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ABSTRACT

An online systematic error correction is presented and examined as a technique to improve the accuracy of real-time
numerical weather prediction, based on the dataset of model errors (MEs) in past intervals. Given the analyses, the ME
in each interval (6 h) between two analyses can be iteratively obtained by introducing an unknown tendency term into the
prediction equation, shown in Part I of this two-paper series. In this part, after analyzing the 5-year (2001–2005) GRAPES-
GFS (Global Forecast System of the Global and Regional Assimilation and Prediction System) error patterns and evolution,
a systematic model error correction is given based on the least-squares approach by firstly using the past MEs. To test the
correction, we applied the approach in GRAPES-GFS for July 2009 and January 2010. The datasets associated with the initial
condition and SST used in this study were based on NCEP (National Centers for Environmental Prediction) FNL (final) data.
The results indicated that the Northern Hemispheric systematically underestimated equator-to-pole geopotential gradient and
westerly wind of GRAPES-GFS were largely enhanced, and the biases of temperature and wind in the tropics were strongly
reduced. Therefore, the correction results in a more skillful forecast with lower mean bias and root-mean-square error and
higher anomaly correlation coefficient.
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1. Introduction
To reduce the forecast errors in numerical weather pre-

diction (NWP) models by improving data assimilation and
numerical models is an enduring challenge. As presented
in the previous paper (Da, 2011; Xue et al., 2013), an ap-
proach to correct the forecast error is proposed through solv-
ing an inverse problem of NWP. This approach is of practical
value, which is easy to implement as an online model correc-
tion into operational NWP systems, regardless of the various
sources of forecast error (Chou, 1974; Bao et al., 2004; Ren
and Chou, 2007; Da, 2011; Xue et al., 2013). As for opera-
tional application, this approach can be an online correction
with only a minor modification to the numerical model. As
reported in the companion paper (Xue et al., 2015), the model
error tendency terms (ME) is obtained by iteratively solving
an inverse problem using the past multi-time analyses.

Actually, this approach is a further development of
Chou’s idea (Chou, 1974). Chou recommended that NWP
should use a huge series of past observations rather than con-
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sider the NWP model as an initial value problem. Based on
Chou’s idea, Da (2011) proposed a theoretical framework
to predict the forecast error by using the past observations
and NWP model. Da suggested that the ME could be ex-
pressed as a Lagrangian interpolation polynomial of MEs in
past intervals, while the coefficients of polynomial can be
determined by solving an inverse problem. In Da’s study,
observations were assumed to be absolutely accurate. This
assumption results in that the order of the polynomial must
be equal to the times of past observations, for keeping the
problem well-posed. Due to the inevitable errors in obser-
vations, Da’s method is short of practical value because the
high-order polynomial shows strong sensitivity to errors em-
bedded in the past observations (Xue et al., 2013). More-
over, the approach employed in Da (2011) for obtaining MEs
is trapezoidal approximation, which is too rough. Hence, in
practical application, the order of the polynomial and number
of past data are restricted.

In the companion paper (Xue et al., 2015), we propose a
more precise and practical method by using an iterative ap-
proach to estimate the past ME. By analyzing and comparing
with the forecast errors in GRAPES-GFS (Global Forecast
System of the Global and Regional Assimilation and Predic-
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tion System), it is confirmed that the error pattern and tempo-
ral evolution, linearly estimated based on past MEs, show the
rationality of the iterative method and the potential applica-
tion of the MEs for online correction. To fulfill this objective,
a key question should be considered is how to extrapolate the
past MEs to the forecast period so that forecast error can be
corrected throughout model integration. Da (2011) suggested
using a Lagrangian interpolation polynomial to predict the fu-
ture ME, but the order of the polynomial shows sensitivity to
the errors introduced in the past observations, as discussed
above. In reality, the correction should be based on the char-
acteristics of the forecast errors. Danforth et al. (2007) di-
vided the 6-h total forecast error into systematic model error,
periodic errors, and non-periodic components. The correc-
tion is expected to utilize multiple past MEs more flexibly
and offer a more stable influence on model forecasts. In this
paper, a least-squares approach is adopted to predict the cor-
rection of the systematic errors. In this context, a brief es-
timation of the systematic errors of GRAPES-GFS is given
firstly, in section 2, followed by a description of the least-
squares approach and the experimental methods in section 3.
Section 4 presents the results of the experiments, followed by
discussion and conclusions in section 5.

