the
Lin single-moment microphysics scheme (Lin et al., 1983)

(CtlL) and Milbrandt and Yau double-moment (MY2) micro-
physics scheme (Milbrandt and Yau, 2005) (CtlM2) initial-
ized from interpolated fields from a 10-h forecast at 2200
UTC in the outer domain. For the radar DA experiments,
8-h forecasts of the outer domain at 2000 UTC in CtrlM2
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were interpolated into the 3-km grid to initialize the inner
domain to guarantee identical initial fields. The DA win-
dow of all DA experiments was from 2000 to 2200 UTC, to
cover the initial stage of squall-line evolution. To test the
DA frequency sensitivity, we conducted two sets of experi-
ments assimilating radar data with 10-, 20-, 30-, and 60-min
intervals for the 2-h DA window from 2000 to 2200 UTC
23 April, using the SMO and N0D schemes (Fig. 3). These
experiments were named S10L, S20L, S30L, S60L, D10M2,
D20M2, D30M2, and D60M2 (Table 1). D10M2, D20M2,
D30M2, and D60M2 employed the N0D DA scheme and the
MY2 scheme for forecasting; whereas, S10L, S20L, S30L
and S60L employed SMO for DA and the Lin scheme for
forecasting. Besides, in high-frequency DA cycles, updat-
ing the water vapor mixing ratio and cloud water can lead to
unrealistic warming in the midlevel troposphere, especially
for mesoscale convective systems (Schenkman et al., 2011a).
Thus, following Pan et al. (2016), the cloud water and wa-
ter vapor mixing ratio were not updated during DA cycles.
The temperature inside cloud was adjusted by a modified
moist air-parcel ascent that accounted for environmental air
entrainment (Hu et al., 2006a). All radial velocity and re-
flectivity observations from the six radars were assimilated
using ARPS 3DVar and cloud analyses. Because the ob-
served reflectivity is usually more reliable than that forecast
by the model, the precipitable hydrometeor variables from
background fields were replaced by those retrieved directly
from cloud analyses. The precipitable variables included
rainwater, snow, and hail mixing ratio for SMO; and rain-
water, snow, graupel and hail mixing ratio, and total number
concentration for N0D. After 2 h of DA, 6-h forecasts were
produced, extending to 0400 UTC 24 April.

The main model physics parameterizations were as fol-
lows: fourth-order computational mixing, fourth-order ad-
vection in the horizontal and vertical, a 1.5-order turbulence
kinetic energy–based subgrid-scale turbulent mixing scheme
with planetary boundary layer parameterization, a rigid top
boundary combined with a wave-absorbing layer, a two-layer
land surface model, and Goddard Space Flight Center short-
and longwave radiation parameterization.

Table 1. List of experiments performed in this study. See sec-
tion 2 for definitions of the reflectivity equations and microphysics
schemes.

Experiment Assimilation Reflectivity Microphysics
name frequency (min) equation scheme

CtlL – – Lin
CtlM2 – – MY2
S10L 10 SMO Lin
S20L 20 SMO Lin
S30L 30 SMO Lin
S60L 60 SMO Lin

D10M2 10 N0D MY2
D20M2 20 N0D MY2
D30M2 30 N0D MY2
D60M2 60 N0D MY2

Under identical DA and forecasting con?gurations, com-
paring S10L, S20L, S30L, and S60L or D10M2, D20M2,
D30M2, and D60M2 determines the impact of DA frequency
on forecasting results. Conversely, under identical DA fre-
quencies, comparing S10L and D10M2, S20L and D20M2,
S30L and D30M2, or S60L and D60M2 determines forecast-
ing differences due to the use of single- and double-moment
schemes. We investigated initial noise and model adjustment
based on experiments employing 10-, 20-, 30-, and 60-min
DA intervals. Then, the equitable threat scores (ETSs) and
bias scores (BSs) were used to evaluate precipitation forecast-
ing accuracy in experiments using different DA intervals. Ob-
served 1-h precipitation data were obtained from rain gauge
measurements.

