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ABSTRACT

Errors inevitably exist in numerical weather prediction (NWP) due to imperfect numeric and physical parameterizations.
To eliminate these errors, by considering NWP as an inverse problem, an unknown term in the prediction equations can be
estimated inversely by using the past data, which are presumed to represent the imperfection of the NWP model (model
error, denoted as ME). In this first paper of a two-part series, an iteration method for obtaining the MEs in past intervals
is presented, and the results from testing its convergence in idealized experiments are reported. Moreover, two batches of
iteration tests were applied in the global forecast system of the Global and Regional Assimilation and Prediction System
(GRAPES-GFS) for July–August 2009 and January–February 2010. The datasets associated with the initial conditions and
sea surface temperature (SST) were both based on NCEP (National Centers for Environmental Prediction) FNL (final) data.
The results showed that 6th h forecast errors were reduced to 10% of their original value after a 20-step iteration. Then,
off-line forecast error corrections were estimated linearly based on the 2-month mean MEs and compared with forecast
errors. The estimated error corrections agreed well with the forecast errors, but the linear growth rate of the estimation was
steeper than the forecast error. The advantage of this iteration method is that the MEs can provide the foundation for online
correction. A larger proportion of the forecast errors can be expected to be canceled out by properly introducing the model
error correction into GRAPES-GFS.
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1. Introduction

With the growing abilities of atmospheric models and
the availability of computational resources, the capability of
weather forecasting by numerical weather prediction (NWP)
has improved dramatically in recent decades. However, the
performance of NWP is generally hindered by its systematic
errors, which are contributed by different sources. Besides
the bias in the initial values, numerical models are defective
in terms of their governing equations, numeric and physical
parameterizations, and surface forcing. In recent decades, ex-
tensive effort has been made to understand and offset model
biases. To handle model errors is still an enduring challenge
from the model development point of view. On the other
hand, from the practical point of view, researchers are making
efforts to try to remove the forecast errors by model correc-
tion, regardless of possible sources of model bias.

Model correction is an efficient strategy to deal with
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model errors, which can be categorized as offline correction
and online correction. Detailed reviews have been provided
by Danforth et al. (2007) and Xue et al. (2013). Multi-
ple offline corrections have been developed, such as model
output statistics (MOS) (Glahn and Lowry, 1972; Carter et
al., 1989), running-mean correction (Eckel and Mass, 2005;
Hacker and Rife, 2007), and another correction method based
on the Kalman filter (Monache et al., 2006; McCollor and
Stull, 2008; Monache et al., 2011). MOS uses multi-year
historical model outputs and observations to develop the of-
fline model correction, while the others have been developed
based on model output and observations for a period of less
than one month. Offline bias correction does not act on the
forecast dynamically, meaning the errors are allowed to inter-
act nonlinearly throughout the model integration; whereas,
online correction is conducted at the steps of the model in-
tegration to impede error growth. Moreover, it is possible to
correct state-dependent errors by online correction, which has
recently become a major focus in this field. Leith (1978) ini-
tiated a framework of an online correction method in which
model bias was state-dependent. The scheme was modified
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and tested by DelSole and Hou (1999) with a nonlinear quasi-
geostrophic model. The results showed that the modified
Leith scheme largely improved the model forecast. Later,
Danforth et al. (2007) divided the model error into three com-
ponents: model bias, periodic, and non-periodic. These com-
ponents were corrected using methods including nudging, di-
urnal correction, and a simplified Leith scheme, respectively.
The results of two models (a quasi-geostrophic model and a
primitive equation model) were significantly improved.

