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ABSTRACT

Salinity variability and its causes in the tropical Pacific are analyzed using observations, reanalysis products and model
simulations. The mixed-layer salinity (MLS) budget analyses from observations and reanalysis products indicate that its
interannual evolution is closely related to ENSO and is predominantly governed by surface forcing and surface advection in
the western-central equatorial Pacific. It is found that the observed MLS tendency leads Niño3.4 by about 12 months due to
the effect of negative freshwater flux (evaporation minus precipitation). These observation-based analyses are used to evaluate
the corresponding simulation using GFDL-ESM2M. It is evident that the model can simulate the spatiotemporal variations
of MLS with some discrepancies compared to observations. In the warm pool of the equatorial Pacific the MLS tendency in
the model is sensitive to ocean dynamics, however model biases cause the tendency to be underestimated. In particular, the
freshwater flux is overestimated while the ocean surface zonal current and vertical velocity at the base of the mixed layer are
underestimated. Due to model biases in representing the related physics, the effects of surface forcing on the simulated MLS
budget are overestimated and those of subsurface and surface advection are relatively weak. Due to weaker surface advection
and subsurface forcing than observed, the simulated compensations for surface forcing are suppressed, and the simulated
MLS tendency that leads Niño3.4 by 8–10 months, which is shorter than the observed lead time. These results are useful for
the interpretation of observational analyses and other model simulations in the tropical Pacific.
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Article Highlights:

• The MLS budget indicate that its interannual evolution is related to ENSO and governed by surface forcing in the western-
central equatorial Pacific.
• The observed MLS tendency leads Niño3.4 by about 12 months due to the effect of negative freshwater flux.
• The model can simulate the spatiotemporal variations of MLS with some discrepancies compared to observations.

1. Introduction

As a tracer of the water cycle, ocean salinity, along
with ocean temperature, is a fundamental ocean state vari-
able. While continued efforts have improved our understand-
ing of climate change, the dimensions of this research have
expanded to explore the roles of climate phenomena that
are associated with salinity variability (Schmitt, 1990; Web-
ster, 1994). Numerous studies have been performed that use
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information on modeled/observed salinity changes to assess
global/regional water cycle change (e.g., Ren and Riser,
2009; Durack et al., 2012; Terray et al., 2012; Katsura et
al., 2013; Vinogradova and Ponte, 2013; Skliris et al., 2014).
At interannual scales, salinity and the related physics have
an important impact on the ENSO-related large-scale cli-
mate variability by modifying the oceanic density that feeds
back to sea surface temperature (SST) (Zhang and Busalac-
chi, 2009). And through its role in ENSO, salinity exerts a
pronounced influence on climate and weather around several
regions and even the globe (e.g., Yu et al., 2014; Yan et al.,
2017a,b).
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In the tropical Pacific, evident relationships exist between
SST variability and the mixed-layer salinity (MLS) (Vialard
et al., 2002). For example, the MLS variability can create a
“barrier layer” (Lukas and Lindstrom, 1991) by modulating
the mixed-layer depth and therefore suppress/enhance upper-
ocean temperature and affect the spatiotemporal evolution of
the western Pacific warm pool (Sprintall and Tomczak, 1992).
In particular, during El Niño, the appearance of a positive
barrier layer thickness anomaly in the central-western trop-
ical Pacific restrains the deep cool/salt water from entering
into the warm/fresh water of the upper layer, acting as a trap
for upper-ocean heat in the tropical Pacific (Da-Allada et al.,
2014). MLS variations and the associated oceanic physics,
which are intrinsically connected to the dynamics of ENSO,
provide a critical feedback to surface temperature in the evo-
lution of ENSO events (Zhang et al., 2010; Zheng et al.,
2014). Furthermore, large positive MLS anomaly events oc-
cur prior to El Niño, while negative MLS anomaly events
appear prior to La Niña (Zheng and Zhang, 2012; Zhu et al.,
2014; Zhang et al., 2015). Subsequently, MLS can provide
an essential precondition for ENSO’s onset and growth (Yim
et al., 2008).

Salinity is controlled by its conservation equation, and its
budget results from ocean and atmosphere influences (Zhang
and Busalacchi, 2009). Several studies have argued that MLS
variations have complicated patterns in response to factors
such as surface and subsurface forcing and ocean currents
(e.g., Delcroix et al., 2011; Singh et al., 2011; Zhang et
al., 2012; Vinogradova and Ponte, 2013; Qu et al., 2014;
Ponte and Vinogradova, 2016). For example, the MLS vari-
ability is very sensitive to the surface advection by the mean
oceanic circulation in the heavy precipitation domain at the
east edge of the warm pool and especially over the Intertrop-
ical Convergence Zone (ITCZ) and South Pacific Conver-
gence Zone (SPCZ) (Vialard and Delecluse, 1998). During
the past decade, several studies have focused on the salinity
budget of the tropical regions of the ocean (e.g., Delcroix et
al., 2005; Mignot et al., 2007; Dong et al., 2009; Bingham et
al., 2010; Da-Allada et al., 2015). The MLS budget reveals
the robust interannual variability as a result of the influences
from surface forcing, advection, and vertical entrainment and
mixing in the tropical Pacific (Gao et al., 2014). For example,
in the equatorial Pacific, the ENSO-related freshwater forc-
ing changes are responsible for generating and maintaining
large MLS anomalies, whereas the MLS variability mainly
depends on the surface advection of eastward propagating
fresh water in the fresh pool to the central-eastern basin of
the Pacific (Hasson et al., 2013).

Notably, simulating salinity is a challenging issue, though
substantial improvements in global models have been made
over the past decade. Since a standard experimental protocol
and an infrastructure were provided in the Coupled Model
Intercomparison Project (CMIP), scientists have been able to
systematically analyze model simulations to promote model
developments and study climate change (Taylor et al., 2012).
An assessment of CMIP3 showed that the global coupled
models involved could capture well the historical trend of

global mean MLS in spite of regional MLS biases as high as
±2.5 practical salinity units (psu) (Terray et al., 2012). Fur-
thermore, as to the salinity signature associated with ENSO
in the 23 models of CMIP5, the spatial distribution displays a
negative sea surface salinity anomaly in the west of the equa-
torial band and a positive one in the SPCZ during El Niño,
while the opposite is true during La Niña (Delcroix et al.,
2011). However, the simulated sea surface salinity variabil-
ity in the SPCZ tends to be located too far to the east com-
pared with observation. In addition, comparisons of modeled
and observed estimates of the surface forcing associated with
terms of the salinity budget suggest that model biases in sur-
face forcing are a main factor that induces ocean salinity un-
certainty in the tropical Pacific in coupled models (Lin, 2007;
Zhang and Busalacchi, 2009).

