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ABSTRACT

Roots are responsible for the uptake of water and nutrients by plants and have the plasticity to dynamically respond to
different environmental conditions. However, most land surface models currently prescribe rooting profiles as a function
only of vegetation type, with no consideration of the surroundings. In this study, a dynamic rooting scheme, which describes
root growth as a compromise between water and nitrogen availability, was incorporated into CLM4.5 with carbon–nitrogen
(CN) interactions (CLM4.5-CN) to investigate the effects of a dynamic root distribution on eco-hydrological modeling. Two
paired numerical simulations were conducted for the Tapajos National Forest km83 (BRSa3) site and the Amazon, one using
CLM4.5-CN without the dynamic rooting scheme and the other including the proposed scheme. Simulations for the BRSa3
site showed that inclusion of the dynamic rooting scheme increased the amplitudes and peak values of diurnal gross primary
production (GPP) and latent heat flux (LE) for the dry season, and improved the carbon (C) and water cycle modeling by
reducing the RMSE of GPP by 0.4 g C m−2 d−1, net ecosystem exchange by 1.96 g C m−2 d−1, LE by 5.0 W m−2, and soil
moisture by 0.03 m3 m−3, at the seasonal scale, compared with eddy flux measurements, while having little impact during the
wet season. For the Amazon, regional analysis also revealed that vegetation responses (including GPP and LE) to seasonal
drought and the severe drought of 2005 were better captured with the dynamic rooting scheme incorporated.
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1. Introduction
Roots are the primary pathway for the uptake of water

and nutrients by plants and play an important role in terres-
trial carbon (C) and water cycling (Nepstad et al., 1994; Jack-
son et al., 1997; Dickinson et al., 1998; Barlage and Zeng,
2004; Zheng and Wang, 2007). They connect the soil envi-
ronment to the atmosphere through water and energy flux ex-
changes between the vegetation canopy and the atmosphere
(Feddes et al., 2001). Root vertical distribution, one of the
most important properties of roots, is an essential component
of many eco-hydrological models (Lai and Katul, 2000) and
land surface models (LSMs) (Zeng et al., 1998; Feddes et al.,
2001; El Maayar and Sonnentag, 2009); it mainly controls
the extent of root water uptake among soil layers, and there-
fore soil water stress. The soil water stress further influences
transpiration, C assimilation, and subsequently other C and
water fluxes (Bonan, 1996; Zeng et al., 2002; Ivanov et al.,
2008). Thus, a realistic representation of root distribution is
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very important for hydrological, ecological and climate mod-
eling (Zheng and Wang, 2007; Jing et al., 2014).

As a consequence of a lack of appropriate global root
datasets owing to the difficulty of measuring entire root distri-
butions throughout the soil profile (Jing et al., 2014; Warren
et al., 2015), the description of root distributions in LSMs
is often simplified or ignored (Zeng et al., 2002; Warren
et al., 2015). In most LSMs, root distribution is treated as
a static component, and three rooting parameterizations are
widely used. The first is a one-parameter asymptotic root
equation, proposed by Jackson et al. (1996), which describes
root distribution decreasing exponentially with depth. It has
been used in NCAR’s LSM (Bonan, 1996) and the Simple
Biosphere Model (Baker et al., 2008). The second is a two-
parameter asymptotic root distribution decreasing exponen-
tially with depth (Zeng, 2001), which is used in NCAR’s
CLM (Oleson et al., 2010, 2013). And the third is a lo-
gistic dose-response curve root profile proposed by Schenk
and Jackson (2002), which has two shape parameters that
describe the soil depth above which 50% and 95% of the
root mass occurs. This parameterization is employed in the
Conjunctive Surface–Subsurface Process Model (Yuan and
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Liang, 2011) and Mechanistic Multilayer Canopy–Soil–Root
System Model (Drewry et al., 2010; Le et al., 2012). All
parameters in these three root distribution schemes depend
only on vegetation types, with root distributions spatially and
temporally invariant. However, substantial differences in root
distributions are apparent even for the same type of vegeta-
tion, as determined from measuring root profiles in different
irrigation and fertilization experiments (Weaver, 1926; Li et
al., 1998; Fan et al., 2012). Furthermore, it has been demon-
strated that plants tend to allocate C to enhance the acquisi-
tion of a limited resource (Hutchings and de Kroon, 1994),
and thus tend to grow more roots in zones where soil mois-
ture is more freely available, especially when suffering from
water deficit (Coelho and Or, 1999; Collins and Bras, 2007;
Sivandran and Bras, 2013), and where more nutrients can be
acquired (McMurtrie et al., 2012). These aspects imply that
root systems have the plasticity to dynamically respond to en-
vironmental conditions, such as water and nutrient availabil-
ity (Schenk and Jackson, 2002; Hodge, 2004; Schenk, 2008;
Smithwick et al., 2014; El Masri et al., 2015), indicating that
the three rooting schemes mentioned above are insufficient in
their representation of the actual root distribution, and thus
need to be improved.