Despite the different complexities of forecast error cor-
rection algorithms, the general idea is to estimate the forecast
errors by considering the NWP as a direct problem. Chou
(1974) proposed an alternative method by considering the
NWP as an inverse problem, instead of the traditional view of
the NWP. The model error (ME) due to the model deficiency
in representing the real atmospheric motion is assumed as an
unknown tendency term in the NWP model. If the formula
of the ME can be solved inversely with observations or anal-
yses, the model bias will be easily corrected. Unfortunately,
it is impossible to know the exact mathematical law of the
ME. It has been suggested that the model bias evolves linearly
or quadratically in short-term forecasts (Vannitsem and Toth,
2002). Hence, the ME can be discretized into short intervals
(e.g., 6 h) and considered as a constant or linear form in each
interval. Given the past observations and NWP model, the
discretized MEs in the past intervals can be solved iteratively
as a constant or linear-increased tendency term in each inter-
val. These MEs can be further used as the basis of the online
corrections. Not only the systematic model errors, but also
the diurnal model errors and state-dependent model errors,
could be corrected by reasonably extrapolating the MEs in
the past intervals to the forecast time. Da (2011) proposed
the trapezoidal method to calculate the MEs in past intervals
and the Lagrange polynomial to extrapolate them to the fu-
ture time step. However, to apply Da’s framework to a real
case NWP model, there are two shortcomings. The first is
that observations are supposed to be accurate, so that the or-
der of the polynomial must be equal to the times of past data.
In fact, errors are inevitably introduced by observations and
analyses, which lead to Da’s method becoming unpractical
because a high order polynomial is sharply sensitive to the
errors (Xue et al., 2013). The second is that the trapezoidal
method recommended by Da makes sense in idealized cases
but is not valid for real cases, because the model tendencies
of the first step and last step are used. Tests have revealed
that those tendencies cannot represent model errors well (not
shown here).

In the present paper, we report a new method that has
been developed for obtaining more accurate past MEs, which
is the basis for suitable operational use of online model cor-
rection at relatively low computational expense. Part II of the
series will report the development of a more steady correction
formula compared to Da’s polynomial. Part I, meanwhile,
proceeds as follows: Section 2 describes the new iteration-
approach method. Section 3 reports the results from ideal-
ized experiments and batches of real experiments to illus-
trate the validity of the approach and discuss the conver-

gence of the method. Section 4 compares linearly estimated
model correction based on two months of iteration results to
the forecast errors of the Global and Regional Assimilation
and Prediction System (GRAPES). Section 5 concludes the
paper.

2. Approach to estimate model error

2.1. Iteration approach

Following Xue et al. (2013), the NWP model can be con-
sidered as the following initial value problem:

∂ψψψ
∂ t

= MMM(ψψψ) , (1a)

ψψψ|t=0 = ψψψ0 , (1b)

where ψψψ is the vector form of prognostic variables includ-
ing wind, temperature, moisture and pressure; and MMM is the
model operator. Equation (1b) is the initial condition. Sup-
posing there exists an unknown tendency term EEE (ME) to
make the model exact, the traditional NWP model, Eq. (1a),
can be rewritten as an inverse problem. This unknown ten-
dency term can be considered as the overall effect of differ-
ent sources of model imperfection. To solve the inverse NWP
problem, the true states of the atmosphere in the past are nec-
essary, which could be replaced by observations or analyses.
This inverse problem is written as:

∂ψψψ
∂ t

= MMM(ψψψ)+EEE , (2a)

ψψψ|t=0 = ψψψ0 , (2b0)
ψψψ|t=−δ = ψψψ−1 , (2b1)
· · · · · ·
ψψψ|t=−nδ = ψψψ−n . (2bn)

where ψψψ0,ψψψ−1, · · · ,ψψψ−n, represent the true states at the past
time iδ , and δ is the time interval. We further discretize
EEE into series of datasets and denote EEEi (i = −n,−(n −
1), · · · ,−1) as the ME in the past interval between iδ and
(i+1)δ . Vannitsem and Toth (2002) examined the short-term
model error dynamics using a low-order chaotic dynamical
model, and their analysis indicated that, in light of the char-
acter of the model error sources (limited to white noise or an
Ornstein–Uhlenbeck process), the mean-square error follows
either a linear or a quadratic evolution in short-term simula-
tion. Therefore, the ME is assumed as a constant or linearly
dependent on time in this study. The problem now is how to
determine EEEi for an existent NWP model. Usually, an exact
EEEi is barely obtainable because the NWP model is a com-
plex nonlinear system. Here, we have designed a technique
to estimate EEEi through an iterative method. We define an ap-
proximate value marked as EEEi. By iteration, it is expected
that EEEi converges to EEEi. For brevity, the following discussion
focuses on one prognostic variable of the model equation at
the space-discretized point without loss of generality. With
Ei, the NWP model in the interval between iδ and (i + 1)δ
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can be written in the following form:

∂ψ
∂ t

= MMM(ψ)+Ei . (3)

With the first guess of ME labeled as Ei,0 and the remain-
der marked as E ′

i,0, so that Ei = Ei,0 + E ′
i,0, Eq. (3) can be

rewritten as
∂ψ
∂ t

= MMM(ψ)+Ei,0 +E ′
i,0 . (4)

Integrating Eq. (4) from iδ to (i+1)δ , we find that

ψ̂i+1 − ψ̂i =
∫ (i+1)δ

iδ
MMM1(ψ̂)dt +

∫ (i+1)δ

iδ
E ′

i,0dt . (5)

Here, ψ̂i [i = −n,−(n− 1), · · · ,−1] and ψ̂ are the truths on
discretize observation time and arbitrarily time respectively,
and MMM(ψ̂)+Ei,0 is marked as MMM1(ψ̂). However, it is impos-
sible to know ψ̂ at every time step between iδ and (i + 1)δ ,
so Ei,0 cannot be calculated directly. Instead, we hope the
simulation ψ will converge to the truth ψ̂ , so Eq. (5) can be
approximately expressed as

ψ̂i+1 − ψ̂i ≈
∫ (i+1)δ

iδ
MMM1(ψ)dt +

∫ (i+1)δ

iδ
E ′

i,0dt . (6)

Integrating the revised model MMM1(ψ), we find that

E ′
i,0 ≈

1
δ

(ψ̂i+1 − ψ̂i)− 1
δ

(ψi+1,1 − ψ̂i) =
1
δ

(ψ̂i+1 −ψi+1,1) .

(7)
Here, ψi+1,1 is the prediction of the revised model MMM1(ψ).
Therefore, we make Eq. (4) closed. If the forecast of Eq. (4)
is exact enough, Ei,0 + E ′

i,0 is the ME in the interval. Other-
wise, denoting Ei = Ei,1 +E ′

i,1 = Ei,0 +E ′
i,0 +E ′

i,1 as the ME
after the first iteration, a similar manipulation of Eqs. (5), (6)
and (7) yields a recursive formula as

Ei = Ei,0 +E ′
i,0 +E ′

i,1 + · · ·+E ′
i,n + · · ·

= Ei,0 +
1
δ

(ψ̂i+1 −ψi+1,1)+
1
δ

(ψ̂i+1 −ψi+1,2)+ · · ·

+
1
δ

(ψ̂i+1 −ψi+1,k)+ · · · , (8)

where

Ei,k = Ei,k−1 +E ′
i,k−1 = Ei,k−1 +

1
δ

(ψ i+1 −ψi+1,k)

is the ME after the kth iteration,

E ′
i,k−1 =

1
δ

(ψ̂i+1 − ψ̂i)− 1
δ

(ψi+1,k − ψ̂i) =
1
δ

(ψ̂i+1 −ψi+1,k)

is the corresponding remainder, and ψi+1,k is the forecast of

MMMk(ψ) = MMMk−1(ψ)+Ei,k−1 .

Therefore, the iterative equation is

Ei,k = Ei,k−1 +
1
δ

(ψ̂i+1 −ψi+1,k) . (9)

It is clear that the process described by Eq. (9) is the clas-
sical first-order stationary iterative method, except that ψi+1,k
is computed by the NWP model integration. As indicated by
the recursive formula, Eq. (8), the process of iteration actu-
ally means that the forecast error (the difference between the
model forecast and the truth) plays a role as a nudging term to
make the forecast converge to the truth, step by step. Theoret-
ically, as an iterative method, it should be demonstrated that
the iteration can be convergent in a unique value. However,
it is difficult to demonstrate this theoretically, because ψi+1,k
is calculated by a highly nonlinear NWP system. Instead,
for the application value of this method, we have determined
the convergence of the iteration by idealized and real tests
directly.

2.2. Application in a global model
2.2.1. Model description

In this study, the global forecast system of the Global/
Regional Assimilation and Prediction System (GRAPES-
GFS) was employed. GRAPES was designed as a unified
NWP system for both research and operational applica-
tions. The main features of GRAPES can be summarized as:
(1) Fully compressible governing equations with options of
hydrostatic or non-hydrostatic approximation; (2) A semi-
Lagrangian and semi-implicit time-stepping scheme; (3)
Height-based terrain following vertical coordinate; (4) Full
physical package; (5) 3DVAR/4DVAR (three-dimensional
variational/four-dimensional variational) for data assimila-
tion; (6) Modularized and parallelized code architecture; (7)
Latitude–longitude grid (Chen and Shen, 2006; Xue, 2006;
Zhang and Shen, 2008).