New fully coupled terrestrial carbon and nutrient cycling
Earth system models have been developed by GFDL over the
last several years, and were included in CMIP5. They provide
all the core simulations within the CMIP5 suite of experi-
ments and can be used to examine the interplay among dif-
ferent components or the climate system response to changes
in natural and anthropogenic forcings (Dunne et al., 2012).
Among these models, GFDL-ESM2M might better represent
climate variability and change related to its variability of sur-
face temperature compared to those in current reanalysis data
and other models (Dunne et al., 2012, 2013). Many stud-
ies have utilized the CMIP5 results of GFDL-ESMs to evalu-
ate model performance. The crucial role of model dynamics
in climate variability is highlighted by the GFDL-ESM2M-
simulated ENSO. For example, Langford et al. (2014) found
that GFDL-ESM2G has a better ability to simulate the higher
climatological precipitation in southwestern North America
than current reanalysis products and other models. However,
comparison of 23 models from CMIP5 in terms of sea sur-
face salinity and freshwater flux (evaporation minus precipi-
tation) variability demonstrated that GFDL-ESM2M can pro-
vide a relatively reasonable spatial distribution despite some
discrepancies with the available reanalysis data in the tropical
Pacific (Zhi et al., 2015).

Observations and reanalysis products are used to quan-
titatively illustrate the relationship between salinity variabil-
ity and its budget terms during ENSO. Therefore, based on
the interannual MLS anomaly and its budget in the tropical
Pacific, this paper further aims to assess the performance of
GFDL-ESM2M with respect to salinity simulations. It is or-
ganized as follows: Section 2 describes the methods, valida-
tion data and model utilized to study MLS. Section 3 exam-
ines MLS and its budget based on the GFDL-ESM2M simu-
lations. A summary and discussion of our work is presented
in section 4.

2. Model, validation data, and methods

2.1. Validation data

In this paper, the following observational and reanalysis
datasets are utilized. The ocean salinity data are long-term
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monthly mean gridded data, with a horizontal resolution of
1◦×1◦ and 42 vertical levels down to a depth of 5000 m, from
1900 to the present day, derived from the objective analysis
ensemble dataset (Good et al., 2013) provided by the Met
Office Hadley Centre. The SST data are from the ERSST.v4
monthly analysis (Huang et al., 2015), with a 2.0◦ ×2.0◦ hor-
izontal resolution and covering the period from January 1854
to the present day. The precipitation data are from GPCP
(Adler et al., 2003), with coverage from 1979 to the present
day and a 2.5◦ × 2.5◦ horizontal resolution. The evaporation
data are from the monthly OAFlux dataset (Yu and Weller,
2007), with a horizontal resolution of 1◦ × 1◦ and coverage
from 1958 to the present day. The ocean zonal, meridional
and vertical velocities are from GODAS (Behringer et al.,
1998), covering the period from 1979 to the present day and
with a horizontal resolution of 1◦ × 1◦ grid and 40 vertical
levels.

These datasets are regridded to a regular 1◦ ×1◦ horizon-
tal grid when needed, via bilinear interpolation. To analyze
the natural variability of the climate system and comprehen-
sively consider the valid length of the data, the period for the
observational and reanalysis data is selected as 1980–2010.
Prior to using the data, we remove the linear trend of the raw
data. By doing so, the influence on the climate system due to
global warming can be reduced. The statistical significance
of relationships in this study is tested with the Student’s t-test
at the 95% confidence level. Besides, in order to remove the
intraseasonal characteristics, the time series are additionally
applied with an 11-month running mean filter to obtain the
interannual anomaly fields.

2.2. Model
The GFDL, which constructed the first Earth system mod-

els to advance our understanding of Earth’s biogeochemi-
cal cycles, has completed all of its integrations with GFDL-
ESM2M and GFDL-ESM2G for the CMIP5 protocol. The
model components of GFDL-ESM2M are briefly described

below; a more comprehensive description can be found in
Dunne et al. (2012, 2013).

Based on an atmospheric circulation model coupled with
an oceanic circulation model, GFDL-ESM2M contains rep-
resentations of land, sea ice and iceberg dynamics, with its in-
dividual components linked by exchange fluxes across inter-
faces of its component models. The atmospheric component
is Atmospheric Model, version 2, which is virtually identi-
cal to the Climate Model 2.1 (CM 2.1), with a 2◦ latitude
×2.5◦ longitude horizontal D grid using finite-volume advec-
tion and 24 vertical levels (Lin, 2004). The ocean compo-
nent of GFDL-ESM2M adopts the code of version 4p1 of the
Modular Ocean Model (Griffies, 2009), with 50 vertical lev-
els and a nominal 1◦ horizontal resolution, refined meridion-
ally to 1/3◦ near the equator (Gnanadesikan et al., 2006). The
land component is Land Model, version 3, which includes
five dynamically competing vegetation types (Shevliakova et
al., 2009). The sea-ice component is similar to that of the
model simulation in CM 2.1 (Winton, 2000).

To assess and verify model performance related to the
interannual salinity variability and related physics, a model
simulation is selected from the pre-industrial control exper-
iment with a period of 30 years to match the period of the
observational and reanalysis data. The model output fields in-
clude monthly ocean temperature and salinity, precipitation,
evaporation, and 3D ocean currents.

2.3. Salinity budget
To understand the MLS variations, we investigate the fac-

tors that balance the MLS budget in the tropical Pacific. This
approach has been widely used in determining the controlling
processes related to salinity in order to study the MLS ten-
dency (e.g., Zhang et al., 2006; Yu, 2011; Hasson et al., 2013;
Da-Allada et al., 2014; Gao et al., 2014). This study adopts
the same budget analysis method as Zhang et al. (2006), in
which the equation governing MLS tendency (∂S ′/∂t) can be
symbolically written as

∂S ′

∂t
= −u′

∂S̄
∂x
− (ū+u′)

∂S ′
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− v′
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. (1)

Here, the subscript e represents the base of the mixed layer;
S ′ and S ′e are anomalies of MLS and salinity at the base of
the mixed layer; S̄ and S̄ e refer to the climatological fields
of MLS and salinity at the base of the surface mixed layer,
which are specified as seasonally varying from the World
Ocean Atlas 2001; (H + H2) is a constant (125 m), where
H denotes the depth of the mixed layer; M(x) is the Heavi-

side step function; u and v are the zonal and meridional com-
ponents of the hori zontal ocean currents; w is the vertical
velocity at the base of the mixed layer; Kv and Kh are the
vertical and horizontal mixing coefficients for MLS (the ver-
tical mixing coefficient is 1.0× 10−7 m2 s−1, the horizontal
coefficient for the zonal component of diffusion is 2.5× 104

m2 s−1, and that for the meridional component of diffusion is
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2.5×103 m2 s−1); E and P are evaporation and precipitation,
respectively. For a detailed description, readers are referred
to Zhang et al. (2006). The right-hand terms of Eq. (1) can be
grouped as follows: the C and D terms act as the subsurface
forcing, and the E terms are the surface forcing. Note, as in
Hasson et al. (2013), horizontal mixing (the B term) is added
to the horizontal advection (the A term) in order to group all
horizontal processes.