2. Systematic errors of GRAPES-GFS
In Xue et al. (2015), we used the iterative method to ob-

tain the MEs in the past intervals and verified its validity
by comparing the 2-month-mean forecast errors to the esti-
mated error corrections in GRAPES-GFS. For consistency,
the model and analyses adopted in the present paper are the
same as in Xue et al. (2015). Because we aim to correct the
systematic errors of GRAPES-GFS in this part of the study,
it is necessary to understand the patterns and evolution of the
systematic errors of GRAPES-GFS. Here, systematic ME is
defined as the departure of the forecast from the FNL anal-
yses. It is expected that the patterns of systematic errors
should be different from each other according to different
prediction systems. However, it is surprising that certain as-
pects of systematic MEs seem to be persistent not only in
different versions of the same model, but also across models
developed at different climate centers (Berner et al., 2012).
Jung and Tompkins (2003) and Jung (2005) delivered stud-
ies of the patterns and evolution of the systematic errors of
the European Centre for Medium-Range Weather Forecasts
(ECMWF) forecasting system. The results indicated that the
systematic errors of the ECMWF system maintained a fixed
pattern and increased linearly in the short term.

Murphy (1988) decomposed the mean-squared error into
systematic and random components; namely, the mean
squared error (MSE) and error variance, and Jung and Tomp-
kins (2003) delivered a simpler formula to present systematic
error. Here the expression of Jung and Tompkins (2003) is
followed as

Esys = x f − y0, (1)

where x f and y0 are time averages of model forecast and FNL

analyses, respectively. Zheng et al. (2006, 2009) employed a
similar formula to Eq. (1) to deduce parameters of a linear,
first-order Markov stochastic error model in a climate model.
If the average period is months of a certain season of multiple
years, Eq. (1) can result in climatological systematic errors.
We use winter months (December–January–February, DJF)
of 5 years (2001–2005) as the average period to obtain the
climatological systematic errors in the following analysis.

Climatological systematic errors of 500 hPa geopotential
height (marked as Z500, where Z means geopotential height)
for winters (DJF) of 2001–2005 are shown in Fig. 1. Evi-
dently, two large systematic Z500 errors are apparent in the
Northern Hemisphere. The positive one is over the North Pa-
cific to the Arctic and the negative one covers from North
Africa to East Asia in the midlatitudes. Climatological sys-
tematic errors of Z850 for winters (DJF) of 2001–2005 have
also been examined (not shown). Compared with Z500, the
two centers of systematic errors are still existent, which re-
veals that the strong wintertime bias in the Northern Hemi-
sphere extends throughout the troposphere. Form Fig. 1, we
can also see that both the positive bias and negative bias are
enhanced as forecast time increases.

The zonally averaged North Hemispheric systematic er-
rors of geopotential height (Z) and zonal wind (u) for winters
are shown in Fig. 2a. The positive bias of Z in the extratropics
and pole of the Northern Hemisphere extends from the bot-
tom to the top of the atmosphere as an equivalent barotropic
structure. In the middle and upper troposphere of the extrat-
ropics and subtropics of the Northern Hemisphere, the west-
erly wind is underestimated, which is consistent with the un-
derestimation of the equator-to-pole pressure gradient. This
negative westerly wind bias together with the systematic er-
ror structure of Z is governed by geostrophic wind balance in
the Northern Hemisphere. For summers (June–July–August,
JJA), the results are similar, except a negative geopotential
height bias band and easterly wind bias is found at the top of
the troposphere (not shown).