A rapid radiative transfer model is used for the short-
wave and longwave radiation from Atmospheric and Envi-
ronmental Research (Mlawer and Clough, 1998; Iacono et al.,
2000; Iacono et al., 2008). The convective parameterization
uses a one cloud type Arakawa–Schubert convection scheme
(Pan and Wu, 1995; Han and Pan, 2011), whereas the mi-
crophysics scheme adopts the WRF single-moment six-class
method (Rutledge and Hobbs, 1983; Hong et al., 2004). The
common land model (COLM) is used for the surface pro-
cesses (Dai et al., 2003; Dai et al., 2004) and an implicit
approach for vertical flux divergence for the planetary bound-
ary layer processes (Troen and Mahrt, 1986; Hong and Pan,
1996).

The prognostic variables of GRAPES-GFS include hori-
zontal velocity (u and v), vertical velocity (�w) in the hight-
based terrain following vertical coordinate system, perturba-
tion from reference potential temperature θ ′, Exner pressure
perturbation Π′, and water substances.

2.2.2. Application to estimate model error of GRAPES-GFS

As mentioned previously, iteration needs the true states
of the atmosphere, which are impossible to obtain. Hence,
a surrogate has to be sought for the truth. The observation
is what most resembles the truth, but it first has to be in-
terpolated into the model grids and converted to the model
variables for the application of iteration. This will inevitably
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involve interpolative errors and bring problems for use com-
pared with analyses, which are assimilated from observations
and model simulations by model dynamics. Although ana-
lytical errors are inevitably embodied in analyses, it is most
economical and practical to employ an analysis dataset. Fol-
lowing Danforth et al. (2007), the initial data and verification
data used in this study were NCEP (National Centers for En-
vironmental Prediction) FNL (final) data. These NCEP FNL
Operational Global Analysis data are on 1◦ × 1◦ grids pre-
pared operationally every six hours. This product is from the
Global Data Assimilation System, which continuously col-
lects observational data from the Global Telecommunications
System, and other sources, for many analyses. The analyses
are available at the surface and at 26 levels from 1000 hPa
to 10 hPa. Variables include surface pressure, sea level pres-
sure, geopotential height, temperature, sea surface tempera-
ture, soil state variables, ice cover, relative humidity, horizon-
tal winds, vertical motion, vorticity and ozone. The NCEP
RTG SST (real-time global surface sea temperature) analysis
dataset is used to drive GRAPES-GFS with a 1◦ × 1◦ hori-
zontal resolution.

The model initialization module was employed to inter-
polate and convert the analyses into the variables on the
GRAPES-GFS grids. Due to the credibility problem of ver-
tical velocity in observations or analyses, the iteration will
take no account of the vertical velocity. Additionally, there
are several water substances in GRAPES-GFS (such as cloud
water, rain water and ice crystal) and only one prognostic
variable (relative humidity) in FNL analyses. Therefore, the
iteration described above applied in GRAPES-GFS involved
forecast variables of u, v, θ ′ and Π′. Given the model fore-
cast and the verification, the revised ME could be calculated
by running a specific module. The model resolution was set
to 1◦×1◦ and the model time step to 10 minutes. Figure 1 is a
flow chart of the iteration process, which can be summarized
as involving the following steps:

(1) Integrate the model and determine the exit condition.
The model forecast error (difference between model forecast
and analysis) would be a good index to judge the condition
and, sequentially, a critical value is necessary. Instead, the
iterative step can be another index to determine the exit con-
dition. For simplicity, 20 iterative steps were set as the exit
condition in this study.

(2) Obtain the first guess of ME Ei. If the exit condition
is not satisfied, the ME should be calculated. As the first step
of the iteration, the first guess of ME needs to be provided.