2.4. Cyclostationary empirical orthogonal function anal-
ysis

In order to extract the modes of the principal SST
anomaly and the related variability responding to SST in-
terannual anomalies, cyclostationary empirical orthogonal
function (CSEOF) analysis is applied to the SST and other
oceanic anomaly fields [see Kim et al. (1996) and Kim and
North (1997) for a detailed description]. In this method, the
long-term monthly spatiotemporal data, of which the means
are defined as T (r̂, t), are decomposed using the following
equation:

T (r̂, t) = ΣPCi(t)LVi(r̂+d) . (2)

Here, the subscript index i is the mode number, while r and
t denote space and time, respectively LVi(r̂) refers to the pat-
terns of specific spatial loading vectors (LVs) and PCi(t) is the
corresponding principal component time series; d represents
the nested period. CSEOF LVs represent time-independent
patterns and periods of variability in the dataset and are of-
ten interpreted as the physical modes of the system and are
derived from a time-dependent and periodic covariance func-
tion.

The most distinctive characteristic of the CSEOF tech-
nique, when compared to other traditional eigenvector anal-
yses, is that each CSEOF LV depicts the temporal evolution
related to an inherent physical process in a given dataset. The
critical motivation for the time dependence of LVs is that the
spatial patterns of many known phenomena in climatology
and geophysics evolve temporally with well-defined periods
in addition to stochastic undulations at longer time scales.
Thus, typical responses of a physical system often move and
change in forms instead of being stationary. It is well known
that SST in the tropical Pacific undergoes a systematic change
during El Niño. Since various physical processes coexist in a
dataset, the nested period should be determined such that all
the distinct periods of physical processes are covered. For
the focus on ENSO in this study, the nested period is set to
two years; this decision is based on the biennial tendency of
ENSO, and a previous study has provided a reasonable physi-
cal explanation for tropical Pacific SST variability with a two-
year nested period described (Kim, 2002).

3. Results

3.1. Salinity climatological and interannual variability
The MLS climatological mean and interannual variabil-

ity simulated by GFDL-ESM2M are compared with obser-
vations. The observed climatological mean MLS distribution

in the tropical Pacific is characterized by a relative maximum
centered at the subtropical gyre centers in the Southern Hemi-
sphere, where the maximum MLS is higher than 36.5 psu
(Fig. 1a). The lowest MLS values (< 33 psu) are found in the
narrow belt between 5◦N and 10◦N along the north branch of
the ITCZ, and roughly in the SPCZ. Especially in the west-
ern equatorial Pacific, the region with such low salinity has
been defined as the western Pacific Fresh Pool (Delcroix and
Picaut, 1998). Note that the pattern of observed MLS vari-
ability is not related to that of the MLS climatological mean.
As showed in Fig. 1d, the maximum MLS variabilities are
found over the central-western equatorial Pacific and the Pa-
cific coasts of Central America. Besides, its distribution of
high-value regions is similar to that of tropical precipitation,
such as in the ITCZ. In other words, it is evident that the inter-
annual freshwater flux variability is the main factor affecting
salinity change in the tropical Pacific, as described in Hasson
et al. (2013). Consequently, as for the distribution of the ob-
served MLS variability in tropical Pacific, the MLS variabil-
ity has been shown to have negative spatial correlation with
the distribution of mean MLS (R = −0.73). For example, the
highest MLS variability occurs in the ITCZ and Fresh Pool,
while a low mean MLS is located there. The observed MLS
variability demonstrates that MLS changes at the interannual
time scale have been shown to be chiefly due to ENSO and
are located in the warm pool and SPCZ regions as well as near
the equatorial American coast (Delcroix and Picaut, 1998).

Generally, GFDL-ESM2M simulates the features of the
observed climatological mean and interannual variability of
MLS, with several differences between the model and obser-
vations in some regions. The mean distribution of the sim-
ulated MLS in the equatorial Pacific is illustrated by three
relative maxima, located at the southern subtropical gyre cen-
ters, the central equatorial Pacific and the subtropical regions
of the Northern Hemisphere (Fig. 1b). Thus, compared with
observations, a large positive model–observation difference
appears in the equatorial Pacific, especially in the ITCZ and
SPCZ. The maximum model–observation difference, located
in the eastern Pacific, is as high as 2.5 psu (Fig. 1c). The
large model–observation biases of MLS along the equator
are linked with the model–observation difference of freshwa-
ter flux associated with the ITCZ, which is the main reason
for the biases in salinity simulated in the tropical Pacific, as
described by previous studies (e.g., Forget et al., 2015). For
example, high salinity biases mainly occur in the SPCZ of the
southern Pacific, where the simulated salinity is 0.5 to 1.5 psu
lower than the observed salinity; in the subtropical Northern
Hemisphere, the simulated MLS is approximately 0–0.5 psu
saltier than observed.

In both the observation and simulation, the maximal inter-
annual variabilities occur in the ITCZ and SPCZ, particularly
in the western and eastern equatorial Pacific (Figs. 1d and e);
this pattern is the same as that revealed by in-depth studies
of observed salinity distribution (e.g., Delcroix et al., 2011).
While the climatological MLS simulated by GFDL-ESM2M
is lower than its observed counterpart in the Southern Hemi-
sphere, the simulated centers of large MLS variability are
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Fig. 1. (a) Observed and (b) GFDL-ESM2M-simulated climatological-mean sea surface salinity and (c) their
difference (simulation minus observation), and (d) observed and (e) GFDL-ESM2M-simulated standard devi-
ations of MLS and (f) their differences, in the tropical Pacific. The box is the so-called warm pool (2◦S–2◦N,
160◦–180◦E) region, as defined in Figs. 2 and 3. Units: psu.

mainly located in the warm pool and SPCZ, and the extent
and magnitude of high interannual variability are larger than
those observed (Fig. 1f).