For the tropics, the temperature errors and 2D wind vector
errors are calculated by the mean difference between model
forecasts of GRAPES-GFS and NCEP FNL in the period of
the winters (DJF) of 2001–2005. The 2D wind vector errors
include v and w errors, where w errors are multiplied by 100.
The convergent or divergent winds are dominantly forced by
heterogeneous heating. As shown in Fig. 2b, a convergent
bias center is located in the lower troposphere between 50◦E
and 100◦E, due to a positive temperature bias center. An-
other convergent bias center is found in the upper troposphere
and stratosphere at around 50◦E, due to another positive heat-
ing bias in the upper layer. As for meridional wind bias,
the negative temperature bias causes a divergent meridional
wind bias in the boundary layer in the tropics, which results
in a downwelling bias in the troposphere above the equator
(not shown). However, the whole tropospheric layer tends
to be a convergent bias, due to two positive temperature bi-
ases, though there is a layer with negative temperature bias
between them (not shown). In the tropics, the temperature
errors show a baroclinic structure, as positive bias alternates
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Fig. 1. Mean difference of 500 hPa geopotential height (gpm) between model forecasts of GRAPES-GFS and
NCEP FNL for the winters (DJF) of 2001–2005: (a) hour 12; (b) day 1; (c) day 3; (d) day 5.

with negative bias. For summers, the results are similar but
the patterns are different (not shown). For example, the di-
vergent meridional wind bias center in the boundary layer
moves between 5◦N and 10◦N, and a convergent meridional
wind bias center is found at 500 hPa between 5◦N and 10◦N,
which is different from the whole tropospheric layer conver-
gent wind bias for winter. Note also that the zonal wind
bias center in the boundary layer moves between 50◦W and
100◦W, and the upper tropospheric convergent zonal wind
bias center is located above the equator.

Unfortunately, it is difficult to determine which one out of
geostrophic wind bias or geopotential height bias in the ex-
tratropics is the cause of the other. However, the error source
is not the point we focus on in this study; rather, we are in-
terested in the patterns and evolution of the systematic er-
rors. Note that the climatological systematic errors at 500
hPa and 850 hPa increase, with confirmed patterns, as fore-

cast time increases (as shown in Fig. 1). It can be seen that
the 500 hPa geopotential height errors in the tropics and both
hemispheres evolve linearly, and the 200 hPa zonal wind er-
rors also increase linearly (Fig. 3). For summers, the 500
hPa geopotential height errors in the Northern Hemisphere
evolve linearly but the errors in the Southern Hemisphere and
the tropics increase slowly after two days of integration (not
shown). However, the 200 hPa zonal errors almost increase
linearly. These results suggest that the systematic error can
be linearly estimated by the mean MEs, for potential use in
online correction.

3. Experimental approach and design
Suppose an unknown term EEE exists, which can be consid-

ered as the overall effect of different sources of model . As a
result, the NWP model can be rewritten as an inverse problem
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Fig. 2. (a) North Hemispheric error sections of Z (shaded; gpm)
and u (contours; m s−1), and (b) tropical region error sections
of T (shaded; ◦C) and 2D wind vectors (arrows are displayed
by v and 100 × w). The errors are the mean differences be-
tween model forecasts of GRAPES-GFS and NCEP FNL in the
period of winters (DJF) of 2001–2005, and the errors are aver-
aged zonally for the Northern Hemisphere and meridionally for
the tropic between 20◦S and 20◦N.

together with past observations described in Xue et al. (2015).
We further discretize the model error EEE into series of

datasets and denote EEEi (i = −n,−(n−1), · · · ,−1) as the ME
in the past interval between iδ and (i + 1)δ . For brevity,
the following discussion focuses on one state variable of the
model equation at the space-discretized point, as in Xue et al.
(2015). In the past arbitrary interval (−iδ ,−(i−1)δ ) [where
i =−n,−(n−1), · · · ,−1], the ME Ei in the corresponding in-
terval can be easily obtained iteratively by using the method
described in Xue et al. (2015).