One approach is the so-called trapezoidal method (Xue et al.,
2013), which uses the equation

Ei,0=(ψ̂i+1−ψ̂i)/δ t−[(ψi,0−ψ̂i)/dt +(ψi+1,0−ψ̂i+1)/dt]/2

to calculate Ei,0. Here, (ψi,0− ψ̂i)/dt and (ψi+1,0− ψ̂i+1)/dt
are the model tendencies of the first model step at the cor-
responding time iδ and (i + 1)δ . The more direct approach
considers the time weighted forecast error at time (i+1)δ as
Ei,0, i.e.,

Ei,0 = (ψi+1,0 − ψ̂i+1)/δ t .

(3) Apply the ME in the model. Ei,0 is actually a database
including the model error of u, v, θ ′ and Π′ at every model
grid, which need to be input before model integration. Then,
for an arbitrary step, Ei,0 is taken as a tendency term and mul-
tiplied by the model step interval to update the corresponding
prognostic variables after a full integration step (i.e., dynam-
ics, physics and filter etc.).

(4) Continued iteration. With the new model output at
(i+1)δ , if the exit condition is not satisfied, the new ME can
be calculated based on Eq. (9) and then repeat step (3).

(5) Exit. If the exit condition is satisfied, the iterative loop
is exited.

3. Discussion of the convergence problem

3.1. Idealized tests
Before application, the convergence of the iteration

should first be confirmed. To fulfill this objective requires
the discussion of two uncertainties. The first is confirming
the approaches to calculate the first guess of the ME in step
(1), and the second is how to choose the form of the ME in
step (2).

For the second issue, the form of the ME should be based
on the real model forecast error evolution in a short interval
(such as δ = 6 h). As mentioned earlier, the mean-square
error initially follows either a linear or a quadratic evolution
in the short-term dynamics of ME using a low-order chaotic
dynamical model (Vannitsem and Toth, 2002). Therefore, the
ME was assumed as constant or a linear form here on. For the
constant case, the value of the first guess could be calculated
by the direct method and trapezoidal method discussed pre-
viously, and the updated values were based on Eq. (9). For
the linear case, the form was taken as A× t, where t is time
and A is a coefficient. The integrated effect of the linear term
should be equivalent to that of the constant term. Therefore,

Fig. 1. Flow chart of the iteration method.
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the coefficient A could be obtained through
∫ (i+1)δ

iδ
Aktdt =

∫ (i+1)δ

iδ
Ei,kdt ,

where k is an arbitrary iterative step and Ei,k can be calculated
in the same way as in the above constant case. For the pur-
pose of convergence discussion, it was necessary to perform
some idealized experiments, the details of which are provided
in Table 1. These tests were all idealized in order to obtain
the proper first guess of the iteration and form of the ME ap-
plied in the model. All the tests were initiated using NCEP
1◦ ×1◦ FNL data at UTC 0000 6 June 2009, and the iteration
intervals were 6 h.

Test1 was designed to determine the validity of the trape-
zoidal method, in which the first guess of the ME was pro-
duced by the trapezoidal method. In addition, the model
forecast was considered as the truth, meaning the ME should
converge to zero if the trapezoidal method was valid. In
Test2 and Test3, artificial model error sources were intro-
duced in GRAPES-GFS, and both constant and linear forms
were tested. In Test2, the constant form of the ME was em-
ployed, while the linear form was used in Test3. These two
tests were designed in order to choose a proper form of the
ME, countering either constant or linear error source. In
Test2 and Test3, the first guesses of the MEs all employed
the direct method described in the previous section.

The forecast errors were calculated based on the differ-
ence between the model forecast and the truth (or analysis)
to examine the performance of the iteration. Figure 2 shows
the mean absolute forecast errors of u, v, θ ′ and 1000 ×Π′
at hour 6 with iteration steps for the designed tests. Note
that the mean absolute forecast errors of the four variables
increased with the iterative steps, as shown in Fig. 2a. Ac-
tually, some other tests have also shown the same results for
the trapezoidal method, whatever form of the ME is chosen
(not shown). These results indicate that the iteration is diver-
gent if the trapezoidal method is employed to obtain the first
guess. Similarly, applying the ME as a constant term into the
model also made the iteration divergent, both for the constant
form of error source (shown in Fig. 2b) or the linear form
(not shown). Conversely, applying the ME as a linear form
resulted in the iteration being convergent against the constant
form of error source (not shown) or the linear form (Fig. 2c).
The reason might be that the model needs to gradually adapt
the ME from zero to the actual magnitude.