3.2. Salinity budget
Following the aforementioned budget method, the deter-

minants of the MLS tendency are defined as surface forcing,
surface advection, and subsurface factors, in Eq. (1). Note
that in the different regions, such as the warm pool and SPCZ,
the contribution of each salinity budget term to the tendency
shows distinct features (Gouriou and Delcroix, 2002). Fig-
ure 2 shows the standard deviation of the MLS tendency
and budget terms along a wide tropical belt (30◦S–30◦N,
100◦E–80◦W) in the Pacific. The maximum MLS tendency
(> 20.0× 10−8 psu s−1) occurs between approximately 10◦S
and 17◦N west of the dateline in the equatorial Pacific and
in the eastern equatorial Pacific near America, but relatively
weak variabilities (8.0–16.0×10−8 psu s−1) exist in a narrow
band in the central equatorial Pacific and SPCZ regions (Fig.
2a). However, the MLS tendency variability in the central-
western equatorial Pacific (10◦S–10◦N, 160◦E–160◦W) is
primarily controlled by horizontal advection (Fig. 2b). Simi-
larly, horizontal advection is a primary contributor to strong
MLS interannual variability near America in the equato-
rial Pacific, as is subsurface forcing (Fig. 2c). Consistent
with previous conclusions (Hasson et al., 2013), the spa-
tial correlation (see Table 1) elucidates that the overall spatial

Table 1. Spatial correlation between MLS variability and MLS bud-
get terms averaged in a box (2◦S–2◦N, 160◦E–180◦W) in the equa-
torial Pacific.

Surface Subsurface Surface
advection forcing forcing

MLS variability Observation 0.41 0.31 0.67

Simulation 0.43 0.29 0.61

pattern of the MLS variability over the box (2◦S–2◦N,
160◦E–180◦W) in the equatorial Pacific has a positive cor-
relation with surface forcing (R = 0.67), whose value is fol-
lowed by that of surface advection (R = 0.41). This implies
that surface forcing and surface advection are important pro-
cesses in balancing the MLS budget, but subsurface processes
are not negligible. The imbalances of the surface forcing and
surface advection processes are compensated by subsurface
forcing by ocean vertical mixing and entrainment, including
wind-induced Ekman transport (Gao et al., 2014).

Furthermore, the most important region for salinity bud-
get terms is located near the eastern edge of the warm
pool (2◦S–2◦N, 160◦E–180◦W) (i.e., the oceanic conver-
gence zone), where maximum salinity interannual variability
is found in relation to ENSO events (Maes et al., 2006). Also,
the aforementioned MLS variability shows zonal displace-
ments due chiefly to the horizontal advection of low-salinity
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Fig. 2. Standard deviation of the (a–d) observed and (e–h) GFDL-ESM2M-simulated MLS budget terms over
the tropical Pacific: (a, e) MLS tendency, and its (b, f) surface advection, (c, g) subsurface forcing, and (d, h)
surface forcing budget terms. Units: 10−8 psu s−1.

waters from the western to the central-eastern basin during
El Niño (and vice versa during La Niña). The conventional
salinity budget theory, therefore, assumes that the salinity
tendency results from the balance between cool/warm wa-
ter mass transport and ocean–atmosphere interplay associated
with freshwater flux in the warm pool (Picaut et al., 1996,
2001; Vialard et al., 2002). In the tropical convergence zones,
it is found that the contribution of surface forcing is strong,
matching well with the equatorward advection of the fresh-
water belt (Fig. 2d). Compared with the subsurface forcing in
the SPCZ and especially in the southern Pacific, the surface
forcing also makes a large contribution to the MLS tendency,
for there is plenty of precipitation. The pattern of the sub-
surface process agrees with Fig. 4 in Hasson et al. (2013).
In particular, in the western boundary of the tropical Pacific,
the contribution of the subsurface process is as critical as that
of surface advection (Fig. 2c). The subsurface forcing could
modulate other contributors and suppress the MLS tendency
in the southwestern tropical Pacific. It is noted that the MLS
variation is relatively strong in the central-eastern equatorial
Pacific (160◦–120◦W), because large surface advection coun-
teracts the contribution of subsurface forcing north of the
equator. In contrast to the large surface forcing, the surface
advection and subsurface forcing are relatively weak in the
ITCZ; plus, due to the large amount of precipitation, surface
forcing is the main contributor to the salinity tendency com-

pared with subsurface forcing and surface advection in the
SPCZ (Fig. 2d). On the contrary, in the subtropical gyres of
both hemispheres, small values result from the weak fresh-
water flux in these locations (Durack et al., 2012).

The MLS tendency simulated by GFDL-ESM2M gener-
ally captures the observed characteristics of the large salin-
ity variations in the western Pacific. However, the magni-
tude is weaker than its observed counterpart, particularly be-
tween 160◦W and 100◦W around the central-eastern equa-
tor Pacific (Fig. 2e). Similar to observation, variations of the
surface forcing, horizontal advection and subsurface forcing
all contribute to the interannual variations of the MLS simu-
lated by the model (Figs. 2f–h). However, the simulated MLS
budget terms show some differences with the observed bud-
get terms. The simulated large MLS tendency (> 8.0× 10−8

psu s−1) associated with surface advection is located west of
the dateline, while the simulated large MLS tendency linked
to subsurface forcing only exists in the eastern tropical Pa-
cific. Surface forcing makes great contributions in both the
southern and northern tropical Pacific, with the largest con-
tributions located in the SPCZ and near South America