Suppose that, for a moment, the ME is dependent on
the time and of the polynomial form of m order as E(t) =
a0 + a1t + a2t2 + · · ·+ amtm. a0,a2, · · · ,am are coefficients.
Integrating the model Eq. (2a) in Xue et al. (2015) for each
interval δ yields the following equations:

Eiδ = a0δ+a1
(i+1)2 − i2

2
δ 2 +· · ·+am

(i+1)m+1−im+1

n+1
δ m ,

(2)
where i =−1,−2, · · · ,−n, and m is a positive integer smaller
than n. It is noted that there are n number of equations and

Fig. 3. RMSE evolution of (a) 500 hPa geopotential height
(gpm) and (b) 200 hPa zonal wind (m s−1) for the winters (DJF)
of 2001–2005.

m + 1 number of unknown coefficients, which can be solved
by the least-squares method. Minimizing the norm:

J(a0,a1, · · · ,am) =
−1

∑
i=−n

[
Eiδ −

(
a0δ +a1

(i+1)2 − i2

2
δ 2

+ · · ·+am
(i+1)m+1−im+1

n+1
δ m

)]2

, (3)

results in the following equation set:

∂J(a0,a1, · · · ,am)
∂a0

= 0 , (4a)

∂J(a0,a1, · · · ,am)
∂a1

= 0 , (4b)

· · · · · ·
∂J(a0,a1, · · · ,am)

∂am
= 0 . (4bm)

Obviously, an explicit formula of ME can be solved from
the equation set, which is actually a kind of curve-fitting re-
sult. One may argue that this formula works in the past model
integration time, but whether it does in model forecast time
is not confirmed. However, for some ME components of sta-
ble statistical character, e.g., climatological systematic errors,
discussed in section 2, the statistical formula result from the
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past will work in future. The climatological systematic er-
ror is the difference between model forecasts and observa-
tions, which maintain in a specific season and increase lin-
early in short-term prediction (Danforth et al., 2007). That
means a constant online corrector is enough for the long-
existent linear-increasing climatological systematic errors. It
was discussed in Xue et al. (2015) that direct application of
a constant model correction in the NWP model should im-
pact the model at the very beginning of model integration,
which makes the iteration divergent. Here, we are not con-
cerned with the convergent problem, but the impact of the
NWP model at the very beginning of model integration may
also lead to some uncertainties. In reality, to deal with this
problem technically, the correction is increased linearly from
zero to its true magnitude in a few steps of model integra-
tion and then maintained at a constant in the following steps.
Based on this discussion, the order of the polynomial should
be zero (m = 0), and the solution of the equation set is easily
solved as

E = a0 =
1
n

−1

∑
i=−n

Ei . (5)

Actually, Eq. (5) shows that the systematic model error
is none other than the time average of the MEs in past in-
tervals. According to Eq. (1), the systematic errors are a
kind of mean error, but the sample amount usually requires
a long series of data (e.g., decades of annual data). How-
ever, to save computational resources (plus, the purpose of
this study is not real operational use of the method), we use
two-month samples to calculate the mean forecast error. Al-
though this is too short to totally represent the systematic er-
rors, the results show that the patterns and evolutions of the
two-month mean errors are similar to the systematic error (5-
year averaged errors). Therefore, the two-month mean errors
are approximately represented by the systematic errors in the
following sections.

Another factor that should be considered is the increas-
ing rate of systematic errors. We used 2-month MEs to esti-
mate the mean errors and to approximately represent the sys-
tematic errors in Xue et al. (2015). The patterns and evolu-
tion of mean error corrections estimated from Eq. (5) have
been compared offline to the mean forecast errors (Xue et al.,
2015). The results show that the patterns of estimated er-
ror are well matched to the mean forecast errors for both the
Northern Hemisphere and the tropics, but the increasing rates
of estimated error are over-abrupt compared to mean forecast
errors. Hence, a weight α is necessary to account for the
overestimated error corrector, and the corrector becomes

E =
α
n

−1

∑
i=−n

Ei . (6)

It is expected that a large amount of systematic errors will
be offset by choosing the weight reasonably. However, there
is another parameter that should be considered: the number
of past MEs, n. Empirically, the climatological systematic er-
ror corrector should result statistically from the past data and
model outputs of multiple years (Glahn and Lowry, 1972;

