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ABSTRACT

The entrainment flux ratio Ae and the inversion layer (IL) thickness are two key parameters in a mixed layer model. Ae
is defined as the ratio of the entrainment heat flux at the mixed layer top to the surface heat flux. The IL is the layer between
the mixed layer and the free atmosphere. In this study, a parameterization of Ae is derived from the TKE budget in the first-
order model for a well-developed CBL under the condition of linearly sheared geostrophic velocity with a zero value at the
surface. It is also appropriate for a CBL under the condition of geostrophic velocity remaining constant with height. LESs are
conducted under the above two conditions to determine the coefficients in the parameterization scheme. Results suggest that
about 43% of the shear-produced TKE in the IL is available for entrainment, while the shear-produced TKE in the mixed layer
and surface layer have little effect on entrainment. Based on this scheme, a new scale of convective turbulence velocity is
proposed and applied to parameterize the IL thickness. The LES outputs for the CBLs under the condition of linearly sheared
geostrophic velocity with a non-zero surface value are used to verify the performance of the parameterization scheme. It is
found that the parameterized Ae and IL thickness agree well with the LES outputs.
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1. Introduction

The development of the ABL over land is dominated by
surface heating during the daytime. Convective activities and
turbulent mixing are common within the daytime ABL, i.e.,
the CBL. The top of the CBL is capped by an interface layer,
where the stratified free atmospheric air aloft is entrained
down into the mixed layer by overshooting thermals. The
entrainment process can significantly influence CBL evolu-
tion and profiles of mean variables within the CBL (Hoxit,
1974; Arya and Wyngaard, 1975; Lemone et al., 1999). It is
important in NWP and air pollution models.

There have been many studies on the entrainment pro-
cess. Kim et al. (2006) pointed out that much work had been
done for the free CBL, whereas studies about the uncertain-
ties in the entrainment process were quite limited compared
to studies of the sheared CBL. In the past decade, research
on the entrainment process has mainly focused on how to
understand and parameterize the effect of wind shear (Kim
et al., 2003, 2006; Pino et al., 2003, 2006; Conzemius and
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Fedorovich, 2006a, 2006b, 2007; Sun and Xu, 2009). Bulk
models are often employed to describe CBL evolution. Two
commonly used types of bulk models are the zeroth-order
model (ZOM), which represents the inversion layer (IL) as an
infinitesimally thin interface (Tennekes, 1973), and the first-
order model (FOM), which assumes a certain IL thickness
(Betts, 1974). The IL structure is important for CBL dynam-
ics (Sorbjan, 1996a, 1996b, 2004; Lewellen and Lewellen,
1998; Sullivan et al., 1998; vanZanten et al., 1999; Otte and
Wyngaard, 2001; Kim et al., 2003, 2006; Sun and Wang,
2008). Conzemius and Fedorovich (2007) reviewed previous
studies of bulk models and suggested that at least the FOM
is needed in order to adequately capture the entrainment pro-
cess in a sheared CBL. Huang et al. (2011) demonstrated that
the FOM can adequately describe not only the entrainment
heat flux but also the entrainment fluxes of water vapor and
other conservative scalars such as carbon dioxide.

The deficiencies of FOMs were reviewed in Gentine et
al. (2015). In FOMs based on Betts (1974), both the potential
temperature and heat flux profiles are assumed linear in the
IL, and the mixed-layer top is located with the minimum heat
flux height. Deardorff (1979) argued that the representation
of the IL in such models is oversimplified. Firstly, the ob-
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served maximum vertical gradient of potential temperature
is generally much higher in observations than in the FOM.
Secondly the minimum heat flux level is located above the
mixed-layer top. Thirdly, the assumption that the mixed-layer
height is equal to the minimum heat flux height generates
a singularity for the IL growth rate equation under strong
inversions. Thereafter, the IL thickness has generally been
parameterized (e.g., defined as a function of the convective
Richardson number) to avoid this singularity. On the other
hand, the linear profiles are incompatible: parabolic flux pro-
files should correspond to linear profiles of conserved vari-
ables. Deardorff (1979) proposed a more realistic representa-
tion of the IL—the so-called general structure model (GSM).
However, the structure of the IL in the GSM needs to be pa-
rameterized (Fedorovich and Mironov, 1995; Fedorovich et
al., 2004a), which limits its applicability. To overcome the
limitations in previous FOMs, Gentine et al. (2015) proposed
a new IL model based on a second-order polynomial for the
potential temperature profile, and a third-order polynomial
for the heat flux profile. This model can accurately prognos-
ticate the growth rate of the IL, and of the mixed layer, under
purely convective conditions. However, our study focuses on
the entrainment process under shear conditions. It is not clear
how wind shear impacts the profile shapes of velocity and po-
tential temperature and their fluxes. In order to simplify the
derivations, we use an FOM with linear profiles in the IL. The
relative errors between the linear and curving flux profiles are
discussed in this study.

The bulk model consists of a set equations for the CBL.
Parameterizations of the entrainment flux ratio Ae (defined
as the ratio of entrainment heat flux at the top of the mixed
layer to the surface heat flux) and IL thickness are needed for
closure of the CBL equations (e.g., Kim et al., 2006; Pino
et al., 2006). Kim et al. (2006) developed a parameteriza-
tion of Ae for the CBL under the condition of height-constant
geostrophic velocity (GC case). Conzemius and Fedorovich
(2007) developed a bulk CBL model under the condition of
linearly sheared geostrophic velocity with a zero value at
the surface (GS case), in which the Ae is not explicitly ex-
pressed and the IL thickness is parameterized assuming a
constant gradient Richardson number. Note that large un-
certainties exist in the parameterization of sheared entrain-
ment. Pino et al. (2006) suggested that about 70% of TKE
produced by wind shear across the IL is available for entrain-
ment, whereas Conzemius and Fedorovich (2006a) proposed
a value of 40%. Sun and Xu (2009) argued that the frac-
tion should be 30%. Such a large discrepancy among differ-
ent studies indicates that further investigation of the entrain-
ment process is necessary for a better understanding of the
CBL.