In contrast to the observed spatial displacements, the
simulated surface forcing dominates the MLS tendency. A
large interannual variability is observed in the area west of
the dateline in the western-central equatorial Pacific, while
the simulated large variabilities mainly occur in the ITCZ,
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SPCZ and warm pool. Moreover, comparison among the in-
fluences of MLS budget terms on MLS variability shows
that the MLS tendency primarily arises from surface forc-
ing in the equatorial Pacific, followed by surface advection
(Table 1). The discrepancies between observation and simu-
lation are caused by the differences between simulated and
observed ocean physics. For example, the simulated fresh-
water flux is larger than observed in the warm pool, SPCZ
and ITCZ, but weaker than observed in the central-eastern
region (Figs. 3a, d and g); the simulated ocean zonal current
is significantly weaker than observed in the equatorial Pa-
cific, especially in the central-eastern equatorial Pacific (Figs.
3b, e and h); and the simulated vertical velocity is generally
weaker than observed in the tropical Pacific, especially in the
central-western equatorial Pacific (Figs. 3c, f and i). Despite
the simulated weaker surface advection caused by the sim-
ulated weaker ocean circulation, its relationship with MLS
tendency is higher than in observations. In contrast, due to
the large amounts of precipitation in the interannual varia-
tions of freshwater flux, the surface forcing components in-
dicate that the freshwater flux component dominates the total
salinity budget in the warm pool and SPCZ. The effect of sur-
face forcing on the MLS variability in the eastern equatorial
region is closely associated with the distribution of salinity
variability. Meanwhile, the subsurface processes provide evi-
dent effects along the equator, mainly because of the obvious
upwelling and the large vertical salinity gradient in this region
(Gao et al., 2014). However, simulated weak vertical velocity

leads to a smaller effect of subsurface forcing than observed
in the central-eastern equatorial Pacific.

3.3. Evolution of interannual salinity variability and its
budget in the mixed layer

The simulation by GFDL-ESM2M is further assessed in
terms of the evolution of MLS and the interannual variabil-
ity of related physics, including the SSTA and correspond-
ing anomaly term of the MLS budget. Figures 4 and 5 com-
pare the observed and simulated MLS time series averaged
over a 4◦ latitude by 20◦ longitude region where large MLS
variability exists; the region is in the warm pool (2◦S–2◦N,
160◦–180◦E). The box is selected based on the criteria de-
scribed in Hasson et al. (2013). Compared to the evolu-
tion of Niño3.4 index and each MLS budget term, the two
time series illustrate the signature of interannual variations
with a clear tendency for MLS (Fig. 4a). At interannual
scales, the domain-averaged MLS tendency fluctuates within
±4.0 × 10−8 psu s−1. The fluctuation of MLS tendency ex-
hibits an approximate period of four to seven years. Because
the observed relationship between the interannual evolutions
of MLS tendency in the warm pool and Niño3.4 index is
−0.73, the evolution of MLS tendency in the warm pool is
closely related to ENSO in the observations.

Further inspection of individual budget terms in the warm
pool indicates that surface advection and surface forcing are
important components (which have the same orders of magni-
tude but with opposite signs), and the contribution of subsur-

Fig. 3. Standard deviations of (a, d, g) freshwater flux (units: 10−6 mm s−1), (b, e, h) zonal current (units: m s−1),
and (c, f, i) vertical velocity (units: 10−6 m s−1) at the base of the mixed layer: (a–c) observed; (d–f) simulated by
GFDL-ESM2M; (g–i) differences between observation and simulation.
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Fig. 4. Time series of interannual variations observed during 1980–2010 for the (a) region-
averaged MLS tendency and Niño3.4, and (b) region-averaged MLS budget terms in the warm
pool (2◦S–2◦N, 160◦–180◦E), including surface advection, subsurface forcing and surface forc-
ing. R is the correlation coefficient between the MLS tendency mean in the warm pool and
Niño3.4 as indicated in Fig.6. Units: 10−8 psu s−1 for MLS tendency and its budget terms, and
◦C for SSTA.

face forcing is relatively small (Fig. 4b). In particular, with
the positive and negative anomalies of Niño3.4 index, sub-
surface forcing makes a weak contribution to the tendency of
MLS. Generally speaking, variations in the interannual MLS
tendency are captured by the summed contributions of MLS
budget terms, including the air–sea forcing, oceanic advec-
tion, diffusion, and entrainment in the warm pool (Figs. 4a
and b). In the temporal evolutions of salinity budget terms,
MLS tendency is mainly controlled by surface forcing, fol-
lowed by surface advection and subsurface forcing. The lat-
ter two terms of MLS tendency compensate for the effect of
surface forcing on it. The MLS tendency is closely associ-
ated with the surface forcing term, with the maximum nega-
tive/positive peak during La Niña and El Niño events in the
warm pool. The negative/positive surface forcing corresponds
to positive/negative Niño3.4 index (i.e., El Niño/La Niña).
Similar relationships in the warm pool at interannual scales
were also obtained by the studies of Hasson et al. (2013) and
Gao et al. (2014), who deduced that the interannual variabil-
ity of vertical entrainment is relatively weak in the tropical
Pacific in contrast to other budget terms.

GFDL-ESM2M captures the features of the interannual
variation in MLS tendency by the sum of MLS budget terms.
The simulated tendency of MLS presents significant interan-
nual oscillation, and its simulated positive/negative peak is
within the range of 5.8 to −6.0×10−8 psu s−1 compared to the
observed range of 3.9 to −3.8× 10−8 psu s−1. Similar to the
observed relationship between the interannual evolutions of
MLS tendency mean in the warm pool and Niño3.4 index, the
simulated relationship is −0.76 higher than in the observation
(Fig. 5a). It is shown that the simulation also captures the ob-
served lag/lead relationship between the MLS tendency and
Niño3.4 as well as the compensation for surface advection

and subsurface forcing of the salinity budget terms (Fig. 5b).
The weaker simulated subsurface forcing and surface advec-
tion lead to a weaker compensation effect on the interannual
variation of MLS, and the model exaggerates surface forcing
in the salinity budget, inducing larger MLS variability than in
the observation. So, the simulated salinity tendency depends
more on the interannual change in freshwater flux. Mean-
while, the weaker compensation effect on the salinity ten-
dency from surface advection and subsurface forcing mainly
results from weaker simulated ocean currents.

As shown in Fig. 6, there is a close relationship between
Niño3.4 index and MLS tendency in both the observation
and simulation, especially when the MLS tendency leads the
Nino3.4 index by about 12 months, with the most signifi-
cant correlation coefficient being −0.78. This lead/lag rela-
tionship is clearly seen in the 1982/83, 1988/89, 1997/98 El
Niño events. The aforementioned relationship suggests that
the MLS tendency has the potential to be used as a predictor
of ENSO. The model can represent the lead/lag relationship
between Niño3.4 index and MLS tendency, but the most sig-
nificant lead time is 8–10 months, which is shorter than that
in the observation.