Carter et al., 1989). Here, for the purpose of reducing the
computational cost, we use the spectrum analysis method to
obtain a proper amount of past data. Thus, averaged spectra
of the MEs of horizontal velocity components u and v, per-
turbation from reference potential temperature θ ′ and Exner
pressure perturbation Π′ (blue) at 3rd model level and the
14th model level for GRAPES-GFS are shown in Fig. 4.
Estimates are based on the MEs resulting from iteration for
January–February 2010 with 6 h intervals. Apparently, the
spectra of the four variables show three peaks in 60 days: the
first is a one-day period, which might be associated with the
diurnal cycle; the second is greater than a 3-day period, which
may be related to the synoptic process; and the third one is
greater than a 30-day period, which may represent the long-
existent climatological systematic errors. Finally, we use 30
days’ past data (n = 120) to determine the correction in the
following forecast tests. In this part, for the purpose of sim-
ply testing the new method, only long-existent climatologi-
cal systematic errors were considered in the following exper-
iments.

To determine the weight factor α , a set of experiments
with changing α from 0 to 1 were conducted for January 2010
firstly, based on the past MEs produced by iteration in Xue
et al. (2015). Before applying the model correction through
model integration, the ME for the forecast period should be
calculated based on its previous 30-day MEs. Then, the ME
is introduced into the model as a tendency term and forces the
model at every time step. As different values of the weight act
on the ME, the influence of the correction could be balanced.
Secondly, according to the results of the first set of experi-
ments, a linear decayed factor was used to weight the correc-
tion. Then, the linear weight correction was applied for July
2009 (JUL2009) and January 2010 (JAN2010). The experi-
ments were all initialized by 1◦ ×1◦ NCEP final (FNL) anal-
yses at 0000 UTC and performed for 8-day forecasts. The
model configuration and physical processes The resolution is
set as 1◦, and the model dynamics and physics are default.

4. Results
Although the online correction used here is deduced sta-

tistically from the past MEs, it is expected to work for the
forecast time. To optimize the performance of the correction,
a series of weights (0–1) were acted upon it, and the results
are shown in Fig. 5. As the 500 hPa and 850 hPa levels are
the most critical levels for large-scale and synoptic-scale pro-
cesses, the anomaly correlation coefficient (ACC) and root
mean square error (RMSE) of these levels are adopted here
as the scores of the correction influence. The ACC is an in-
dex to measure how closely the forecasts match the analyses,
while the RMSE is an index to weight the difference between
the forecasts and analyses. It is assumed that the best model
performance for the weight α is consistent regarding the two
indexes. Fortunately, this is true for this study but, if it is
not, we should balance the two indexes. As shown in Fig.
5, for the day 1 forecast, the best performance of the two
levels was related to α = 0.8; for the day 3 forecast, results
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Fig. 4. Averaged spectra of the model errors of horizontal velocity components u (red) and v (green),
perturbation from reference potential temperature θ ′ (black) and Exner pressure perturbation Π′ (blue)
at (a) 3rd model level and (b) the 14th model level for GRAPES-GFS. Estimations are based on the
model errors resulting from iteration for January–February 2010 with 6 h intervals. The vertical axis is
time.

Fig. 5. ACCs and RMSEs of Z (gpm) at 500 hPa and 850 hPa for JAN2010. Panels in the top to bottom rows are hour 12, day
1, day 3 and day 5 forecasts, respectively.

showed high scores when α = 0.6; for the day 5 forecasts,
when the weight was about 0.4, the RMSE of both levels was
lowest, but the ACC of the two levels was highest when the
weight was about 0.5; and finally, for the day 8 forecast, the

500 hPa and 850 hPa ACC achieved higher scores when α
was between 0.4 and 0.5 and the 500 hPa and 850 hPa RMSE
achieved higher values when α was between 0.2 and 0.4. We
can also see that, before the day 5 forecast, the results were
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better when applying the correction, whatever the weight, but
the performances were worse after the day 5 forecast when
the weight was not reasonable. These results imply that the
patterns and magnitudes of the correction are well matched
with the model error before day 5 forecasts, but it is uncer-
tain after day forecast. It was also noted that, as the forecast
time increased, better model correction performances were
related to decreasing weights, suggesting a decayed weight
should be used. Therefore, a linear decayed weight (LDW)
was applied to the correction from 1 at the very beginning of
the forecast, to 0 after model integration. Before the forecast,
the ME for the correction should first be calculated based on
its previous 30-day MEs. Throughout the 8-day forecast, the
ME forced the model at every time step with a decay factor
that was determined by the weight α . That meant the in-
fluence of the correction was linearly decreased through the
model integration and gradually became zero when the inte-
gration was complete. In the following test, the tests without
correction (α = 0) were considered as control tests, which
were compared to the LDW correction tests.