In this study, a dynamic root distribution scheme that de-
scribes root growth as a compromise between water and ni-
trogen (N) availability, was implemented in CLM4.5 (Oleson
et al., 2013). The respective impacts on terrestrial C and wa-
ter cycles were evaluated over the Amazon. The evaluation
focused on the model prognostic skill with respect to gross
primary production (GPP), net ecosystem exchange (NEE),
latent heat flux (LE) and soil water content (SWC). Section
2 describes the model development, study area, experimental
design and data used. Results are given in section 3, followed
by conclusions and discussion in section 4.

2. Methods
2.1. Model development
2.1.1. CLM4.5

CLM4.5, a state-of-the-art LSM, is the latest version
of the CLM family of models and the land component of
CESM1.2 (Oleson et al., 2013). It succeeds CLM4, with up-
dates to the photosynthesis, soil biogeochemistry, fire dynam-
ics, cold region hydrology, lake model, and biogenic volatile
organic compounds model (Li et al., 2013). The spatial het-
erogeneity of the land surface is represented in CLM as a
nested sub-grid hierarchy, and vegetation is classified into 16
plant functional types (PFTs) according to different photo-
synthesis parameters and optical properties (leaf and stem re-
flectance and transmittance in visible and near-infrared wave-
bands). The soil columns have 15 vertical layers, but hydrol-
ogy calculations are only made for the top 10 layers. CLM4.5
also has an option to run with an interactive C–N (CN) cy-
cle (denoted as CLM4.5-CN), which is fully prognostic with
respect to all C and N state variables in vegetation, litter and
soil organic matter. When the CN biogeochemistry module is

active, N limitation on photosynthesis is prognostic and leaf
area, stem area indices and vegetation heights are all deter-
mined prognostically by the model (Lawrence et al., 2011).
A detailed description of its biogeophysical and biogeochem-
ical parameterizations and numerical implementation is given
in Oleson et al. (2013).

A root distribution function determines the fraction of
roots in each soil layer. CLM4.5 uses the root distribution
equation of Zeng (2001):

ri =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0.5
[

exp(−razh,i−1)+ exp(−rbzh,i−1)−
exp(−razh,i)− exp(−rbzh,i)

]
for 1� i<10

0.5[exp(−razh,i−1)+ exp(−rbzh,i−1)] for i = 10

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭ ,
(1)

where zh,i (m) is the depth from the soil surface to the inter-
face between layer i and i+ 1, and ra and rb are two PFT-
dependent root parameters.

2.1.2. Dynamic rooting scheme and its implementation

At present, although the root C pool does vary temporally,
due to the static rooting scheme there is no net change to the
root fraction within each soil layer. To represent actual root
growth in CLM4.5 dynamically, we adopted a dynamic root-
ing scheme proposed by Hatzis (2010), which allows the total
new root C gain at each time step to dynamically allocate to
each soil layer according to the surrounding environment, i.e.
a compromise between soil water and soil mineral N, as ex-
pressed by Eq. (2):

ΔCfr,i = ΔCfr

⎡⎢⎢⎢⎢⎢⎣(1−βt)
wiΔzi∑10

i=1 wiΔzi
+βt

niΔzi∑10
i=1 niΔzi

⎤⎥⎥⎥⎥⎥⎦ , (2)

where ΔCfr (units: g C m−2 s−1) is the newly assimilated C
allocated to roots, Δzi (units: m) is the soil layer thickness, ni
(units: g N m−3) is soil mineral N content, and wi is the plant
wilting factor of layer i. βt is the soil water stress due to water
deficiency, depending on wi and root fraction (ri), expressed
as:

βt =

10∑
i=1

wiri , (3)

wi = max
(
0,min

[
1,
ψc−ψi

ψc−ψo

θsat,i− θice,i

θsat,i

])
, (4)

where ψi is the soil water matric potential (units: mm), and ψc
and ψo are the soil water potential (units: mm) when stomata
are fully closed or fully open, respectively. θsat,i and θice,i are
the saturated volumetric water and ice content, respectively
(units: m3 m−3). The function βt ranges from 0 to 1, with
larger values indicating higher water availability. The root
distribution after the new dynamic allocation is then updated,
based on the root C (Cfr,i; units: g C m−2) of layer i and the
total root C (

∑10
i=1 Cfr,i; units: g C m−2):

ri =
Cfr,i∑10
i=1 Cfr,i

. (5)

To incorporate this scheme into CLM4.5, the total N (TN)
data from the Global Soil Dataset for Earth System Mod-
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eling, developed by the Land–Atmosphere Interaction Re-
search Group at Beijing Normal University, were used to re-
place the vertical soil mineral N content, as the vertically re-
solved soil mineral N is not predicted in CLM4.5. The TN
data have a resolution of 30 arc-seconds, with the vertical
variation captured by eight layers to a depth of 2.3 m (i.e. 0–
0.045, 0.045–0.091, 0.091–0.166, 0.166–0.289, 0.289–0.493,
0.493–0.829, 0.829–1.383 and 1.383–2.296 m), consistent
with the vertical layers of CLM4.5 (Shangguan et al., 2014).
Here, we up-scaled the TN data from 30 arc-seconds to 0.5◦
by means of an area-weighted average and used linear regres-
sions (Hatzis, 2010) to estimate TN values for the residual
two layers.

The dynamic rooting scheme influences the eco-
hydrological modeling in CLM4.5 in multiple ways (Fig. 1).
First, the varying root distribution has a direct impact on βt,
as in Eq. (3). On the one hand, βt influences photosynthe-
sis by multiplying it by the maximum catalytic capacity of
the Rubisco enzyme (Vcmax). On the other hand, βt further
influences plant transpiration through stomatal conductance,
as stomatal conductance is linearly related to βt in the model.
Second, the varying root fraction influences the calculation of
the effective root fraction, which affects the water extracted
from each layer, and therefore the SWC. In addition, the soil
N plays an important part, it not only influences root fraction,
as Eq. (2) shows, but also controls the amount of N that can
be absorbed by plants, and thus limits photosynthesis.

2.2. Study area
The Amazon region shown with a black border in Fig. 2

(Zeng et al., 2008; Marthews et al., 2014), which contains
about 50% of the world’s tropical forests, is crucial to global
hydrological and C cycles, and changes in its biophysical
state can exert a strong influence on global climate (Baker
et al., 2008). It is mainly covered by tropical broadleaf ever-
green tree (BET Tr), tropical broadleaf deciduous tree (BDT
Tr), C3 grass (C3 NA) and C4 grass (C4) (Fig. 2a), according

to MODIS land cover data in CLM4.5 (Lawrence and Chase,
2007). The driving climatic forcing of energy, water and C
cycles in the Amazon is the spatial and temporal distribution
of precipitation (Ichii et al., 2007). The dry seasons are usu-
ally defined as months with less than 100 mm precipitation
(Baker et al., 2008). Mean monthly precipitation in the Ama-
zon (Fig. 2b) is 185.35 mm month−1, with a range of 29.14–
372.64 mm month−1, based on CRU–NCEP reanalysis data
(CRUNCEP) from 1982–2010 (Viovy, 2011). The dry season
length increases from the northwestern to southeastern Ama-
zon, along with a transition from evergreen broadleaf forest
to deciduous broadleaf forest and C4 grass (Fig. 2c).

The Large Scale Biosphere–Atmosphere Experiment
(LBA) in the Amazon (Avissar et al., 2002) monitored water,
energy and C exchange between ecosystems and the atmo-
sphere. BRSa3 (3.02◦S, 54.97◦W) is a typical site of LBA,
located within the Tapajos National Forest, Pará, Brazil (Fig.
2b), covered by BET Tr. During the study period of 2001–
2003, the mean annual air temperature and solar radiation
were 25.9◦C and 188.7 W m−2, respectively. The mean an-
nual total precipitation was 1658 mm, with less rainfall dur-
ing the dry season of July–December (Fig. 3). The seasonal
variation of monthly air temperature was quite small (<2◦C)
and the solar radiation of the dry season was slightly higher
than that of the wet season. At BRSa3, an eddy covariance
system was installed to measure the fluxes of carbon diox-
ide, LE and all meteorological variables required for running
CLM4.5.