3.4. Evolution of MLS and its budget during ENSO cycles
This subsection focuses on the differences in the MLS

budget in the equatorial Pacific by comparing observed
ENSO (cool/warm) events to those simulated by GFDL-
ESM2M. We use CSEOF analysis to calculate the dominant
modes of SST variability over the tropical Pacific (30◦S–
30◦N, 100◦–230◦E) over a 30-year period. Because the
nested period is set to two years, each CSEOF LV depicts
the SST anomaly spatial evolution during 24 months related
to an inherent physical process in a given dataset. For brevity,
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Fig. 5. As in Fig. 4 but for GFDL-ESM2M during the last 30 years in pre-industrial control experiment.

Fig. 6. Lead/lag correlations between Niño3.4 and the warm
pool MLS tendency. The red line is for observations during
1981–2100 and the black line is for the GFDL-ESM2M simu-
lation during the last 30 years of pre-industrial control run. The
dotted lines represent the 95% confidence level.

the three-month averaged SSTA and the corresponding MLS
anomaly and its budget terms are presented in the ENSO cy-
cle.

3.4.1. MLS

Given these CSEOF characteristics, the MLS and each
budget term’s anomalies regressed with the principal com-
ponent (PC) 1 of the SSTA from CSEOF are used to better
discriminate between the cool/warm phases of ENSO. Figure
7a shows the first mode LV of the CSEOF SSTA (left) and the
corresponding observed MLS (right) regressed to PC1. Here,
the first CSEOF mode LV represents approximately 42% of
the total variance compared with the second CSEOF mode
LV, which represents approximately 21% of the total vari-
ance. As for the LV of the first CSEOF modes, the evolution
of its spatial patterns exhibits a distinct oscillation within the
nested period (Fig. 7a), which represents biennial oscillations
of SSTAs in the tropical Pacific (Kim, 2002). Figure 7b shows

the PC time series of the first CSEOF LV mode and Niño3.4
index; the correlation coefficient between these two time se-
ries reaches 0.82. The SSTA evolution and its regressed MLS
patterns of the first SSTA CSEOF LV portray the develop-
ment of El Niño and La Niña events and show details of the
phase transitions between El Niño and La Niña. In addition
to the oscillatory nature of the first CSEOF mode, its feature
demonstrates that this mode fits the description of canonical
ENSO (Kug and Kang, 2006; Yoo et al., 2010; Kim et al.,
2011, Yeo and Kim, 2014), with the intensity of SST change
confined to a narrow equatorial zone, while the SSTA in the
northern North Pacific is relatively weak.

As shown in Fig. 7a, during April to June of year 1, a
warm SSTA in the eastern tropical Pacific occurs and devel-
ops, then moves towards the central tropical Pacific in succes-
sive months during July to September of year 1, and reaches
its maximum amplitude in October December of the same
year. Corresponding to the spatial evolution of the SSTA,
the positive MLS anomaly in the western Pacific begins to
weaken gradually, and turns into the negative MLS anomaly
westward across the dateline in the eastern-central Pacific.
During October to December of year 1, which is defined
as the peak phase of El Niño, the maximum negative MLS
anomaly (< −0.3) moves near the dateline along the equa-
tor, and the SPCZ region is marked by high-salinity anoma-
lies. The MLS distribution presents a feature whereby nega-
tive MLS anomalies are zonally distributed along the equa-
tor (maximum of 0.3) and positive MLS lies mainly outside
the equatorial Pacific: one is centered west of the dateline
between 10◦N and 20◦N (maximum of 0.29) and the other
appears approximately between 30◦S and 20◦S (maximum
of 0.21). After El Niño reaches the mature stage in January
March of year 2, the positive and negative MLS anomalies
reach their maximum amplitude. From April to June of year
2, the SSTA mode begins to change to the cold phase, and
positive MLS anomalies in the south and north subtropical
regions, especially in the SPCZ and ITCZ, retract towards the
equator. The corresponding La Niña matures during October
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to December of year 2, and a positive MLS anomaly occupies
the tropical western Pacific and extends across the dateline.
As shown in the MLS during the ENSO cycle, the displace-
ments of the regressed MLS anomaly are somewhat asym-

metric in the equatorial Pacific compared to La Niña and El
Niño. So, the advantage of using this SSTA CSEOF method
is that it can present a concise description of the spatiotempo-
ral evolution of the SSTA and corresponding MLS anomaly

Fig. 7. (a) The observed first CSEOF LVs of SSTA and the regressed MLS anomalies to the CSEOF PC1 of the
SSTA via three-month averaging. The presented patterns illustrate the evolution of the CSEOF LV averaged
from January of year 1 to December of year 2, representing the spatial pattern from La Niña to El Niño. (b) The
PC time series (eigenvalues) of the first CSEOF mode and Niño3.4 index. Units: ◦C for SSTA, and psu (◦C)−1

for the regressed MLS.
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Fig. 7. (Continued)

during ENSO.
As for the LV of the CSEOF simulated by GFDL-

ESM2M, the spatial pattern of the first CSEOF mode exhibits
no notable change within the nested period (not shown),
which explains approximately 37% of the total variance in
the SST field. Thus, this mode can be considered to be nearly
stationary. The SSTA first CSEOF LV pattern in the tropical
region is broader in the meridional direction than in the con-
ventional ENSO signal, and positive anomalies extend from
the northeastern to southeastern midlatitude Pacific. Also, it
presents strong SSTAs in the tropical central Pacific, which
corresponds to the typical features observed during CP-type
El Niño events (CP: central Pacific). Then, the second mode
represents the biennial oscillations of the SSTA (Fig. 8a).
PC2 explains approximately 17% of the total variance in the
simulated data, and the temporal correlation coefficient with
Niño3.4 index is 0.91 (Fig. 8b), which demonstrates that the
second SSTA CSEOF LV and corresponding regressed MLS
anomaly can capture the observed features of the El Niño
and La Niña cycle. Compared with observations, amplifica-
tions of the positive and negative anomalies simulated by
the model, which represent ENSO-induced cool/warm cy-
cles, are stronger and extend farther westward. The biases
may be caused by the greater SST interannual variability than
its observed counterpart in the tropical Pacific. On the other
hand, the regressed MLS LV in the warm pool that corre-
sponds to the ENSO cycle reproduces the shift from the posi-
tive to negative anomaly as in the observations, and the salin-
ity anomaly is stronger during El Niño but weaker and farther
to the west during La Niña than in the observations. In partic-
ular, during both El Niño and La Niña, the simulated positive
MLS anomaly occurs east of the SPCZ in the southern tropi-
cal Pacific, while the negative MLS anomaly is located in the
northeastern tropical Pacific. Perhaps the positive anomalies
are not very significant compared to the MLS variability in
the other regions of the tropical Pacific, as they seem to occur
in a region of low variability. This difference might be asso-
ciated with the biases in the simulated spatial distribution of
interannual variability.