3. Results and discussion

3.1. Adjustment following DA
3.1.1. Initial noise

Better meso- or convective-scale forecasts are typically
expected after assimilating radar observation data. However,

Fig. 3. Timelines of experimental forecasts and analyses.
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the analyzed state variables are usually inconsistent with the
model dynamic frame (Hu and Xue, 2007), particularly for a
variational DA framework and cloud analyses, because these
DA methods lack flow-dependent covariance and cross corre-
lations among prognostic state variables. During forecasting,
state variables are adjusted to balance each other, depend-
ing on the dynamics of the model. In every DA cycle, the
model balance is disturbed, and then slowly rebuilt during
forecasting. Experiments with different DA frequencies and
a fixed DA window could result in different degrees of model
noise. Therefore, the interaction between DA and forecasting
is quite complex. Hence, the mean absolute tendency of sur-
face pressure was employed to investigate balance adjustment
following DA.

The mean absolute tendency of surface pressure N (Lynch
and Huang, 1992) is defined as

N =
(

1
IJ

) I∑
i=1

J∑
j=1

∣∣∣∣∣∂ps

∂t

∣∣∣∣∣
i, j
,

where ps is the surface pressure and i and j are the horizontal
x and y grid points. The absolute values of the surface pres-
sure tendency were averaged over the whole domain, where
IJ represents the total grid points of the whole domain. N
reflects the overall balance of the model states (Lynch and
Huang, 1992; Chen and Huang, 2006), and its time vari-
ants indicate the length of time during which spurious high-
frequency noise is dumped.

N values for all experiments during first-hour forecasts
from 2200 UTC to 2300 UTC were calculated every minute;
the results are shown in Fig. 4. Without radar DA, N val-
ues from CtlM2 and CtlL were lower than those from ex-
periments with assimilated radar data. For DA experiments,
N values were all higher than for control experiments, and
sharply increased during the first minute, before then decreas-
ing to about 5 Pa min−1 after 1 h of forecasting. The dramatic
oscillation observed during the first 20 min, before 2220
UTC, implied strong adjustment of the model. The pressure
tendencies in experiments using a 10-min DA interval had the
highest N values among all experiments, which indicates that
a higher DA frequency could provoke greater imbalance into
the final analysis, also known as the initial condition. At the
same DA frequency, the time variants of N were very similar
between experiments S10L and D10M2, S20L and D20M2,
and between S30L and D30M2, which suggests that the se-
lection of a single- or double-moment scheme did not signifi-
cantly affect the forecasts. However, when a longer DA inter-
val was used, i.e., 60 min, the N values in experiment S60L
were greater than those in D60M2. To some extent, this indi-
cates that using a different microphysics scheme could signif-
icantly affect dynamic and microphysical variables during 60
min of forecasting, and thus produce significant differences
in the final analyses between S60L and D60M2.

3.1.2. Model adjustment

Following Hu and Xue (2007), we used the maximum
vertical velocity (Wmax) as an indicator of dynamic variable

Fig. 4. The 1-h evolution of the mean absolute surface pressure
tendency in forecasts starting at 2200 UTC 23 April 2004.

adjustment. Updraft mainly occurred within the convective
region of the squall line. To guarantee the representative-
ness of Wmax in the evolution of the squall line, we selected
Wmax from nine slides cutting through the main updraft in
the convective region from 2200 to 2300 UTC (Fig. 5). As
shown in Fig. 6, Wmax from CtlM2 increased after initializa-
tion, and became stable at around 12–14 m s−1 after 2210
UTC; whereas, Wmax from CtlL increased slower and reached
8–10 m s−1 after 2240 UTC. For all radar DA experiments,
dramatic high-frequency oscillations in Wmax were notice-
able during the first 20 min, similar to those observed in N
values. Wmax then became relatively stable at around 12–14
m s−1 in experiments D60M2 and S60L, and 8–12 m s−1 in
the other experiments. Since all the DA experiments were
initialized from CtlM2 at 2000 UTC, the Wmax was close to
CtlM2, rather than CtlL, after oscillations. Also, using lower
DA frequency, the Wmax from S60L and D60M2 was closer
to CtrlM2 from 2210 to 2230 UTC.