Based on the theory of limit, if only one maximum (or
minimum) point exists, the numerical solution will be con-
vergent to the solution no matter what the first guess is; while
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Fig. 2. Mean absolute forecast errors of the field variables u (m
s−2), v (m s−2), θ ′ (◦C) and 1000 ×Π′ at 6 hour: (a) Test1; (b)
Test2; (c) Test3.

there are several maximum (or minimum) points, the first
guess should influence the results. For choosing the first
guess in this study, it should represent the model error as ac-
curately as possible. Theoretically, the trapezoidal method
recommended by Da (2011) is more reasonable, but it is
based on the two model tendencies at the beginning and end
of the model integration according to the formula, which may
introduce too many errors. We have examined the first guess
using the trapezoidal method, and the value of it was found to

Table 1. Description of the tests.

Test Verification Model error ME First guess: Ei,0

Test1 Model forecast No error Constant Ei,0 = (ψ̂i+1 − ψ̂i)/δ t − [(ψi,0 − ψ̂i)/dt +(ψi+1,0 − ψ̂i+1)/dt]/2
Test2 Model forecast Constant Constant Ei,0 = (ψi+1,0 − ψ̂i+1)/δ t

Linear Constant Ei,0 = (ψi+1,0 − ψ̂i+1)/δ t
Test3 Model forecast Constant Linear Ei,0 = (ψi+1,0 − ψ̂i+1)/δ t

Linear Linear Ei,0 = (ψi+1,0 − ψ̂i+1)/δ t
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be unreasonable (not shown). Another technical problem is
how to apply the ME in the model. We assumed the form of
the ME as a constant in a specific interval, as described in the
previous section, but it caused the iteration to be divergent.
Applying the ME as a constant, the NWP model was im-
pacted at the very beginning of the model integration, which
was unable to make the complicated and nonlinear model ad-
just to the outside influence immediately. Meanwhile, using
the linear form of the ME to obtain the first guess of the ME,
the forecast errors were linearly distributed in the integrated
interval, which caused the model to be gradually influenced
by the ME. Therefore, the iteration became converged. In
summary, using the trapezoidal approximation for the first
guess or applying the ME as a constant term makes the itera-
tion divergent, while using the linear form of the ME together
with the direct approach to obtain the first guess of the ME
allows the iteration to become converged.

3.2. Real tests in GRAPES-GFS
In this part, results are reported from carrying out iter-

ation experiments with the implementation of the ME ten-
dency term into GRAPES-GFS for July–August (JA) 2009
and January–February (JF) 2010. The iteration of each case
was carried out at every six hours. Again, the initial data and

verification data were from the NCEP 1◦ × 1◦ FNL dataset.
The ME was set in its linear form and the first guess used
in the direct way. Instead of setting a critical iterative value,
all cases were simply iterated for 20 steps. That meant there
were four tests per day, and each test iterated 20 times. Every
iteration step needed to integrate the model for 6 h. To verify
the performance of the iteration, the forecast errors at hour 6
were used, which were the differences between the forecasts
at hour 6 and NCEP analyses.

The global mean absolute forecast errors of the field vari-
ables u, v, θ ′ and 10000×Π′ at hour 6 for JA 2009 and JF
2010 are shown in Fig. 3. The bunches of lines represent hor-
izontal velocity, perturbation from reference potential tem-
perature and Exner pressure perturbation. Each line, which
is related to a single test’s single variable, tends towards zero
as the iteration step increased. Clearly, the iterations of all of
the cases were convergent for all the variables in the experi-
ments of JA 2009 and JF 2010. The evolution of the global
mean absolute forecast errors of u, v, T and Z at hour 6 at
500 hPa before and after iteration are also shown (Fig. 4).
The errors reduced to about 10% of their original value after
20 steps of iteration for both JA 2009 and JF 2010. It is in-
teresting that the forecast errors before iteration remained flat
with an obvious diurnal cycle evolution for both JA 2009 and

(a) (b)

Fig. 3. Mean absolute forecast errors of the field variables u (m s−2, black), v (m s−2, black), θ ′ (◦C, green)
and 10000 ×Π′ (blue) at hour 6 involved in the iterative steps for (a) JA 2009 and (b) JF 2010.