3.4.2. MLS budget

The regressed spatial patterns of budget terms explain the
spatial evolution of MLS variability during the ENSO cycle.
Figure 9 shows the regressed terms of the MLS budget ob-
served by the PC1 of CSEOF SSTA. The spatial pattern in

January to March of year 1 shows high negative anomalies
for the surface advection term [a minimum of −4.0× 10−8

psu s−1 (◦C)−1], which is seen mostly across the equatorial
Pacific, and a large negative anomaly for the subsurface forc-
ing term is located west of the dateline. In contrast, a stronger
positive surface forcing anomaly [more than 5.0× 10−8

psu s−1 (◦C)−1] is located at the mean ITCZ position, while
the SST corresponds to the termination of La Niña in April
to June of year 1. Meanwhile, the negative surface advection
anomaly begins to weaken and shrink to the west, whereas the
weak negative anomaly for subsurface forcing in the western-
central equatorial Pacific becomes positive, and the positive
surface forcing anomaly in the equatorial Pacific fades and
becomes a negative one, which corresponds to the zone of
rainfall changes at the equator. During the mature El Niño
period of January to March of year 2, an area of negative
surface forcing anomaly extends westward along the equa-
tor across the dateline, and the negative maximum anomaly
appears near the dateline; a positive anomaly for subsurface
forcing forms in the western-central equatorial Pacific, with
the maximum center being located to the west of the date-
line. Corresponding to the development of precipitation in the
ITCZ during El Niño, a negative anomaly for surface forcing
moves westward and governs the position of the ITCZ. Dur-
ing April to June of year 2, corresponding to the decay of
El Niño, the positive anomaly for surface advection begins
to decrease and shrink to the east along the equator, while the
positive anomaly of subsurface forcing weakens and becomes
negative. The surface forcing anomaly moves eastward, and
the negative surface forcing anomaly returns to the western
equatorial Pacific, while a positive one is found over the ITCZ
region. Finally, corresponding to the mature La Niña during
October to December of year 2, large anomalies for the salin-
ity budget terms are seen in the tropical Pacific, while nega-
tive anomalies for surface advection and subsurface forcing
are located in the western-central equatorial Pacific, which
correspond to the positive surface forcing anomalies that are
governed by the position of the ITCZ.

Figure 10 shows the regressed terms of the MLS budget
simulated by the PC2 of CSEOF SSTA. During the evolution
of ENSO, salinity budget terms simulated by GFDL-ESM2M
exhibit several biases in distribution and magnitude of vari-
ables compared to the observed. As shown, the anomaly of
the three terms moves back and forth across the dateline along
the equator from January to March of year 1 to October to
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December of year 2, which lead to an MLS anomaly in the
equatorial Pacific during ENSO. For example, from January
to March of year 1 to October to December of year 1, the
surface advection changes from a negative anomaly to a pos-
itive anomaly in the warm pool. It then changes to a negative
anomaly during October to December of year 2. The corre-

sponding surface forcing near the dateline also changes from
positive to negative and then back to positive. Because of
the weak simulated interannual variability of the vertical ve-
locity in the equatorial Pacific, it is not obvious that changes
in subsurface forcing show weak positive anomalies during
La Niña and negative anomalies during El Niño. The spatial

Fig. 8. As in Fig. 7 but for the second CSEOF LVs of the SSTA and regressed MLS anomalies to the CSEOF
PC2 simulated by GFDL-ESM2M.
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Fig. 8. (Continued)

pattern of salinity budget terms indicates that the MLS ten-
dency is mainly controlled by the surface forcing term and
has little dependence on the other terms. Compared to obser-
vations, the effect of freshwater flux variability on salinity is
exaggerated. Because of the existence of the double ITCZ in
simulated precipitation, the influence of freshwater flux leads
to a bias in the MLS interannual variability, which ultimately
affects the pattern of SST anomalies (Zhang and Busalacchi,
2009). In addition, the spatial and temporal patterns of the
MLS tendency are more sensitive to precipitation in the equa-
torial Pacific compared to observations.

The simulated biases of MLS variability may be caused
by the interannual variability in freshwater flux, which leads
to biases in oceanic physics in the equatorial western Pacific
and MLS displacement (Qu et al., 2013). In addition, the sim-
ulated ocean current is weaker than its observed counterpart
in the equatorial Pacific (Fig. 3), which induces a weaker
advection contribution to the salinity budget, including sur-
face advection and subsurface effect. In general, based on the
contribution to the MLS tendency and the relationship be-
tween SST anomaly and salinity budget terms, the simulated
MLS anomaly is sensitive to the simulated oceanic physical
processes associated with MLS. On the other hand, GFDL-
ESM2M also demonstrates that, in the warm pool, freshwater
flux related to precipitation is an important physical field for
ocean salinity along the equator, and its biases affect the sim-
ulation of ocean salinity. This result confirms the significance
of ocean dynamics in regulating the MLS variation during the
ENSO cycle.

4. Summary and conclusion

Salinity is a prominent physical parameter in climate sim-
ulation and its spatiotemporal displacement in the equatorial
Pacific is associated with temperature displacement (Delcroix
and Hénin, 1991). With the development of climate models,
the simulation of salinity and related physical fields has be-
come a criterion for evaluating their performance. However,
recent understanding of salinity variations and their effect on
climate is still insufficient. Salinity, a primary oceanic state
quantity, is more uncertain than oceanic temperature in model
simulations. Hence, based on the behavior of ocean salin-
ity from current coupled models, a detailed understanding of
ocean salinity variations has been a long-standing and urgent
research goal. This study used GFDL-ESM2M as an example

of an Earth system model, and examined the simulated MLS
spatiotemporal characteristics and the interannual variability
of its budget in the tropical Pacific and the underlying cause
during ENSO.

The MLS interannual variability is sensitive to the
oceanic and atmospheric physics. Compared with observa-
tions, the MLS variability simulated by GFDL-ESM2M ex-
hibits several biases in the tropical Pacific: the simulated
MLS is too high in the tropical Pacific north of the equa-
tor and too low south of it; for the key regions, the simu-
lated MLS interannual variation is generally too high, espe-
cially in the southern branch of the warm pool and ITCZ. The
MLS variation can be derived from a combination of dynamic
and thermodynamic processes, which depend on the intrin-
sic oceanic physics and forcing. The biases in representing
the simulated tropical physics, including simulated horizontal
and vertical ocean circulations that are weaker than observed
and the problem of the double ITCZ phenomenon, lead to
the biases in MLS budget terms, such as exaggerated influ-
ences of surface forcing on the MLS variation and underes-
timated effects of surface advection and subsurface forcing.
As a result, the simulated spatial pattern of MLS tendency
shows a displacement compared to observation, and such a
biased spatial pattern bears a close resemblance to the spatial
variation of precipitation and surface current in the equatorial
Pacific.