The IL thickness is another key parameter in bulk mod-
els. Pino and Vilà-Guerau De Arellano (2008) suggested
that the IL thickness is a natural length scale that charac-
terizes the shear-produced turbulence in the TKE budget at
the CBL top. Kim et al. (2006) proposed three schemes to
estimate the IL thickness based on different empirical con-
siderations of the effect of wind shear. Conzemius and Fe-

dorovich (2007) developed a scheme under the assumption
that the flux Richardson number remains at 0.25 in the en-
trainment zone (the layer where vertical potential tempera-
ture flux is negative). However, the LES results of Pino and
Vilà-Guerau De Arellano (2008) showed the flux Richard-
son number to be larger than 0.25. Therefore, the scheme
of Conzemius and Fedorovich (2007) needs further valida-
tion and the parameterization of the IL thickness should be
modified.

In this paper, a parameterization scheme of Ae for a well-
developed CBL is developed in an FOM framework. As
in Conzemius and Fedorovich (2007), the CBL is assumed
to develop under the condition of the GS case. The im-
pacts of different factors on Ae are discussed. A new con-
vective velocity scale for both buoyancy and shear effects is
proposed to parameterize the IL thickness. LESs are con-
ducted to evaluate the parameterization of Ae and the perfor-
mance of parameterization for the IL thickness. In a compan-
ion paper, Part II, these parameterizations are further sim-
plified according to the characteristics of entrainment de-
rived from the LES output, and a simple model for predicting
the growth rate of the well-developed CBL is proposed and
evaluated.

2. LES experiments and output

2.1. Model setup

Twenty-six CBL cases are simulated using an LES model
to provide sufficient basic data in this study. The model used
is DALES (the Dutch Atmospheric Large-Eddy Simulation
model), which is based on the LES code of Nieuwstadt and
Brost (1986) and developed by researchers from Delft Uni-
versity, the Royal Netherlands Meteorological Institute, Wa-
geningen University and the Max Planck Institute for Mete-
orology (Heus et al., 2010). The domain size in this study
is 10.0× 10.0× 4.0 km3, in the x, y and z directions respec-
tively, with grid dimensions of 256×256×400. Sullivan and
Patton (2011) pointed out that the lower-order moment statis-
tics (means, variations and fluxes) become grid-independent
when the ratio of CBL height to LES filter width is larger
than 56. This value corresponds to their case D, in which
the mesh resolution was thought to be fine enough to char-
acterize the entrainment process. In the present study, the
ratio of CBL height to LES filter width is about 31, which
is slightly larger than that of case C in Sullivan and Patton
(2011). Their results showed that the lower-order moment
statistics change slightly while the entrainment rate is obvi-
ously overestimated in case C. However, their sensitivity ex-
periments indicated that the finer vertical resolution can im-
prove the LES estimates of entrainment rate efficiently. Our
vertical mesh resolution is closer to that in case D than case
C in Sullivan and Patton (2011). It is expected that the mesh
resolution in this study will be able to describe the turbulence
statistics and entrainment process reasonably. A third-order
Runge–Kutta scheme with self-adaptive time stepping is used
for time integration. The surface is treated as a semi-slip
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boundary at the bottom, and Monin–Obukhov similarity the-
ory is applied at the lowest model level to calculate surface
momentum flux. The top 1 km of the domain is a sponge
layer and periodic boundary conditions are applied at the lat-
eral boundaries. The closure scheme for the calculation of
subgrid-scale fluxes is based on the TKE method (Deardorff,
1980).

For all cases in this study, the surface potential temper-
ature flux is prescribed to be 0.1 K m s−1, and the potential
temperature at the surface is initially set to be 300 K. The
Coriolis parameter f is set to be a constant value of 10−4 s−1.
Half of the cases are conducted with a large gradient of poten-
tial temperature [γθ = 0.006 K m−1 (denoted as 6)], and the
other half are conducted with a small gradient [γθ = 0.003 K
m−1 (denoted as 3)]. Two cases are free-convection cases (de-
noted as NS00), and the others are divided into two groups,
i.e., the GC and GS groups, with the geostrophic velocity
along the x-direction. In the GC group, the geostrophic ve-
locity is prescribed with three different values: 10 m s−1, 15
m s−1 and 20 m s−1 (denoted as GC10, GC15 and GC20, re-
spectively). In the GS group, the geostrophic velocity is zero
at the surface and linearly increases with height at three dif-
ferent vertical gradients: 10 m s−1, 15 m s−1 and 20 m s−1 per
2 km (denoted as GS10, GS15 and GS20, respectively). Two
values of surface roughness lengths, z0 = 0.1 m and z0 = 0.01
m, are used to represent the rough surface (denoted as R) and
the smooth surface (denoted as S). The case name GC15R3
means that the simulation is conducted under the conditions
of a constant geostrophic velocity of 15 m s−1, over a rough
surface, with z0 = 0.1 m, and an initial potential temperature
gradient of 3 K km−1. Results from the 26 cases are used
to determine the empirical constants in the parameterization
schemes.

The present study is based on linear equations of poten-
tial temperature and momentum for a horizontally homoge-
neous CBL. With Galilean transformation, CS cases can be
easily transformed to GS cases. It is expected that the pa-
rameterizations derived from GS cases should be suitable for
CS cases. However, this is not true for a nonlinear system
such as the three-dimensional CBL. Furthermore, non-zero
surface geostrophic velocity leads to changes in surface fric-
tion velocity and mixed-layer velocity, and consequently af-
fects velocity and fluxes at the CBL top. The changes in
these variables are not linear. For this reason, four addi-
tional CS CBL experiments (C5S10S3, C5S15S3, C5S15S6
and C5S15R3) are conducted to validate the parameteriza-
tions derived from GS cases. The case name C5S15S3 means
that the surface value of geostrophic velocity is 5 m s−1, the
gradient of geostrophic velocity is 15 m s−1 per 2 km, the
surface is smooth (z0 = 0.01 m), and the gradient of potential
temperature is 3 K km−1.