The interactions among the microphysics, kinematic and
thermodynamic variables were quite complex. Assuming that
the observed reflectivity data were more reliable than those
obtained from forecasts, the hydrometeor variables, including
mixing ratio and total concentration, were replaced by those
retrieved from reflectivity observations. Using the same set
of radar equations, we were able to obtain the same analyzed
hydrometeor variables among experiments with different DA
intervals. For example, the analyzed hydrometeor fields at
2200 UTC from experiment S10L were the same as those
from S20L, S30L and S60L. Rainfall, as a final phenomenon
of sophisticated microphysical processes, could represent
the adjustment of microphysics variables due to kinematic
and thermodynamic differences following DA. The aver-
aged accumulated rainfall rate (AAR) was calculated every
minute from 2200 to 2300 UTC in regions where rainfall rates
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Fig. 5. Forecast composite reflectivity (color scale; units: dBZ), vertical velocity (contours; units: m s−1), and
wind vectors (units: m s−1) at 1 km above mean sea level for experiment D30M2 at (a) 2200 and (b) 2300 UTC
24 April 2007. Blue contours are 2, 6, and 10 m s−1 and black lines represent slides used for statistical analyses
(Fig. 6).

Fig. 6. Maximum vertical velocity (m s−1) per min of 1-h fore-
casting started at 2200 UTC 23 April 2004.

exceeded 0.005 mm s−1 (Fig. 7). Though the AAR from
CtlL and CtlM2 increased from 2200 to 2215 UTC, it was
around 0.011–0.013 mm s−1 in 1-h forecasts from 2200 to
2300 UTC. The variations were quite a lot smaller than those
that occurred in the radar DA experiments. The AAR from
the radar DA experiments dropped sharply within the first 1–
2 min of forecasting, and then gradually increased until 2220
UTC, after which it remained stable at around 0.01–0.012
mm s−1. This indicated that the precipitable hydrometers re-
trieved by the cloud analysis fell to the ground as precipita-
tion in 1–2 min. Thereafter, rainfall was produced by the evo-

lution of the microphysics scheme, and reached its balance in
20 min. The lowest average AAR value was obtained from
experiments S10L and D10M2 using a 10-min DA interval.

We also examined the evolutions of Wmax and AAR from
1-h forecasts after the first cycle at 2000 UTC of DA for all
experiments. A similar spin-up time of around 20–30 min
was found. Overall, both dynamic and microphysical fields
took about 20 min to spin up and recover their balance un-
der different microphysics schemes, and did not significantly
change as the cycles advanced.

Radar DA can create initial fields resolving more
mesoscale structures, even convective-scale information, and

Fig. 7. Domain-averaged accumulated rain (units: mm s−1) ex-
ceeding 0.005 mm s−1 per min of forecasting from 2200 to 2300
UTC 23 April 2004.
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lead to more accurate forecasts. However, a higher frequency
of radar DA produced larger initial noise and had negative
impacts on forecasts, while a lower frequency of radar DA
may generate only limited improvements for forecasts. In
our study, the investigations on initial noise and model ad-
justment suggested 20 min could be an optimal DA inter-
val. Thus, we further compared the impacts of DA interval
on forecasts, as reported in the next section.

3.2. Impacts of DA interval on forecasts
In the mature stage of the trailing stratiform squall line,

along its cross section, a front inflow originated in the bound-
ary layer of the cold pool, extended up through the convec-
tive region, and sloped into the stratiform region. Beneath the
front-to-rear inflow, a rear inflow was induced by booklet vor-
tices (Trapp and Weisman, 2003; Atkins et al., 2004; Meng
et al., 2012) or counter-rotating circulation patterns (Waki-
moto et al., 2015) and microphysical processes (Yang and
Houze, 1995; Grim et al., 2009). The strong rear inflow usu-
ally appeared at the bow-shaped line segment and was asso-
ciated with damaging winds. To investigate the impacts of
DA frequency on forecasts, the structures of the squall line
were compared. Studies (Hu et al., 2006a,b; Schenkman et
al., 2011a,b) have already shown that radar DA can signifi-
cantly improve forecasts. Thus, we did not further compare
the results from CtlL and CtlM2 to those from the radar DA
experiments.

Figure 8 shows the composite reflectivity of the 4-h fore-
casts and wind fields from all experiments. With a 10-min DA
interval, the apexes of the bow echo near x = 900.0 km and
y= 800.0 km were more pointed than those using 20-, 30- and
60-min intervals, especially for forecasts using 60-min inter-
vals. Horizontal velocities exceeding 18 m s−1 at 500 m were
mainly located at the apex of the bow and the southwestern
tail of the squall line. This area was much wider in experi-
ments with higher DA frequencies, particularly in those ex-
periments using the SMO and Lin schemes, which might lead
to wider surface wind damage.