2.3. Experimental design and data
Two pairs of experiments were conducted to study the ef-

fects of dynamic root distribution on eco-hydrological mod-
eling: one for the BRSa3 site and the other for the Ama-
zon region. For each pair of experiments, two offline simu-
lations were conducted, both with CLM4.5-CN: simulations
using the default model (control run, “CTL”) and the model
with dynamic root distribution (new run, “NEW”). For estab-

Fig. 1. Conceptual diagram of the impacts of a dynamic root distribution on eco-hydrological
modeling in CLM4.5.
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Fig. 2. (a) The dominant PFTs in the Amazon [bare soil (Bare); temperate needleleaf evergreen tree (NEM Tr); boreal needle-
leaf evergreen tree (NEB Tr); boreal needleleaf deciduous tree (NDB Tr); tropical broadleaf evergreen tree (BET Tr); temperate
broadleaf evergreen tree (BEM Tr); tropical broadleaf deciduous tree (BDT Tr); temperate broadleaf deciduous tree (BDM
Tr); boreal broadleaf deciduous tree (BDB Tr); temperate broadleaf evergreen shrub (BE Sh); temperate broadleaf deciduous
shrub (BDM Sh); boreal broadleaf deciduous shrub (BDB Sh); C3 arctic grass (C3 AR); C3 grass (C3 NA); C4 grass (C4); and
Crop]. (b) Average monthly (1982–2010) precipitation (units: mm month−1) over the Amazon according to CRUNCEP, and
the location of Tapajos National Forest km8 (BRSa3). (c) Number of dry months per year, defined as monthly precipitation less
than 100 mm (the two black boxes represent the two study areas analyzed in section 3.2, denoted as R1 and R2, respectively).
The border of the Amazon is shown as a black line.

lishing the C and N pools and fluxes (Castillo et al., 2012;
Hudiburg et al., 2013), the 1200-year spun-up results were
used as initial conditions for both site-level and regional sim-
ulations (e.g. the soil C pool of the BRSa3 site was initialized
from 0 to about 5.89 kg C m−2). The two simulations of each
pair of experiments shared the same initial conditions, thus
eliminating changes other than those from dynamic root dis-
tribution (Yan and Dickinson, 2014).

For this study, half-hourly, daily and monthly gap-
filled observations at the BRSa3 site were downloaded from
FLUXNET (www.fluxdata.org). For site-level simulations,
the meteorological data, including wind speed, 2-m air tem-
perature, specific humidity, air pressure, incident solar radi-
ation and precipitation, measured at 30-min intervals at the
BRSa3 site during 2001–03, were used to force the offline
simulations. Observed GPP, NEE, LE and SWC (mean of

SWC measured at 10 and 20 cm), corresponding with the
study period, were used to assess the models’ abilities.

For the regional case, CRUNCEP was used as the atmo-
spheric forcing. This is a 110-year (1901–2010) observation-
based atmospheric forcing dataset, which is a combination
of two existing datasets: the CRU TS3.2 0.5◦ ×0.5◦ monthly
data covering the period 1901–2002, and the NCEP reanal-
ysis 2.5◦ × 2.5◦ six-hourly data from 1948 to 2010 (Viovy,
2011). The dataset comprises six-hourly data on precipita-
tion, solar radiation, air temperature, pressure, humidity and
wind. We utilized CRUNCEP for 1901–81 in the spun-up
simulation and results for 1982–2010 at a 0.5◦ ×0.5◦ resolu-
tion. Since evaluating GPP and LE from LSMs at regional
scales is hindered by a lack of extensive observations, two
products were used as reference for benchmarking our com-
parisons in the Amazon region: the global GPP (monthly,
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Fig. 3. Average monthly precipitation (PR; units: mm month−1; bars), shortwave down-
ward radiation (SWDR; units: W m−2; solid line with asterisks) and air temperature
(TA; units: ◦C; solid line with circles) at the BRSa3 site according to observations from
2001–03 (grey area indicates the dry season).

0.5◦ × 0.5◦) and LE (monthly, 0.5◦ × 0.5◦), up-scaled from
FLUXNET observations using the machine learning tech-
nique, and model tree ensembles (MTE) data for 1982–2010
(Jung et al., 2009, 2011).