2.2. Profiles and variables in the FOM
The integration for each simulation covers 28 800 s, and

the results for the period from 4800 s to 28 800 s are out-
put at a time interval of 100 s. The horizontally averaged
idealized profiles of potential temperature, velocity and their

fluxes can be obtained from the LES output. Figures 1 and 2
depict these LES cases and idealized profiles. In this paper,
the mean and the fluctuating parts of a turbulent variable are
denoted with uppercase and lowercase letters; for example,
Θ and θ represent the domain averaged and fluctuating parts
of potential temperature. A horizontally averaged turbulent
flux is denoted by an overbar; for example, wθ means hori-
zontally averaged kinematic heat flux. The idealized profile
of Θ is assumed to vary linearly with height in all cases. Fe-
dorovich (1995) gave the idealized profile of wθ in the mixed
layer as

wθ =
(
1− z

h1

)
wθs+

z
h1

wθ1 , (1)

where z is height and h1 is the CBL height, which is defined
as the height at which wθ from the LES output reaches its
minimum; wθs and wθ1 are the kinematic heat flux at the
surface and at h1 respectively. Based on this equation, Ae is

Fig. 1. Idealized profiles (solid lines) of a CBL with constant
geostrophic wind (GC). Top: horizontally averaged potential
temperature Θ and its vertical flux wθ; middle: horizontally av-
eraged x-component velocity U and its vertical flux uw; bottom:
horizontally averaged y-component velocity V and its vertical
flux vw. Thick dashed lines represent LES profiles dash-dot
lines represent h0, h1 and h2. The vertical axis represents height
above the surface.
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Fig. 2. As in Fig. 1, but with linearly increasing geostrophic
wind (GS).

expressed as

Ae = −wθ1
wθs
=

h1−h0

h0
, (2)

where h0 is the first zero-crossing height of the wθ profile. h2
is defined as the level at which wθ is larger than 10% of its
minimum value, which is the same as in Pino et al. (2006) and
Conzemius and Fedorovich (2006a). The layer from h1 to h2
is the so-called IL, and its thickness is Δh21 = h2 − h1. The
layer between h0 and h2 is the so-called entrainment zone,
and its thickness is Δh20 = h2 − h0. It should be noted that
the definition of the IL is based on the idealized profile of Θ,
while the entrainment zone is based on the profile of wθ. Fol-
lowing Pino et al. (2006), Θ1 (the potential temperature in the
mixed layer) is determined from the LES Θ profile at the cen-
ter of the CBL (h1/2), Θ2 is determined from the LES Θ pro-
file towards h2, and the potential temperature jump across the
IL is ΔΘ = Θ2 −Θ1. Following the approach of Fedorovich
(1995), the profile of wθ in the IL is defined as a quadratic
function of z if Θ linearly increases with height. Calculations
show that the time-averaged relative error of the integral wθ
in the IL has a maximum value of 7.8% in GC20S6. Because
the errors introduced by the linear assumption are small in

all of the cases, we prefer to use the linear wθ profile in this
study. Kim et al. (2006) pointed out that the linear profile
of wθ gives a larger Ae than the curving profile. However,
the errors of Ae are associated with the empirical constants in
the parameterization scheme. They are obtained by a least
squares fit to the LES outputs. The results show that the
derived Ae parameterization can perform very well (details
given in section 3).

The idealized profiles of the velocity components U and
V are also assumed to be a linear function of z (Figs. 1 and
2). For the GC cases, U and V are constant in the mixed
layer; thereby, U1 and V1 (velocity componets at h1) are de-
termined from the LES velocity profiles at the center of the
CBL (h1/2). For the GS and CS cases, the idealized U is
constant in the mixed layer, whereas the idealized V linearly
increases with height in the mixed layer. Thus, the determi-
nation of U1 in the GS and CS cases is the same as in the
GC cases. Values of V at the surface and in the middle of
the CBL (h1/2), which are denoted as Vs and V1/2, are deter-
mined from the LES profile of V at 0.1h1 and 0.5h1, respec-
tively. Then, V1 is given as 2V1/2 −Vs. For all sheared cases,
the idealized U and V are assumed to be linear functions of
height in the IL. U2 and V2 are determined from the LES pro-
files of U and V towards h2. The wind jumps across the IL
are ΔU = U2−U1 and ΔV = V2−V1.

Looking at the idealized profiles of momentum fluxes, it
is found that uw and vw below h1 vary linearly with height
in the GC cases. In the GS and CS cases, uw below h1 is a
linear function of height, whereas vw below h1 is a quadratic
function of z (Fedorovich, 1995). According to the idealized
profiles, the momentum fluxes at h1 are written as

uw1 =
1

1+Δh21/h1

[
Δh21

2h1
uws−

(
ΔU − 1

2
γuΔh21

)
we+

1
4

fΔh21(Vs−V1)
]

(for all cases) ,

vw1 =
1

1+Δh21/h1

(
Δh21

2h1
vws−weΔV

)
(for GC cases) , (3)

and

vw1 =
1

1+Δh21/h1

{
Δh21

h1
vws− 1

2
Δh21

∂Vs

∂t
−

(
ΔV +

Vs−V1

2h1
Δh21

)
we−

1
2

fΔh21(Us−Ug,s)
}

(for GS and CS cases) . (4)

The above equations are derived by vertically integrating the
momentum equations (the derivations are given in Appendix
A), where Ug is geostrophic velocity; Ug,s is the surface
geostrophic velocity; γu is the gradient of Ug, we is the en-
trainment rate, which is defined as we = ∂〈h1〉/∂t, 〈h1〉 is
the least squares fit of h1, according to the relation h1 ∝

√
t,

to avoid a negative value of we. Fedorovich et al. (2004a)
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showed that h1 follows this relation in the NS case. Our LES
outputs show that this relation is also effective in the sheared
CBL cases (figures presented in the companion paper, Part
II). Similarly, the departure of the idealized uw and vw pro-
files from the curving ones in the IL also introduces some
errors. Calculations show that the maximum relative error of
uw is 8% in the sheared CBL cases. The maximum relative
errors of vw are 10.6%, 658% and 371% in the GC, GS and
CS cases, respectively. However, the LES outputs show that
in the GS and CS cases, the contribution of IL wind shear
to the entrainment is negligibly small in the y-direction when
compared with that in the x-direction (results reported in the
companion paper, Part II). Therefore, the idealized profiles
can characterize the IL shear effect on the entrainment rea-
sonably.