Figures 6a and b present the mean Z500 (gpm) day 3 fore-
cast for JAN2010 and the corresponding mean NCEP FNL.
Together with the ACC of Z500, shown in Fig. 10a, it can be
seen that the structure of the mean field forced by the LDW
correction was more similar to the mean NCEP analyses. For
clarity, the difference between Figs. 6b and a is shown as Fig.
6d. It is clear that the positive bias in the extratropics and
negative bias in the tropics of Z500 was reduced by the LDW

correction. That meant that the LDW correction enhanced
the underestimated equator-to-pole geopotential gradient de-
scribed in section 2. The result for JUL2009 was similar to
JAN2010 (not shown).

To further verify the impacts of the LDW correction,
Fig. 7 presents the mean Z500 and Z850 forecast errors for
JAN2010. The pattern is almost similar to the systematic er-
rors shown in section 2: overestimated Z in the extratropics
and underestimated Z in the tropics. It can also be seen that
the forecast errors increased from the 12th hour to day 5 fore-
casts, with a nearly maintained pattern. As expected, the bias
was canceled to a very significant degree in most locations
for the hour 12, day 1, 3 and 5 forecasts. For example, the
positive bias over the extratropics and the Artic almost disap-
peared from the 12th h to day 5 forecasts. The negative Z500
bias from North Africa to the western Pacific was reduced
by a large amount following the LDW correction in the fore-
casts at hour 12 but, because the phase of negative bias over
North Africa and the Indian Ocean to South Asia changed
to positive in the day 1 forecast, it was not corrected. For
the day 3 and 5 forecasts, the negative bias over the West-
ern Hemisphere and Eastern Hemisphere was reduced by the
LDW correction, but still existed. The impact of the LDW
correction on the mean error of Z500 and Z850 for JUL2009
was similar to the results of JAN2010 (not shown).

Figure 8 shows the zonally averaged latitude–height
cross sections of Z and u errors of the control experi-
ments (left column) and the LDW correction (right column)

Fig. 6. Mean Z (gpm) at 500 hPa for day 3 forecast of (a) control experiments and (b) LDW correction for JAN2010.
Panel (c) shows mean Z (gpm) at 500 hPa for the NCEP analyses and (d) is the difference between (b) and (a).
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Fig. 7. Mean forecast Z errors (gpm) of the control experiments (left column) and LDW correction (right column) at 500 hPa
and 850 hPa for JAN2010. Panels from the top to bottom row are hour 12, day 1, day 3 and day 5 forecasts, respectively.

for JAN2010. The underestimated westerly wind, associated
with the geopotential relationship between Z and wind, was
observed in section 2. As shown in Fig. 8 (left column),
the overestimated mean Z over the Arctic and extratropics,
and the underestimated mean Z over the low-latitude area,
were clearly seen from the 12th h to day 5 forecasts, accom-
panied by the underestimated westerly wind over most parts
of the Northern Hemisphere. Influenced by the LDW cor-
rection, the systematic geopotential bias almost disappeared,
except in the overcorrected upper troposphere in the day 3
and 5 forecasts (shown in the right column of Fig. 8). Se-
quentially, the negative bias westerly wind over the Northern
Hemisphere was nearly canceled completely in the 12th h and
day 1 forecasts, and the underestimated westerly winds were
also enhanced by the correction in the day 3 and 5 forecasts.
It was also noticed that overcorrected westerly wind bias was
found at a few locations; for example, the troposphere over
60◦N, in the day 3 and 5 forecasts.