2.4. Mathematical Indices for Model’s Performance
To evaluate the agreement between model simulations

and observations, four indices were used: agreement index
(d) (Li et al., 2012), correlation coefficient (R), mean bias er-
ror (MBE) and root mean square error (RMSE), defined as
follows:

R =
∑N

i=1 (xsim,i− xsim)(xobs,i− xobs)√∑N
i=1 (xsim,i− xsim)2

√∑N
i=1 (xobs,i− xobs)2

, (6)

MBE =
∑N

i=1 (xsim,i− xobs,i)
N

, (7)

RMSE =

√∑N
i=1 (xsim,i− xobs,i)2

N
, (8)

d = 1−
∑N

i=1 (xsim,i− xobs,i)2∑N
i=1 (|xi− xobs|+ |xobs,i− xobs|)2

, (9)

where xsim is model simulation either from CTL or NEW,
xobs is the corresponding observation, xsim and xobs are the
mean of xsim and xobs, respectively. For d, a value of 1 in-
dicates a perfect match and 0 indicates no agreement at all.
RMSE provides an estimate of the absolute bias in the model
simulation and the smaller the value of RMSE, the better the
agreement between the simulation and observation is.

3. Results
For optimal evaluation of the effects of a dynamic root

distribution on eco-hydrological modeling, the diurnal cy-
cles of βt, GPP, NEE, LE and SWC (mean of the top 20 cm)
for the wet (April) and dry (October) seasons at the BRSa3

site are presented in Fig. 4, together with their corresponding
climate variables (precipitation, solar radiation and tempera-
ture). GPP and LE in from CTL and NEW showed the same
diurnal cycle as observed, with a peak value at noon (Figs.
4e, g, m and o), which was mainly driven by solar radia-
tion (Figs. 4b and j). Furthermore, the two simulations did
not differ from one another regarding GPP and LE during the
wet season, which had sufficient rainfall (Fig. 4a) for no soil
water stress (βt = 1; Fig. 4d), and agreed well with observa-
tion. However, during the dry season, with little precipitation
(Fig. 4i) and thus severe water stress (βt < 0.8; Fig. 4l), CTL
obviously underestimated daytime GPP (∼40% at noon; Fig.
4m) and LE (typically >20% around noon; Fig. 4o). By in-
corporating the dynamic rooting scheme in NEW, more root
C was allocated into deeper soil layers (Fig. 5). Compared
with the observed root distribution data (Jackson et al., 1996),
the dynamic root scheme realistically captured the observed
root profile, better than the static root distribution, with the
largest fraction of roots in deep layers, and thus more water
could be taken up by roots. This further reduced the soil wa-
ter stress (Fig. 4l), and so the amplitudes and peak values of
GPP (Fig. 4m) and LE (Fig. 4o) for the dry season increased.
That said, part of the underestimation still remained, indicat-
ing that other mechanisms apart from the dynamic rooting
scheme still need to be considered.

NEE is an expression of net C exchange between ecosys-
tem and atmosphere, with positive values indicating efflux
into the atmosphere and negative values indicating uptake by
the biosphere, calculated as per Eq. (10):

NEE = −(GPP−ER) = −(GPP−AR−HR)
= −(GPP−GR−MR−HR) , (10)

where GR is the growth respiration, MR is the maintenance
respiration, HR is the heterotrophic respiration, AR is the au-
totrophic respiration (AR = GR+MR), and ER is the total
ecosystem respiration (ER = AR+HR). For the wet season,
both the two runs captured the amplitudes and peak value of
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Fig. 4. Diurnal (a) precipitation (PR; units: mm h−1), (b) shortwave downward radiation (SWDR; units: W m−2), (c) air temperature
(TA; units: ◦C), (d) βt, (e) GPP (units: g C m−2 h−1), (f) NEE (units: g C m−2 h−1), (g) LE (units: W m−2) and (h) SWC (mean of
0–20 cm units: m3 m−3) for wet (April) months at the BRSa3 site, aggregated over 2001–03. Panels (i–p) are the same as panels (a–h)
but for the dry (October) season.

observed NEE well, with the biosphere acting as a C source
in the morning and evening, but a C sink at noon (Fig. 4f).
However, for the dry season, CTL greatly underestimated the
peak value of C uptake at noon (Fig. 4n), due to the severe
water stress. However, during the dry season, GR, MR and
HR all increased due to the increase in photosynthesis, which
then led to higher ER (not shown). Because GPP increased
more than ER, the NEE values (negative) became smaller,
and thus NEW improved the simulation of NEE, with more
C uptake at noon, closer to that observed.