Cross sections along A–B at 0200 UTC 24 April are
shown in Fig. 9. To improve representativeness, all physi-
cal variables were averaged over an 18-km band along A–
B. The reflectivity at the convective region in experiment
D10M2 was more intense than that in D20M2, D30M2 and
D60M2, and the same as that in S10L, S20L, S30L and S60L.
The front-to-rear inflow started to rise and leaned upshear
into the stratiform region. Updrafts mainly occurred above
the cold pool in the convective region and above the melting
level (0◦C) in the stratiform region. The rear inflow entered
from the rear of the stratiform region, intensified through and
under the melting layer, and reached a maximum at the low
level toward the back of the convective region. The cold pool
was deeper in experiment D10M2 and S10L than in experi-
ments using 20-, 30- and 60-min DA intervals under the strat-
iform region. For experiments S10L, S20L, S30L, S60L and
D10M2, the cold pool at z = 1–2 km in the convective region
was wider, and associated with areas where horizontal veloc-
ity exceeded 18 m s−1. In experiments using 20-, 30- and

60-min DA intervals, the stratiform regions were wider and
clearer than those in experiments using 10-min DA intervals.
Also, clear subsidence occurred at the middle to high level
behind the main updraft of the convective region for experi-
ments using 30- and 60-min DA intervals, which was asso-
ciated with rearward gravity-wave propagation (Fovell et al.,
1992) and could be attributed to the formation of the transi-
tion zone (Biggerstaff and Houze, 1993).

In the previous section, a spin-up time of 20 min was
found. Using 20-min DA intervals, D20M2 reproduced squall
line structures close to observation (Fig. 1). However, its pat-
tern was similar to D30M2, and it was also hard to distinguish
which DA interval was best. The same situation occurred for
experiments using the SMO and Lin schemes. Thus, the ob-
jective, as reported in the next section, verifications were con-
ducted to better demonstrate the impacts of DA frequency on
forecasts.

3.3. Objective verification of forecasts
Figures 10 and 11 show the objective ETSs and BSs ver-

ified against 1-h accumulated precipitation at thresholds of
0.5 and 10 mm h−1 from 2200 UTC 23 April to 0400 UTC
24 April using different DA frequencies.

Because stratiform and convective rainfall coexisted in
the squall line, scores for a threshold of 10 mm h−1 were used
to assess convective rainfall predictions (Chang et al., 2009,
2015), such that scores of 0.5 mm h−1 generally represented
accurate overall rainfall prediction. Using the N0D and MY2
schemes, the ETS score of D10M2 (0.5 mm h−1) was higher
during forecasts of 0–2 h than those of D30M2 and D60M2
(Fig. 10a). However, scores decreased quickly within the first
hour of the forecast and then increased. The BSs from all ex-
periments were greater than 1.0 at a threshold of 0.5 mm h−1,
which suggests an overestimation of rainfall rate; D10M2 ex-
perienced the least overestimation during forecasts of 0–2 h.
These results indicate that high-frequency DA will lead to
a better fit with observations. As the rainfall threshold in-
creased, the performance of D10M2 decreased, relative to the
other experiments. At 10 mm h−1, D20M2 performed best
in terms of both ETSs and BSs before 0000 UTC, and then
slightly worse than D30M2 after 0000 UTC. D10M2 exhib-
ited the worst performance (Figs. 10c and d). Unlike the ex-
periments employing the N0D and MY2 schemes, those us-
ing the SMO and Lin schemes performed similarly. However
with different thresholds, S20L produced the highest ETSs
and best BSs (closest to 1.0), except for the first 2 h at a
threshold of 0.5 mm h−1. A detailed discussion of the im-
pacts of using N0D and SMO schemes can be found in Pan
et al. (2016). Overall, the experiments using the N0D and
MY2 schemes performed better than those using the SMO
and LIN schemes, except for the first 1 h of forecasting at a
specific threshold. Pan et al. (2016) also indicated a signifi-
cantly improved performance using double-moment scheme
settings (N0D and MY2) at a higher precipitation threshold
(10 mm h−1), caused by including the graupel category in
cloud analyses.