Taking advantage of CSEOF analysis, the regressed MLS
and its budget indicate that those patterns of MLS variation
and related physics characterize the spatial evolution signals
during the ENSO cycle according to the observed and sim-
ulated SST CSEOF LVs. The ENSO cycle that is related to
the displacement of the MLS anomaly is explained by differ-
ent contributions of the salinity budget terms in the equatorial
Pacific. It is noted that both the observed and the simulated
MLS tendency in the warm pool show a lead/lag relation-
ship with ENSO evolution, and differences exist among the
contributions of MLS budget terms to MLS tendency during
ENSO. The observed results indicate that a negative/positive
MLS tendency leads El Niño/La Niña by approximately 12
months. For the temporal evolutions of salinity budget terms
in the warm pool, the MLS tendency is mainly controlled by
surface forcing, followed by surface advection, and subsur-
face forcing is the smallest. Note, however, that subsurface
forcing is not negligible, because subsurface forcing along
with surface advection can compensate for the effect of sur-
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Fig. 9. Regressed MLS budget terms to the CSEOF PC1 of the observed SSTA via three-month averaging, including
surface advection (left-hand panels), subsurface forcing (middle panels) and surface forcing (right-hand panels). The
green boxes outline (2◦S–2◦N, 170◦E–160◦W). Units: 10−8 psu s−1 (◦C)−1.

face forcing on the MLS tendency. The model can also cap-
ture the lead/lag relationships between salinity tendency and
Niño3.4 index during ENSO, despite the simulated lead time
being slightly shorter than in the observation. However, due

to the simulated weaker ocean currents, the simulated com-
pensation effect of surface advection and subsurface forcing
on the salinity budget term is too low, thus increasing the pos-
itive feedback of freshwater flux to MLS tendency. In addi-
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Fig. 10. As in Fig. 9 but for the regressed anomalies of the MLS budget to the CSEOF PC2 of the SSTA simulated by
GFDL-ESM2M.

tion, we checked another reanalysis product and found simi-
lar results (not shown). Hence, it is evident that the simulated
climate variability of the coupled model strongly depends on
ocean physical processes and the ocean–atmosphere relation-
ship represented in models, including ocean water-cycle and

three-dimensional ocean circulation, as well as the vertical
distribution of ocean layers.

Analyzing the relationship between SST and salinity us-
ing CSEOF is attempted in this paper, but several prob-
lems have been found. The modes of principal SST ex-
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tracted by CSEOF also exhibit differences between obser-
vations and simulation. The analyses find that the first ob-
served CSEOF LV mode is the traditional ENSO cycle (42%),
whereas the second simulated CSEOF mode is the traditional
ENSO (17%). This difference shows that the representation
of the physical processes that affect interannual variability in
the model is different from that in the observations, which
leads to the weakening of explained variance of the traditional
ENSO model. This actually reduces the intensity and fre-
quency of the traditional ENSO signal. Because the CSEOF
analysis requires high quality data, several simulated gridded
data of physical fields in the western Pacific cannot pass the
significance test, leading to default data in the spatial distri-
bution of the LV mode. This requires us to pay attention to
the quality of the data, especially the interpolated data, when
using CSEOF. Secondly, the variability of analyzed fields
should be matched in the selected nested period in CSEOF.
In this study, for example, the regressed MLS corresponding
SST CSEOF appears as a constant value in the southern Pa-
cific during the nesting of CSEOF, due to the special period
of local MLS variability, which is greater or longer than the
selected nested period (d = 24 months).

In addition, our conclusions have several limitations.
These analyses show that the different contributions from the
budget terms can explain the asymmetry of the spatial evolu-
tion of MLS in some regions, including the ITCZ, warm pool
and SPCZ. The warm pool is selected as a representative re-
gion to estimate the contributions of the terms to the evolu-
tion of MLS during ENSO (Delcroix and Picaut, 1998). The
region has the following features: SST values warmer than
28◦C–29◦C; MLS values below 34.5 psu; a large MLS vari-
ability; and significant differences between the budget terms
during El Niño and La Niña. Moreover, it has been found
that salinity variability can contribute to climate variability
by modulating SST, which may vary geographically and with
time in the tropical Pacific. Such work has been done in other
special regions, e.g., in the SPCZ and Fresh Pool of the trop-
ical Pacific (e.g., Delcroix and McPhaden, 2002; Hasson et
al., 2013). Secondly, this study is based on simulation from
just one selected climate model (i.e., the GFDL model); the
derived results might be model-dependent. Meanwhile, the
salinity variability is sensitive not only to the ocean water cy-
cle and 3D ocean circulation, but also to the vertical distribu-
tion of ocean layers. More analyses using more multi-model
simulations and observation and reanalysis data are clearly
needed in the future.

In general, based on the aforementioned analyses, it is
found that GFDL-ESM2M, as one model of CMIP5, may ex-
hibit several biases in simulating the MLS and related phys-
ical processes in the tropical Pacific. The simulated ocean
salinity possesses certain differences compared to observa-
tions. Salinity has no direct effect on the atmosphere and the
simulated salinity mainly depends on the precipitation and
ocean dynamics. The simulated precipitation biases act to
produce the incorrect surface salinity by the budget terms.
This case generally exists because the precipitation is dif-
ficult to simulate well with atmospheric general circulation

models (Lin, 2007) and even more difficult in coupled mod-
els due to the amplifying effect of air–sea interaction (Li and
Xie, 2012, 2014; Ham and Kug, 2014). In the ocean model,
for example, the mixing process in the upper ocean is diffi-
cult to represent accurately. This can affect the vertical dis-
tribution of salinity and temperature, which can further af-
fect the ocean currents. Thus, the simulated biases may also
exist in the ocean dynamics. The mixing processes can re-
sult in the simulated salinity biases. Additionally, Hackert et
al. (2014) reported that satellite-retrieved sea surface salinity
with ARGO-observed salinity data can provide better ocean
analysis fields, which lead to better representations in sim-
ulating salinity. With those research efforts, salinity and the
related processes will be better represented in model simula-
tions.
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