For the limited SWC observation, just the mean value of
SWC from the top layers (0–20 cm) of the two runs was com-

pared with observation (Figs. 4h and p). SWC showed little
diurnal variation and was underestimated both for the dry and
wet seasons — more severely for the dry season. The under-
estimation of SWC for the top layers in the dry season was
slightly reduced in NEW (Fig. 4p), because the dynamic root-
ing scheme allowed the roots to absorb water from the deep
soil (Fig. 5). However, despite improvement due to the incor-
poration of a dynamic root distribution, significant biases in
SWC simulations remained.

Figures 6a–e show the mean daily βt, GPP, NEE, LE
and SWC (0–20 cm), respectively, averaged for 2001–03,
and the differences in GPP, NEE, LE and SWC between the
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Fig. 5. Mean root profile over the 3-year (2001–03) simulations
of the two runs.

two runs were all significant at the 95% confidence level ac-
cording to the Student’s t-test. Decreases in GPP and LE
for July–December (Figs. 6b and d) due to dryness (βt < 1;

Fig. 6a) were found in CTL, which were much lower than
observed, possibly caused by the model’s excessive sensitiv-
ity to drought (Baker et al., 2008). However, NEW, with its
dynamic rooting scheme, improved the simulation for GPP
and LE during the dry season, which were closer to their cor-
responding observations, by reducing the underestimation of
GPP and LE by higher βt (lower soil water stress), resulting
in lower MBE (Figs. 7b and j) and RMSE (Figs. 7c and k).
For NEE, CTL simulated positive values during the dry sea-
son, indicating the biosphere acted as a C source, contrary
to observation (Fig. 6c). When a dynamic root distribution
was considered, the biosphere was altered to a C sink or the
magnitude of C emissions was reduced for July–December,
which was closer to observations. This reduced the MBE
from 1.25 to 0.40 g C m−2 d−1 (Fig. 7f) and the RMSE from
3.91 to 1.95 g C m−2 d−1 (Fig. 7g). For the mean SWC of the
top 0–20 cm, both runs gave large underestimations. How-
ever, NEW reduced the underestimation for July–December,
with the RMSE lowered from 0.18 to 0.15 m3 m−3, as the
dynamic root distribution allowed roots to absorb more water
from deeper soil layers (Fig. 6e). Overall, GPP, NEE, LE and
SWC were better estimated using the new model, with lower
MBE and RMSE and higher R and d, especially during dry
months.

To further evaluate how a dynamic root distribution af-
fects the response of terrestrial C and water cycles to seasonal
droughts in the Amazon, two study regions (denoted R1 and
R2), dominated by BET Tr and C4 grass, respectively, were
selected for analysis (Fig. 2c). The mean monthly precipi-
tation for R1 and R2 was 180.48 and 136.35 mm month−1,

Fig. 6. Difference among the simulated mean daily values of (a) βt, (b) GPP, (c) NEE, (d) LE and (e) SWC (mean of
0–20 cm) at the BRSa3 site averaged from 2001 to 2003 (grey areas indicate the dry season).
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Fig. 7. Comparison between the results of CTL and NEW at the BRSa3 site for (a–d) GPP, (e–h) NEE, (i–l) LE, and (m–p) SWC (mean
of 0–20 cm) compared with corresponding observations for wet months, dry months and the whole year. The four indices used are
defined as Eq. (6–9) in section 2.4.

respectively. Figure 8 shows the annual cycle of simulated
and observed GPP and LE averaged over the two study areas
across 1982–2010, together with βt. For R1, the dry season
lasted four months: June–September. Both GPP and LE sim-
ulated by CTL showed obvious reductions due to the decreas-
ing βt (Fig. 8a) during the dry season, with large negative bi-
ases compared to observation (Figs. 8b and c). In contrast, the
monthly variations of GPP and LE for NEW became smaller
than those of CTL, with the RMSE reduced from 39.52 to
29.87 g C m−2 month−1 for GPP, and from 18.80 to 17.65 W
m−2 for LE. During the dry season, the mean GPP and LE
increased from 195.95 to 211.62 g C m−2 month−1, and from
91.47 to 98.83 W m−2, respectively–closer to the correspond-
ing MTE observations. In R2, both simulated and observed
GPP and LE were lower than that of R1 due to the difference
of parameters for photosynthesis and transpiration between
the two vegetation types (Figs. 8b and e). In this region the
dry season was May–September, with βt obviously decreas-
ing from 1 to 0.6. During this period, both the two simu-