3. Parameterization of Ae and evaluation

3.1. Parameterization of Ae for sheared CBLs

The derivation begins with the TKE (E) budget in Boussi-
nesq approximation. It is expressed as

∂E
∂t
=

g
Θ0

wθ−
(
uw
∂U
∂z
+ vw

∂V
∂z

)
−

⎛⎜⎜⎜⎜⎝∂wE
∂z
+

1
ρ0

∂wp
∂z

⎞⎟⎟⎟⎟⎠−ε , (5)

where ρ0 is the air density (Moeng and Sullivan, 1994), p
is the fluctuating part of pressure, g represents the accelera-
tion of gravity, ε is the viscous dissipation rate of TKE. The
TKE storage term on the left-hand side is small compared
to other terms, except in the early stage of CBL evolution
(Driedonks, 1982; Randall, 1984). The LES outputs indi-
cate that after 4800s of integration, when the CBL is well-
developed, this term is small and can be neglected. The first
and second terms on the right-hand side are the production
rates of TKE by buoyancy and wind shear, respectively. The
third term is the vertical transport rate of TKE. This is a di-
vergence term, and thus its integration from the surface to h2
should be zero (Moeng and Sullivan, 1994). ε is usually as-
sumed to be proportional to its production rate (Flamant et al.,
1999; Conzemius and Fedorovich, 2006b; Kim et al., 2006).
Applying idealized profiles of potential temperature, velocity
and their fluxes, as shown in Fig. 2, the vertical integration of
the TKE budget can be written as (see derivation in Appendix
B)

−1
2

g
Θ0

wθ1(h1+Δh21)

=
1
2

(1−α1)
g
Θ0

wθsh1+ (1−α2)C−1/2
D u3∗ +

(1−α3)
(
−1

2
uw1ΔU − 1

2
vw1ΔV

)
+

(1−α4)(V1−Vs)
(
− 1

2
vws− 1

2
vw1+

1
12

fγuh2
1

)
. (6)

where the coefficients α1,α2,α3, and α4 are the proportions
of the dissipation rate to the corresponding production rate

and do not vary with height, u∗ =
4
√

uw2
s + vw2

s is the friction
velocity, and CD = u2∗/(U2

s +V2
s ) is the surface drag coeffi-

cient. Together with the definition of the convective velocity
scale, i.e., w3∗ = (g/Θ0)wθsh1, the above equation yields the
parameterization of Ae, which is expressed as

Ae = A1
1(

1+ Δh21
h1

) +A2
C−1/2

D u3∗(
1+ Δh21

h1

)
w3∗
+

Term I Term II

A3

(
− 1

2 uw1ΔU − 1
2 vw1ΔV

)
(
1+ Δh21

h1

)
w3∗

+

Term III

A4
(V1−Vs)

(
− 1

2 vws− 1
2 vw1+

1
12 fγuh2

1

)
(
1+ Δh21

h1

)
w3∗

,

Term IV (7)

where A1 = 1−α1, A2 = 2(1−α2), A3 = 2(1−α3), and A4 =

2(1−α4). The terms on the right-hand side represent the con-
tributions of the buoyancy (Term I), the surface layer shear
(Term II), the IL shear (Term III) and the mixed layer shear
(Term IV), respectively. Compared with the parameterization
scheme for a GC case in Kim et al. (2006), the only differ-
ence is that Eq. (7) has an additional term, i.e., Term IV. If
the geostrophic velocity gradient vanishes, the GS case will
become a GC case (that is, Vs = V1), and Eq. (7) will turn
out to be the same as the parameterization scheme for the GC
case described in Kim et al. (2006) [see their Eq. (22); the
term −uw1ΔU/2− vw1ΔV/2 is equivalent to that expressed
in their Eq. (5B)].

By applying stepwise regression to outputs from all of
the NS, GC and GS cases, the coefficients in Eq. (7) are
given as A1 = 0.21, A2 = 0.01, A3 = 0.86 and A4 = 0.70. The
value of A1 is very close to the classical value of 0.2 (Stull,
1976; Fedorovich et al., 2004a, 2004b). From the defini-
tion of A2, it can be easily shown that α2 = 99.5%, which
means that surface shear-produced TKE dissipates locally
(Conzemius and Fedorovich, 2006a; Pino and Vilà-Guerau
De Arellano, 2008). A3 = 0.86 means that the fraction of
the shear-generated TKE used for the entrainment process
is 43%, which is approximately the same as in Conzemius
and Fedorovich (2006a) and supports the argument of Sun
and Xu (2009) that the value of 1.44 for A3 proposed in Pino
et al. (2006) is overestimated. The stepwise regression also
shows relatively large uncertainties in the determination of
A4. However, the fourth term is too small to significantly in-
fluence the accuracy of Eq. (7) (see the results in the next
section).

In the above derivations, ε is treated as the sum of the
dissipation rates of buoyancy-and shear-produced TKE. The
regression of Eq. (7) to the LES outputs shows that the dis-
sipation rate of shear-produced TKE varies in different parts
of the CBL. That is, the parameterized dissipation rate εp can
be calculated as
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εp = −α1
g
Θ0

wθs

(
1− z

h1

)
−αxS , (8)

α1 = 0.79 ,

αx =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
α2 = 0.995 (z � 0.1h1)
α3 = 0.57 (z � h1)
α4 = 0.65 (0.1h1 � z � h1)

, (9)

where S is the shear production rate of TKE. Figure 3 de-
picts the profiles of εp and the forcing terms on the right-hand
side of the TKE budget from the LES cases with weak inver-
sion. εp is very close to the dissipation rate ε calculated from
the LES outputs, suggesting that the coefficients in Eq. (7)
are reasonable. The subgrid TKE budgets in these cases are
also illustrated in Fig. 3. The results indicate that the sub-
grid TKE is negligibly small in the IL. The cases with strong
inversion have the same situation [Fig. S1 in electronic sup-
plementary material (ESM)]. Therefore, the resolved motions
dominate the TKE budget in the IL and the derived parame-
terizations based on the LES outputs are reasonable. Figure
4 shows that the Ae estimated by Eq. (7) agrees well with

that derived from the LES outputs. As presented in previous
studies, the value of Ae calculated from LES outputs fluctu-
ates significantly because of the fluctuation of instantaneous
LES profiles (calculations show that the spread of LES Ae
is reduced significantly when the LES heat flux profiles are
averaged over 500 s). It is satisfactory that the value of the
parameterized Ae is contained within the fluctuations of the
LES outputs. Therefore, the parameterization expressed as
Eq. (7) can capture the characteristics of entrainment flux for
a well-developed sheared CBL.

3.2. Contribution of individual terms to the parameteriza-
tion scheme

The evolution of each term in Eq. (7) during CBL devel-
opment is illustrated in Fig. 5 for the GC case, and in Fig.
6 for the GS case. It is clear that Term I and Term III are
the dominant terms for CBL development. The stratification
and wind shear have little influence on Term I. Its value is
about 0.18 and remains almost unchanged throughout CBL
development in all of the simulation cases. Term II is always

Fig. 3. Horizontally and 30-min averaged vertical profiles of the total (upper panels) and the subgrid (lower panels)
TKE budget for the GC15S3, GS15S3 and C5S10S3 cases. S, B, T ε and ∂E/∂t represent shear production, buoyancy
production, transport and dissipation rates of TKE, respectively. εp represents a linear combination of the shear and
buoyancy production. Thin grey lines from bottom to top in each panel represent h0/h1, 1 and h2/h1, respectively.
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Fig. 4. Entrainment heat flux ratios in CS cases from LES outputs (blue dots) and calculated by Eq. (7) (red dots).