Figure 9 shows the meridionally averaged (from 20◦S to
20◦N) longitude–height cross sections of temperature (T ) and
2D wind vector errors of the control experiments (left col-
umn) and the LDW correction (right column) for JAN2010.

In the tropics, large-scale average wind is governed by at-
mospheric convergence or divergence, driven by the non-
uniform heating. Hence, the wind bias is of course associ-
ated with the temperature bias, i.e., convergent wind bias ac-
companied by positive temperature bias and divergent wind
bias with negative temperature bias. As shown in Fig. 9 (top
row), there were two bias centers in the forecast at hour 12:
the positive bias was located above the surface from 100◦W
to 150◦W, accompanied by a convergence of the 2D wind
bias; while the negative bias was located in the surface layer
between 0◦ and 50◦E, where a divergent 2D wind bias was
found. After the correction, the temperature and 2D wind bi-
ases were all reduced. For the day 1 to 5 forecasts (Fig. 9,
rows 2–4), two positive temperature biases were found: one
located in the surface layer and lower part of the troposphere
between 50◦W and 100◦E, and the other extended from the
upper troposphere to the stratosphere. Sequentially, two 2D
wind convergence bias centers were found with respect to the
temperature biases. It should be noted that the positive tem-
perature biases were greatly reduced by the LDW correction.
Impacted by the correction, the 2D wind bias nearly disap-
peared in the day 1 forecast, and the positive temperature
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Fig. 8. Zonally averaged latitude–height cross sections of Z (gpm) and zonal wind u (m s−1) errors of the control ex-
periments (left column) and LDW correction (right column) for JAN2010. Panels from the top to the bottom row are
hour 12, day 1, day 3 and day 5 forecasts, respectively. The vertical axis is pressure.

biases and 2D wind biases also decreased in the day 3 and
5 forecasts. However, the negative temperature bias band in
the upper troposphere from 100◦E to 100◦W increased, along
with the 2D wind divergence bias. The pattern of the North
Hemisphere Z and wind errors for July 2009 was different
from that for January 2010, but the influence of the correc-
tion on the errors was similar (not shown). The pattern of
the tropical temperature and wind errors for July 2009 was
similar to January 2010, and the impact of the correction was
similar too (not shown).

According to the results on isobaric surfaces and in the
cross sections, it can be concluded that the systematic errors
can be sharply reduced using the LDW correction. However,
not everywhere benefits from the LDW correction; for exam-
ple, the negative forecasting temperature biases in the tropics.
This may be related to the other components of the errors.
The forecast errors are composed of multiple scales of com-
ponents; for example, the climatological systematic errors
and diurnal errors. In some situations, the phases of the two
components are the same, and the systematic error correc-
tion cannot cancel the error completely. In other situations,
the phases are opposite between the climatological systematic
errors and diurnal errors, and the systematic error correction
causes the sign of error to be the opposite. Therefore, more
attention should be paid to the elimination of other error com-
ponents in future research. Besides, to properly eliminate the
climatological systematic errors may require long-term statis-

tics, so another point to be noted is the sample size of the past
data is relatively small in this study.

Finally, mean forecast scores of the model performance
are given: the mean bias, RMSE and ACC. The 8-day fore-
cast RMSE and bias of u, v, T and Z at 500 hPa and 850 hPa
for JAN2010 have been examined (not shown). The RMSE
of Z and T at 500 hPa was reduced before the day 5 forecast
by the LDW correction, and were similar to the control ex-
periments after the day 5 forecast. It is clear that the RMSE
and bias of Z and T at 850 hPa were decreased for all 8-days
forecasts. It should be noted that the impacts of the correction
on the wind RMSE and bias were negligible and the RMSE
of u and v after the day 6 forecast increased slightly. Regard-
less, it is confirmed that the wind prediction and its correc-
tion are more difficult to achieve than for temperature and Z.
Figure 10 shows the mean ACC between the forecast results
of GRAPES and the analyses of NCEP FNL. The ACC was
calculated based on the Z fields at the 500 hPa and 850 hPa
levels for JAN2010. It is shown that the confidence intervals
were small, so the mean ACC was credible. From Fig. 10
we can see that GRAPES-GFS obviously possesses a finer
capability for prediction as a result of the correction. The
ACC between GRAPES-GFS hindcasts and NCEP analyses
increased in all the 8-days forecasts. When taking an ACC
of 0.6 as a threshold value for the effectiveness of the fore-
casts, GRAPES-GFS extended the capability of the effective
forecast time by more than 7 days.
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Fig. 9. Meridionally averaged longitude–height cross sections of T (K) and 2D wind vector errors of control experi-
ments (left column) and LDW correction (right column) for JAN2010, where vertical speed has been amplified by 100.
Panels from the top to the bottom row are hour 12, day 1, day 3 and day 5 forecasts, respectively. The vertical axis is
pressure.
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Fig. 10. Mean ACC and its confidence intervals of Z (gpm) at 500 hPa and 850 hPa for JAN2010.