lations showed significant decreases in GPP and LE, simi-
lar to observation, but too steep in CTL. In contrast, NEW
showed similar improvements in GPP and LE in R2 as R1
(Figs. 8e and f), with the mean GPP increasing from 128.84
to 146.93 g C m−2 month−1, and LE from 78.0 to 87.69 W
m−2, during June to September. Furthermore, the RMSE re-
duced from 65.70 to 54.42 g C m−2 month−1 for GPP, and
from 22.0 to 19.62 W m−2 for LE, compared to observations.
To summarize, the plant response to seasonal drought was
better captured with a dynamic root distribution considered,
though some divergence still remained.

In 2005, the Amazon experienced a severe drought— the
worst for over a century (Saleska et al., 2007; Chen et al.,
2009). Amazon rainfall reductions were the most exten-
sive for July–September 2005 when the subtropical North
Atlantic SST was at its highest (Zeng et al., 2008). Based
on the 29-year climatology for 1982–2010 from CRUNCEP,
the drought in 2005 was captured (Fig. 9a) and the black-
boxed region with the largest negative precipitation anomaly
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Fig. 8. Annual cycle of simulated βt, GPP and LE, compared with their corresponding observations (MTE GPP and
LE), averaged over the two study areas in the Amazon across 1982–2010: (a–c) for R1 and (d–f) for R2 (shaded areas
indicate the dry season).

(� −50 mm month−1) was analyzed (hereafter R3). Figure
9b shows that the mean rainfall of R3 from July to Septem-
ber in 2005 was the lowest during the 29 years, at just 41.4
mm month−1. Note that the 2005 rainfall anomaly based on
CRUNCEP for 1982–2010 was similar to that for 1901–2010,
but for temporal consistency only the former is shown and an-
alyzed. Figures 9c–e show the annual cycle of simulated and
observed GPP and LE averaged over R3 for 2005 and aver-
aged across 1982–2010, together with βt. During the 2005
drought, the simulated GPP and LE decreased in R3 (Figs.
9d and e), substantially lower than the observed multi-year
average, but more rapidly in CTL than in NEW, especially in
July–September, as a result of the decreasing βt, indicative of
more severe soil water stress (Fig. 9c). However, NEW miti-
gated the underestimation of GPP and LE in July–September
during the 2005 drought by increasing the soil water avail-
ability, with the RMSE reduced from 30.3 to 23.1 g C m−2

month−1 for GPP and from 16.9 to 14.3 W m−2 for LE. In
general, the vegetation response to the severe 2005 drought
was better captured with a dynamic rooting scheme incorpo-
rated.

4. Conclusions and discussion

In this study, a dynamic rooting scheme that describes
root growth as a compromise between water and N availabil-
ity in the subsurface, was incorporated in CLM4.5-CN and
its effects on C (GPP and NEE) and water cycle (LE and
SWC) modeling were evaluated over the Amazon. At the
BRSa3 site, the two simulations differed little in their results
during the wet season. However, during the dry season (July–
December), CTL underestimated GPP, LE and SWC, possi-
bly as a result of the model’s excessive sensitivity to drought.
However, with the new rooting strategy, more root C was al-
located into deeper soil layers and more water was able to
be absorbed by the roots. This further reduced the soil wa-
ter stress, and thus improved the C and water cycle modeling
by reducing the RMSE in GPP by 0.4 g C m−2 d−1, NEE by
1.96 g C m−2 d−1, LE by 5.0 W m−2, and SWC by 0.03 m3

m−3, compared with observations. Additionally, NEW was
able to overcome part of the underestimation, indicating that
a dynamic root distribution is not the only mechanism that
needs to be considered. For the Amazon region, the default
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Fig. 9. (a) Monthly precipitation (PR) anomaly (units: mm month−1) for July–September 2005, based on the 29-year
climatology from 1982–2010 calculated from CRUNCEP (the black box represents the study region analyzed in section
3.3, denoted as R3). (b) Time series of monthly mean PR (units: mm month−1) for July–September averaged over R3
from 1982–2010. (c–e) Annual cycle of simulated βt, GPP and LE averaged over R3 for 2005 and averaged across
1982–2010, compared with their corresponding observations (MTE GPP and LE). The border of the Amazon is shown
as a black line.