These objective verifications indicate that DA frequency
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Fig. 8. Forecast composite reflectivity (color scale; units: dBZ) and wind vector perturbations at 500 m above
mean sea level for the radar DA experiments at 0200 UTC 24 April 2007. Blue contours indicate regions where
horizontal wind speed exceeded 18 m s−1. The blue arrows indicate the apexes of the bow echo. The relative
wind vectors were defined as the perturbation relative to the average of mean wind vector of the box in front of
squall line. The cross sections along A-B were shown in Fig. 9.
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Fig. 9. Cross sections of reflectivity (color scale; units: dBZ) and the cold pool (blue lines) as defined by a
−4 K potential temperature perturbation relative to the mean potential temperature of the box in front of the
squall line shown in Fig. 8 and wind vector perturbations along line A–B in Fig. 8. Gray lines indicate vertical
velocity (dashed line: downdraft, −0.1, −0.4, −1.0 and −3.0 m s−1; solid line: updraft, 0.2, 1.0, 2.0 and 4.0 m
s−1). White bold lines delineate the areas where the horizontal velocity exceeded 18 m s−1 under 3 km above
ground level. FRJ indicates front-to-rear jet; RIJ indicates rear inflow jet.
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Fig. 10. ETSs and BSs of predicted hourly accumulated rainfall at thresholds of (a, b) 0.5 mm h−1 and (c, d)
10 mm h−1 for experiments using the N0D and MY2 schemes (see Table 1) from 2200 UTC 23 April to 0400
UTC 24 April.

has substantial impacts on precipitation forecasting accuracy.
Of the experiments that employed single-moment scheme
settings (SMO and LIN), S20L provided the best convective
rain forecasts, and was comparable with S10L in light rain
forecasts. Similarly, D20M2 was comparable with D30M2,
both having double-moment scheme settings, and performed
better than the other experiments. Generally, when the DA
interval was set close to the model adjustment time, forecasts
were more accurate.

4. Summary and conclusion

Based on ARPS 3DVar and cloud analyses, we inves-
tigated the impacts of DA frequency on forecasting accu-
racy. We employed SMO and N0D radar reflectivity equa-
tions in cloud analyses, and Lin and MY2 microphysics
schemes were used in forecasts following DA. Without flow-

dependent and cross-variable covariances in ARPS 3DVar,
the analyzed fields always lack dynamic consistency, and re-
quire time to spin up to attain a new balance following DA.
To examine this balance adjustment, we compared the mean
absolute tendency of surface pressure, maximum vertical ve-
locity, and accumulated precipitation during 1-h forecasts fol-
lowing the final cycle among experiments using different DA
frequencies. The results showed that strong adjustment oc-
curred within 20 min for all DA frequencies. Subsequently,
a new balance was attained. Different microphysics schemes
significantly affected dynamics and microphysical variables
in 60-min forecasts, resulting in different degrees of noise
between experiments S60L and D60M2, even when the same
observations were assimilated. In addition, 30- or 10-min in-
tervals were insufficient to produce such differences.

The features of the squall line in the mature stage of the
6-h forecast were also compared to examine impacts of DA
frequency on forecasting. The results showed that experi-
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Fig. 11. As in Fig. 10 but for experiments employing the SMO and Lin schemes (see Table 1).

ments with high DA frequencies produced a more intense
convective region of the squall line, updrafts, a cold pool
and rear inflow at the back of the convective region, but a
narrower stratiform region. Based on previous studies, ob-
jective ETSs and BSs verified against 1-h rainfall observa-
tions were further compared. Experiments using a 20-min
DA interval, i.e., S20L and D20M2, generally had the best
precipitation forecasting accuracy, particularly for convective
rainfall. The highest ETSs were obtained in experiments that
used the highest-frequency radar DA (10 min), but they de-
creased quickly in subsequent 1-h forecasts. Overall, the best
simulations were produced by assigning the time taken by the
model to attain a new balance following radar DA as the DA
interval. This time length could vary widely over a range of
cases (e.g., supercells, squall lines, or mei-yu precipitation)
or model settings (e.g., model resolution and domain size).
However, examining model noise might provide a reference
for setting the DA interval.
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