5. Discussion and conclusions

As a key strategy in weather forecasting, NWP still re-
quires an elimination of its systematic errors due to model
deficiencies. To improve the skill of model performance, be-
sides traditional approaches, an alternative method is to con-
sider the NWP as an inverse problem in order to utilize nu-
merous past analyses, which was first raised by Chou (1974).
The main idea is solving an inverse problem to obtain an un-
known term in the prediction equations by using the past anal-
yses, which is presumed to represent the imperfection of the

NWP model. However, it is hard to deduce the ME term
inversely because the formula of the ME is uncertain. For-
tunately, the error evolves linearly in a short interval, i.e., 6
hours, so the ME term is assumed to be constant. The ME
terms in past intervals can then be obtained iteratively (see
Xue et al., 2015). Furthermore, based on the patterns and evo-
lution of the GRAPES-GFS forecast error, an online model
correction formula is deduced by using the datasets of the
MEs. To test the correction, the climatological systematic er-
rors of GRAPES are considered as the object to be corrected.
Two-month (January 2010 and July 2009) experiments were
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carried out to determine the weight and check the impact of
the correction. The conclusions can be summarized as fol-
lows:

(1) The short-term systematic errors of GRAPES-GFS
have been measured and the results indicate that positive Z
bias in the extratropics and negative Z bias in the subtrop-
ics are dominant, with the negative westerly wind bias in the
extratropics. For the tropics, the divergent wind bias is dom-
inantly forced by the heterogeneous heating bias. Even more
importantly, the growth rate of systematic errors is almost lin-
ear in 5-day forecasts.

(2) Based on the results regarding different weights (from
0 to 1), the larger the weight, the better the model perfor-
mance is for the early days of the forecasts (for example the
first 3 days of the forecasts); the smaller the weight is, the
better the model performance is for the later days of the fore-
casts (e.g., day 5 to 8). This suggests an LDW should be used
as integration.

(3) According to the results of the corrected experi-
ments at 500 and 800 hPa, the systematically underesti-
mated equator-to-pole geopotential gradient over the North-
ern Hemisphere is sharply enhanced due to LDW correction.
Sequentially, the negative westerly wind bias is reduced as
well.

(4) The temperature bias over the tropics is also reduced
by the LDW correction, as well as the convergence and di-
vergence wind biases associated with an unrealistic heating
source and sink.

(5) The LDW correction leads to better mean forecast
scores: the RMSE and bias are reduced for short-term fore-
casts (first 5 days of forecasts), and the ACC is increased for
all the 8-day forecasts.

Although the overall forecasts of GRAPES-GFS largely
benefit from the correction, the LDW correction cannot im-
prove the model performance everywhere. The forecast er-
rors consist of multiple scales of components, e.g., climato-
logical systematic errors, diurnal errors and state-dependent
errors. As shown in Xue et al. (2015), the diurnal error oscil-
lation is obvious before iteration. Hence, the systematic error
correction alone is not enough, and more attention should be
paid to the elimination of other error components in future re-
search. Besides, to properly eliminate the climatological sys-
tematic errors may need years of statistics, so another point
to note is the sample size of the past data is relatively small
in this study.
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