Fig. 5. Each term on the right-hand side of Eq. (7) for the parameterization of Ae in the GC cases. The blue dots
represent Term I, the green dots represent Term II, and the red dots represent Term III.
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very small, albeit its value differs among cases. This result
suggests that Term II has little influence on entrainment. The
behavior of Term III is quite different in the GC and GS cases.
Term III decreases with time and increases with stratification
in the GC case, whereas in the GS case it remains almost con-
stant throughout CBL development and decreases with strat-
ification. Term IV exists in both the GS and CS cases. Figure
6 shows that this term is negligibly small in the early stage of
a developing CBL. However, it increases during CBL devel-
opment. Under the condition of a weak geostrophic velocity
gradient, such as in GS10, Term IV can be neglected, since it
remains very small throughout the entire CBL development
process. On the other hand, if the geostrophic velocity gradi-
ent and h1 are sufficiently large, Term IV becomes relatively
large. For example, in GS20R3, at the end of the simulation,
when h1 is about 2000 m, the contribution of Term IV to the
Ae is about 17%. However, this situation seldom happens in
the real atmosphere because it is difficult for a geostrophic
velocity gradient as large as that shown in case GS20R3 to
occur.

In the GC case, the velocity jump across the IL increases
slightly with time, but the momentum flux at h1 decreases
with time. Thus, their total shear production rate of TKE
has a slight decreasing trend (Fig. S2 in ESM). Meanwhile,
the denominator of Term III (i.e., w3∗) increases remarkably
during this process. This is why Term III decreases with in-
creasing CBL depth. The LES outputs indicate that a larger

gradient of potential temperature can significantly enlarge the
velocity jump across the IL and slightly decrease the momen-
tum flux at h1 (Fig. S3 in ESM). Thereby, the shear-produced
TKE and Ae enlarge under stronger stratification. However,
this does not mean that the growth rate of the CBL under
stronger background stratification increases, since the cap-
ping inversion strength also enhances, which suppresses the
CBL’s development (Sun and Xu, 2009). The effect of the
rough surface is to enlarge the value of Term III. This is be-
cause, under such a condition, the velocity in the mixed layer
is smaller and the velocity jump at the CBL top is larger, as
compared to under a smooth surface condition.

In the GS case, the value of the velocity jump across the
IL increases while the momentum fluxes remain almost con-
stant with time; thus, the shear production of TKE in the IL
enhances during the CBL’s development (Fig. S4 in ESM).
Meanwhile, the denominator of Term III increases steadily
during this process. Thus, the value of Term III does not
change significantly. This implies that the shear production
of TKE (i.e. −(uw1ΔU+vw1ΔV)/2) is approximately propor-
tional to w3∗. The reduction effect of strong stratification on
Term III means that the shear production of TKE may be pro-
portional to the inverse of γθ. A larger geostrophic velocity
gradient leads to a larger momentum flux at h1 and velocity
jump across the IL, and consequently a larger value of Term
III. Figure 6 also shows that Term III is almost not influenced
by surface roughness.

Fig. 6. As in Fig. 5, but for the results in the GS cases. The cyan dots represent Term IV. Note that green dots and cyan
dots overlap in some cases.
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Based on the above results, it can be deduced that the
shear production rate of TKE at the CBL top can be divided
into two parts. One part is proportional to w3∗, γu and 1/γθ;
the other part is insensitive to CBL development and γθ but
sensitive to surface roughness. The former part dominates in
the GS case, whereas the latter works only in the GC case.
In the CS case, these two parts cooperate, but the former still
dominates. Thus, Term III shows a slight decreasing trend
and becomes weak with larger γθ (Fig. S5 in ESM). The ex-
pressions and meaning of these two parts are discussed in
detail in the companion paper, Part II.

3.3. A new convective velocity scale
Equation (7) can be rewritten as

Ae =
A1

1+Δh21/h1

w3
m

w3∗
, (10)

and

w3
m = w3∗ +

A2

A1
C−1/2

D u3∗ +
A3

A1

(
−1

2
uw1ΔU − 1

2
vw1ΔV

)
+

A4

A1
(V1−Vs)

(
−1

2
vws− 1

2
vw1+

1
12

fγuh2
1

)
, (11)

where wm can be interpreted as a new characteristic convec-
tive velocity scale that includes the contributions from both
the buoyancy and the wind shears in a CBL. The results in
Figs. 5 and 6 suggest that the characteristic convective veloc-
ity is mainly enhanced by the IL shear. In the ZOM, Eq. (10)
reduces to Ae = A1w3

m/w
3∗, which agrees with the result of

Tennekes (1973), Driedonks (1982), and Moeng and Sullivan
(1994) that the Ae can be expressed as 0.2w3

m/w
3∗.

For the GC case, the simplified form of Eq. (11) is often
used to characterize the convective velocity scale in a sheared
CBL, which includes only w∗ and u∗ on the right-hand side
of the equation (Tennekes, 1973; Zeman and Tennekes, 1977;
Tennekes and Driedonks, 1981; Driedonks, 1982; Boers et
al., 1984; Batchvarova and Gryning, 1994; Moeng and Sulli-
van, 1994; Pino et al., 2003). For example, Tennekes (1973)
suggested that w3

m = w3∗ + 12.5u3∗, while Moeng and Sullivan
(1994) proposed that w3

m = w3∗ + 5u3∗. Note that the equa-
tion w3

m = w3∗ + Bu3∗ only includes the contribution of shear-
produced TKE in the surface layer. Actually, it can be re-
garded as the simplified form of Eq. (11) by assuming that
−uw1ΔU/2− vw1ΔV/2 is approximately proportional to u3∗
[the last term of Eq. (11) is zero under the GC condition). As
mentioned in the previous section, this term is insensitive to
CBL development and stratification strength but sensitive to
surface roughness. Our LES outputs also show that the re-
sult of Moeng and Sullivan (1994) is a good estimate of wm.
However, for the GS and CS cases, the last term on the right-
hand side of Eq. (11) is relatively small and can be neglected
(although it is not zero), but the third term on the right-hand
side of Eq. (11) is closely related to w3∗, γu and 1/γθ. In this
situation, the simplified form w3

m = w3∗ + Bu3∗ is not a good
approximation of Eq. (11).