model showed obvious reductions in simulated GPP and LE
due to the decreasing βt during the dry season in both R1 and
R2, with large negative biases. The C and water simulations
were improved in NEW, with the RMSE for GPP reduced
from 39.52 to 29.87 g C m−2 month−1 in R1, and from 65.70
to 54.42 g C m−2 month−1 in R2; and for LE, from 18.80 to
17.65 W m−2 in R1, and from 22.0 to 19.62 W m−2 in R2. In
the severe 2005 drought, the region with the largest negative
precipitation anomaly (R3) showed obvious decreases in GPP
and LE – substantially lower than the observed multi-year av-
erage. The soil water availability during this period was able
to be increased in NEW, and thus mitigated the underestima-
tion of GPP and LE, with the RMSE reduced from 30.3 to
23.1 g C m−2 month−1 for GPP, and from 16.9 to 14.3 W m−2

for LE. In general, the vegetation response (including GPP
and LE) to seasonal drought and the severe 2005 drought was
better captured when a dynamic root distribution was incor-
porated, although some divergence still remained.

However, only including a dynamic root distribution is in-
sufficient to improve the simulations to match observations,
especially for SWC. To test the sensitivity of SWC to soil tex-
ture, we replaced the soil type using observational data from
Li et al. (2012) and Yan and Dickinson (2014) at the BRSa3
site, where the soil type is mainly clay latosol (80% clay,
18% sand and 2% silt), into CLM4.5 instead of the IGBP
data (35% clay, 45% sand and 20% silt). Thus, the water
content at saturation (i.e. porosity) varied from 0.30 to 0.36
m3 m−3, and the saturated hydraulic conductivity varied from
0.021 to 0.019 mm s−1. The simulation from observational
soil types agreed better with ground-based SWC observations
than that from the original IGBP data. The mean SWC of the
top 0–20 cm increased from 0.34 to 0.42 m3 m−3 for April,
and from 0.20 to 0.30 m3 m−3 for October (Figs. 10a and b).
This suggests that soil texture is a critical factor for hydraulic
properties, and observational soil type can reduce the biases
of SWC simulations in CLM4.5.
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Fig. 10. (a, b) Sensitivity of SWC to different soil textures, and sensitivity of (c, d) GPP and (e, f) LE to different
stomatal parameters and root profiles (obs, observation; org, the run with the original model; new, the run with
the dynamic rooting scheme; 1, the run with observed soil texture; 2, the run with new stomatal parameters; 3,
the run with the observed root profile).

The soil potential values (mm) when stomata are fully
closed (ψc) or fully open (ψo) in CLM4.5, which are PFT-
dependent, are from White et al. (2000). However, Verhoef
and Egea (2014) found that the ψc and ψo values are not
always realistic. In CLM4.5, ψc and ψo values of tropical
broadleaf evergreen tree (the dominant PFT at the BRSa3
site) are −255 000 mm and −66 000 mm, respectively. To
test the sensitivity of GPP and LE to different ψc and ψo val-
ues, we used another set of values (−127500 mm for ψc and

−33000 mm for ψo) in the simulations. The results showed
that the different ψc and ψo values caused large differences
for the GPP and LE simulations (Figs. 10c–f).

To see if additional improvements could be made by using
the observed root distribution data, another experiment (de-
noted as “3”) was conducted for the BRSa3 site, in which the
observed root distribution data were used to force CLM4.5.
The results showed that the two runs (i.e. the new run and
the run with observed root data) did not show large differ-
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ences in GPP and LE during both the wet and dry seasons
(Figs. 10c–f). This suggests that, in addition to the dynamic
rooting scheme, many other root-related mechanisms, includ-
ing deep root systems up to 18 m (Canadell et al., 1996),
hydraulic redistribution (Ryel et al., 2002) and preferential
root water uptake (Lai and Katul, 2000), also contribute to
dry season water uptake and consequently drought responses,
and should therefore be further examined in modeling stud-
ies. Previous studies (Tomasella et al., 2008; Miguez-Macho
and Fan, 2012) suggest that groundwater in the Amazon can
reduce wet season soil drainage and lead to larger soil wa-
ter stores before the dry season arrives. This is one of the
reasons for the observed absence of dry season water stress.
In addition, more field observations and experiments will im-
prove our understanding of how to represent root activities
in plant physiological and ecological aspects (Yan and Dick-
inson, 2014). This paper presents only preliminary compar-
isons in the Amazon, and more analysis on the effects of a
dynamic root distribution on eco-hydrological and climate
modeling at the global scale is needed in the future.
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