4. Parameterization of the IL thickness

In the FOM, the IL thickness (Δh21 = h2 − h1) is a key
parameter that is often used in the mixed-layer model, as de-
scribed in Pino et al. (2006) and Conzemius and Fedorovich
(2007). According to parcel theory, after the overshooting
thermal rises across the IL, its kinetic energy is transformed
to potential energy. That is to say, w2

m ∝ (g/Θ0)ΔΘΔh21.
Based on this assumption, Kim et al. (2006) gave the param-
eterization of the IL thickness in the form of

Δh21

h1
= aRi−1+b , (12)

and

Ri =
g
Θ0
ΔΘh1/w2

m , (13)

where a and b are empirical constants, and Ri is the convec-
tive Richardson number. Kim et al. (2006) proposed an em-
pirical formula to characterize the turbulence velocity scale
under the GC condition, expressed as

w2
m = w2∗ + cu2∗ +d(ΔU2+ΔV2) , (14)

where c and d are empirical constants. Kim et al. (2006) pro-
vided three groups of these empirical constants. Pino et al.
(2006) used this scheme in a mixed-layer model to evaluate
their parameterization of Ae. By applying stepwise regres-
sion to the outputs of all the NS, GC and GS cases, cu2∗ in Eq.
(14) is excluded (because the existence of this term makes
the significance of regression reduced), and the constants are
a = 0.37, b = 0.13 and d = 0.19. When the constant b is con-
strained to be zero, the regression also excludes cu2∗ in Eq.
(14), and the constants are a = 2.46 and d = 0.056. The ex-
clusion of cu2∗ suggests that the wind shear in the surface layer
has little effect on entrainment, which agrees with the result
in section 3.1 that the surface shear-produced TKE dissipates
locally. This scheme with different constants is denoted as
KP1 and KP2, respectively (Table 1).

In the previous section, a new convective velocity scale
is proposed. We expect that it is appropriate for the estima-
tion of IL thickness, and thus we use Eq. (12) but replace Eq.
(14) with Eq. (11). By a least squares fit to the LES outputs
of NS, GC and GS cases, the empirical constants a and b are
determined to be 0.70 and 0.14, respectively. This scheme is
denoted as LS1 (Table 1).

The parameterization of the IL thickness is usually eval-
uated by field observations (e.g., Boers et al., 1984), ex-
periments (e.g., Deardorff et al., 1980) and LESs (e.g., Fe-
dorovich et al., 2004a). Uncertainties in h2 and Θ2 deter-
mined from LES outputs will subsequently result in biases
in the calculation of Δh21 and ΔΘ. A positive bias of Δh21
(as well as ΔΘ) causes a negative bias of Ri−1, resulting in
low correlation between Δh21/h1 and Ri−1 (Sun et al., 2005).
For this reason, another Richardson number, RiN , which is
based on the buoyancy frequency

√
(g/Θ0)γθ in the free at-

mosphere, is used in Fedorovich et al. (2004a). As proposed
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Table 1. Five different parameterization schemes of IL thickness
(Δh21).

Scheme Δh21 wm

KP1
Δh21

h1
=0.37Ri−1 +0.13 w2

m=w2∗ +0.19(ΔU2 +ΔV2)

KP2
Δh21

h1
=2.46Ri−1 w2

m=w2∗ +0.056(ΔU2 +ΔV2)

LS1
Δh21

h1
=0.70Ri−1 +0.14

w3
m = w3∗ +0.05C−1/2

D u3∗+

4.10
(
− 1

2
uw1ΔU−

1
2

vw1ΔV
)
+

3.33(V1 −Vs)
(
− 1

2
vws−

1
2

vw1 +
1
12

fγuh2
1

)

LS2
Δh21

h1
=1.30Ri−1/2

N

CF Δh21=0.23
ΔU2+ΔV2

g
Θ0
ΔΘ

by Stull (1973), the time taken for the rising thermal to pen-
etrate into the free atmosphere should be related to the buoy-
ancy frequency. That is, Δh21/wm ∝ 1/

√
(g/Θ0)γθ. The pa-

rameterization scheme can be written as

Δh21

h1
= aNRi

− 1
2

N +bN , (15)

and

RiN =
g
Θ0

γθh2
1

w2
m
, (16)

where aN and bN are empirical constants. For comparison
purposes, we use Eq. (15) to parameterize the IL thickness
and employ Eq. (11) to characterize the turbulent velocity in
Eq. (16). The least squares fit to our LES outputs of NS, GC
and GS cases yields aN = 1.30 and bN = 0.00. This scheme
is denoted by LS2 (Table 1). It should be pointed out that
if ΔΘ ∝ γθΔh21, Eqs. (12) and (15) should be identical. The
LES outputs indicate that ΔΘ≈ 1.88γθΔh21 (Fig. S6 in ESM).
The LS1 and LS2 schemes are actually equivalent; we denote
them as LS1 and LS2 simply because they use different vari-
ables and have different constants.

Mahrt and Lenschow (1976) and Conzemius and Fe-
dorovich (2006a) suggested that a balance exists between the
shear production and buoyancy destruction of TKE in the en-
trainment zone, which can be described by the flux Richard-
son number or gradient Richardson number. Conzemius and
Fedorovich (2007) set the bulk gradient Richardson number
(Rib) in the IL to be a critical value of 0.15. The IL thickness
is then given by

Δh21 = Rib
ΔU2+ΔV2

g
Θ0
ΔΘ

. (17)

The constant Rib is found to be 0.23 by a least squares fit to
our LES outputs of GC and GS cases. This scheme is denoted
as CF (Table 1).

In order to evaluate the performance of the above five pa-
rameterization schemes for the IL thickness, the relative er-
rors are calculated and illustrated in Fig. 7. The relative error
(Err) is defined as

Err =
1
n

∑∣∣∣∣∣∣
Δh21,p

〈Δh21,LES〉 −1

∣∣∣∣∣∣ , (18)

where Δh21,p is the inversion layer thickness predicted by
each parameterization scheme. As mentioned above, Δh21
is determined from the instantaneous LES profile of wθ.
This method can result in large errors that completely con-
ceal differences between different parameterizations. In or-
der to reduce errors, an equal weighted nine-point moving
average operator is applied to Δh21, and the result is de-
noted by 〈Δh21,LES〉. The CF scheme has the largest error
in most cases. Further analysis shows that the bulk gradi-
ent Richardson number varies from 0.17 to 2.31 in differ-
ent cases, whereas only in a few cases is the bulk gradient
Richardson number very close to 0.23. This is why the CF
scheme has relatively large errors in most cases. The two KP
schemes apply well, although KP2 has slightly lager errors
than KP1. The new empirical constants significantly improve
the performance of the KP schemes (Fig. S7 in ESM), im-
plying that the original ones proposed by Kim et al. (2006)
and Pino et al. (2006) are not very representative because
they were derived from only a few LES cases. LS1 is not
improved in comparison with the two KP schemes; and the
reason is probably that they all use the convective Richard-
son number (Ri), as discussed previously. However, LS2 has
the best performance, and the errors are less than 20% in all
cases, suggesting that the RiN scheme is more suitable for
characterizing the IL thickness.

The most recent study on shear-free entrainment by
means of direct numerical simulation (Garcia and Mellado,
2014) suggests a two-layer model might be appropriate for
studying the entrainment zone. The upper sub-layer thickness
of the entrainment zone (δ) is defined based on the maximum
potential temperature gradient in Garcia and Mellado (2014)
[see Fig. 5 and Eq. (20) in their paper]. It is different to the
IL thickness (Δh21) defined in this study. The bottom of δ is
located at the level of the maximum gradient of potential tem-
perature that is higher than the bottom of Δh21, while the top
of δ is lower than the top of Δh21. Thus, the upper sub-layer
of the entrainment zone defined in Garcia and Mellado (2014)
is part of the IL defined in this study. Their results show that
the upper sub-layer thickness (δ) of the entrainment zone is
actually the mean penetration depth of an overshooting ther-
mal, which is directly affected by the background stratifica-
tion N2 (N =

√
(g/Θ0)γθ). The following relation is obtained

[their Eq. (24)]:
δ = cδ(w∗/N) , (19)

where cδ = 0.55 is the coefficient obtained from the direct nu-
merical simulation results. In fact, the LS2 scheme is equiv-
alent to Δh21 = aN(wm/N). Following the method in Garcia
and Mellado (2014), δ is determined from our LES Θ pro-
file. The LES results show that Δh21/δ = 2.44, which is quite
close to 2.36, the ratio of aN to cδ. This implies that the LS2
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Fig. 7. Relative errors of the predicted capping IL thickness against the LES results. The parameterization schemes
are listed in Table 1.

scheme is similar to Eq. (19) in a shear-free CBL, because
both Δh21 and δ are the overshooting distances of thermals
rising in the stably stratified environment. The difference be-
tween the LS2 scheme and Eq. (19) is attributed to different
definations of Δh21 and δ. Thus, in a shear-free CBL, the IL
thickness is dominated by overshooting thermals. However,
in a sheared CBL, the effect of wind shear on the IL thickness
is also important. Our results suggest that wm is suitable for
characterizing the joint effects of thermal overshooting and
wind shear on IL thickness.

5. Conclusion and discussion

In an FOM framework, the parameterization of Ae at
the top of a well-developed CBL under the GS condition
is derived by vertically integrating the TKE budget. Com-
pared to the parameterization scheme under the GC condi-
tion proposed by Kim et al. (2006) and Pino et al. (2006), our
scheme includes an additional term that represents the contri-
bution of shear-produced TKE in the mixed layer. When the
geostrophic velocity gradient becomes zero, the parameteri-
zation scheme turns out to be the one under the GC condition.
This scheme is also valid for the CS case. Thus, the new pa-
rameterization developed in the present study is appropriate
for entrainment approximation in a well-developed CBL un-
der different linearly sheared geostrophic velocity conditions.

The new parameterization contains four terms represent-
ing the effects of the buoyancy, surface layer shear, IL shear

and mixed layer shear, respectively. The buoyancy and IL
shear are the dominant terms among these four terms. The
LES outputs indicate that the shear-produced TKE in the sur-
face layer dissipates locally, and 43% of the shear-produced
TKE at the CBL top contributes to the entrainment, which
is approximately the same as the results in Conzemius and
Fedorovich (2006a).

A new convective velocity scale in the sheared CBL is
proposed. It includes the contributions of buoyancy and wind
shears. In the GC cases, the convective velocity scale is
equivalent to the simplified form proposed by Moeng and
Sullivan (1994), in which the effect of wind shear in the en-
tire CBL can be approximately represented by the friction
velocity. LES outputs show that the direct contribution of
surface shear to the entrainment is relatively small. However,
as pointed out by Conzemius and Fedorovich (2006a), the
surface shear has an indirect effect on entrainment by slow-
ing the flow in the CBL interior and inducing shear at the
CBL top, and it is the IL shear that enhances the entrain-
ment. Apparently, the contribution of IL shear to the entrain-
ment process has been considered in the simplified formula
by the friction velocity. However, note that in the GS and CS
cases, the simplified form of the convective velocity scale is
not valid because the shear-produced TKE in the IL is mainly
related to w∗, the geostrophic velocity gradient and stratifica-
tion strength, rather than the friction velocity.

The parameterization schemes of the IL thickness pro-
posed in previous studies are evaluated by the LES outputs.
The schemes suggested by Kim et al. (2006) apply well when
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the new empirical constants are used. The empirical con-
stants are derived by the stepwise regression to our LES out-
puts, which excludes the term representing the surface shear.
This result supports that buoyancy and IL shear are the dom-
inant factors of sheared entrainment. The parameterization
scheme proposed by Conzemius and Fedorovich (2007) can
only perform well in a few cases, because the bulk Richard-
son number varies widely in different cases. However, the
buoyancy Richardson number approach (the RiN scheme),
combined with the new convective velocity scale, can char-
acterize the IL thickness well in all cases.

The Ae and IL thickness are important parameters in the
mixed layer model. Our aim is to obtain a simplified scheme
that can predict the developing process of a sheared CBL
well. The parameterization scheme developed in this study
represents our initial efforts to achieve this goal. The simpli-
fied model is further explored and discussed in the companion
paper, Part II.

Finally, it is worth noting that the parameterizations pro-
posed in this study may only be applicable for CBLs under
special conditions. In the derivations we neglect the stor-
age term in the TKE budget and only consider the linearly
sheared geostrophic velocity and stable background stratifi-
cation. However, when the CBL is in its early developing
stage, the storage term in the TKE budget is not negligi-
bly small, and the entrainment process may exhibit different
characteristics. There often exists a residual layer in the real
atmosphere. When the CBL is growing through this layer,
the entrainment process is different to that of the stratified
free atmosphere above the CBL. In addition, in the real at-
mosphere the geostrophic wind may not vary linearly with
height. The applicability of the parameterization schemes
under these conditions is not well investigated and needs fur-
ther evaluation. These problems will be investigated in future
work.
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APPENDIX A

Derivation of vw1

The equation of V for an idealized CBL is

∂V
∂t
= −∂vw
∂z
− f (U −Ug) . (A1)

By using Leibniz’s rule, the integration of Eq. (A1) across
the mixed layer gives:∫ h1

0

∂V
∂t

dz=
∂

∂t

∫ h1

0
Vdz−V1

∂h1

∂t

=
1
2

h1
∂Vs

∂t
+

1
2

h1
∂V1

∂t
−1

2
V1
∂h1

∂t
+

1
2

Vs
∂h1

∂t
,

∫ h1

0

∂vw
∂z

dz= vw1− vws ,

∫ h1

0
f h1(U−Ug)dz= f (U1−Ug,s)− 1

2
fγuh2

1 .

Thus
1
2

h1

(
∂V1

∂t
+
∂Vs

∂t

)
+

1
2

(Vs−V1)
∂h1

∂t

= vws− vw1− f (U1−Ug,s)+
1
2

fγuh2
1 . (A2)

For the GC case, γu = 0, V1 = Vs, ∂Vs/∂t = ∂V1/∂t, Eq. (A2)
reduces to

h1
∂V1

∂t
= vws− vw1− f (U1−Ug,s) . (A2′)

In IL, we assume the idealized profile of V is a linear func-
tion of height and ∂Δh21/∂t ≈ 0. The integration of Eq. (A1)
across the IL is

ΔV
∂h1

∂t
=Δh21

∂V1

∂t
+

1
2
Δh21

∂ΔV
∂t
+

1
2

fΔh21(U1−Ug,1)−vw1 ,

(A3)
where Ug,1 is the x-direction geostrophic velocity at h1.

Finally, integrating Eq. (A1) from h2 to h2 + ε (ε is in-
finitesimal), using Leibniz’s rule and applying lim

ε→0
to the in-

tegrated equation gives

∂ΔV
∂t
= −∂V1

∂t
. (A4)

Combining Eqs. (A2), (A3) and (A4) gives the expression of
vw1 for GS and CS cases, and combining Eqs. (A2′), (A3)
and (A4) gives the expression of vw1 for GC case.

The derivations of uw1 are quite similar and are given in
the companion paper, Part II.

APPENDIX B

Derivation of Eq. (7)

The vertical integration of the TKE budget across the
CBL is∫ h2

0

∂E
∂t

dz =
∫ h2

0

g
Θ0

wθdz−
∫ h2

0

(
uw
∂U
∂z
+ vw

∂V
∂z

)
dz−

∫ h2

0

⎛⎜⎜⎜⎜⎝∂wE
∂z
+

1
ρ0

∂wp
∂z

⎞⎟⎟⎟⎟⎠dz−
∫ h2

0
εdz . (B1)

The term on the left-hand side and the third term on the right
hand side are zero. Using the idealized profile of wθ in the
first term on the right-hand side gives∫ h2

0

g
Θ0

wθdz =
1
2

g
Θ0

wθsh1+
1
2

g
Θ0

wθ1(h1+Δh21) , (B2)
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and the second term on the right-hand side is
∫ h2

0

(
uw
∂U
∂z
+ vw

∂V
∂z

)
dz

=

∫ hs

0

(
uw
∂U
∂z
+ vw

∂V
∂z

)
dz+

∫ h1

hs

(
uw
∂U
∂z
+ vw

∂V
∂z

)
dz+

∫ h2

h1

(
uw
∂U
∂z
+ vw

∂V
∂z

)
dz , (B3)

where hs is the height of the surface layer. The same as in
Kim et al. (2006), the first term in Eq. (B3) is integrated such
that ∫ hs

0

(
uw
∂U
∂z
+ vw

∂V
∂z

)
dz = −C−1/2

D u3∗ . (B4)

To derive Eq. (B4), the following relationships are used:

uws = −CDUsM, vws = −CDVsM, M =
√

U2
s +V2

s , u2∗ =√
uw2

s + vw2
s =CDM2 and Us = U1.

When the CBL is in the equilibrium state, the CBL height
is sufficiently high that the surface layer depth can be ne-
glected. By using the idealized profiles of U and V , the sec-
ond term in Eq. (A3) is integrated such that

∫ h1

hs

(
uw
∂U
∂z
+ vw

∂V
∂z

)
dz ≈

∫ h1

0

(
uw
∂U
∂z
+ vw

∂V
∂z

)
dz

=
(V1−Vs)

h1

∫ h1

0
vwdz . (B5)

Fedorovich (1995) demonstrated that the idealized profile of
vw in the mixed layer is

vw =
(
1− z

h1

)
vws+

z
h1

vw1+
1
2

fγuh2
1

z
h1

(
z

h1
−1

)
.

So Eq. (B5) becomes
∫ h1

hs

(
uw
∂U
∂z
+vw
∂V
∂z

)
dz= (V1−Vs)

(
1
2

vws+
1
2

vw1− 1
12

fγuh2
1

)
.

Similarly, the third term in Eq. (B3) is integrated such that
∫ h2

h1

(
uw
∂U
∂z
+ vw

∂V
∂z

)
dz =

1
2

uw1ΔU +
1
2

vw1ΔV . (B6)

The dissipation term is thought to be proportional to each pro-
duction term. Therefore, the integration of Eq. (B1) is written
as

−1
2

g
Θ0

wθ1 (h1+Δh21)

=
1
2

(1−α1)
g
Θ0

wθsh1+(1−α2)C−1/2
D u3∗ +

(1−α3)
(
−1

2
uw1ΔU − 1

2
vw1ΔV

)
+

(1−α4)
[
(V1−Vs)

(
− 1

2
vws−1

2
vw1+

1
12

fγuh2
1

)]
. (B7)

With the definition of w∗: w3∗ =
g
Θ0

wθsh1, Eq. (B7) turns out
to be Eq. (7).
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