Fig. 4. Evolution of mean absolute forecast errors of u (m s−2, red), v (m s−2, blue), T (◦C, green) and Z (gpm,
black) at hour 6 at the 500 hPa pressure surface before iteration (upper solid lines) and after iteration (lower
dotted lines) for (a) JA 2009 and (b) JF 2010. The abscissa shows the date.
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JF 2010. This implies that, besides climatological system-
atic errors, the component of the MEs related to the diurnal
cycle should not be ignored. Besides systematic errors, the
diurnal errors were reduced substantially after iteration. The
amplitude decreased greatly compared to the original mean
error.

To support the conclusion of iterative convergence, Fig.
5 shows the mean difference of wind at 500 hPa between the
forecasts of GRAPES-GFS at hour 6 and NCEP FNL for JA
2009. Note that the magnitude of the errors after iteration
has been amplified 10 times, but the errors are the same size
as those of the original errors. The results of other variables
were similar (not shown). This means that the errors of each
variable at the isobaric surface were convergent by iteration.
The zonally averaged latitude–height cross sections of errors
of u, v and T of GRAPES-GFS for JA 2009 are shown in
Fig. 6. Similarly, the magnitude of the errors after iteration
has again been amplified 10 times. Apparently, the zonally
averaged errors were all convergent by iteration for vertical
sections. The results for JF 2010 were also similar to the re-
sult for JA 2009 (not shown).

4. Validity and representativeness of the MEs

Based on the results reported in section 3, the conver-
gence of iteration relating to all variables of the cases was
confirmed for the isobaric surface and vertical sections, and

the forecast errors at hour 6 were reduced to 10% of their
original value after 20 steps of iteration. To understand
whether the MEs can represent the model forecast errors, it
was necessary to compare the mean MEs to the mean forecast
errors. As we know that the MEs are a kind of model ten-
dency, the mean MEs therefore need to multiply time to esti-
mate the off-line model forecast error corrections. As pointed
out by Jung and Tompkins (2003) and Jung (2005), system-
atic errors approximately evolve linearly in short-term fore-
casts; therefore, we estimated the error correction by linearly
multiplying time to the 2-month mean value of MEs. In this
section, the results from performing offline comparisons be-
tween the mean error corrections estimated by MEs and mean
forecast errors are reported.

Figure 7 shows the mean forecast errors and estimated er-
ror corrections of 13-model-level 10000 × Π′ for JF 2010.
Note that GRAPES-GFS underestimates the pressure over
high-latitude regions and the Arctic, but pressure over low-
latitude regions is over-estimated. That means the pressure
gradient along the equator to pole was underestimated. More-
over, with this pressure error pattern, the errors tended to in-
crease linearly. It should be noted that the patterns of the
mean forecast errors and estimated error corrections were
similar but the signs were opposite. For example, the positive
forecast errors corresponded to negative estimated correction
in the Arctic region, and the negative forecast errors were
related with the positive estimated correction in the midlati-

Fig. 5. Mean wind differences (u and v, m s−2) between model forecasts of GRAPES-GFS at hour 6 and NCEP
FNL before iteration (a, c) and after iteration (b, d) at the 500 hPa pressure surface for JA 2009. The errors after
iteration have been amplified by 10.
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Fig. 6. Zonally averaged latitude–height cross sections of errors of u (m s−2), v (m s−2) and T (◦C) between model forecasts
of GRAPES-GFS at hour 6 before iteration (a, c, e) and after iteration (b, d, f) for JA 2009. The errors after iteration have been
amplified by 10. The vertical axis shows pressure.

tudes. Figure 8 presents the zonally averaged latitude–height
cross sections of forecast errors and estimated error correc-
tions of u, v, θ ′ and 10000×Π′ at hour 6 for JF 2010. The
patterns of the forecast errors and estimated errors matched
well but the signs were also opposite, except for the errors
of v and Π′ at the boundaries of some regions. These results
indicate the forecast errors can be expected to be offset by in-
troducing online error correction into the model integration.

However, the estimated error corrections increased quicker
than the forecast errors (Figs. 7 and 9). Figure 9 shows the
forecast and estimated root-mean-square error evolution of
Π′ and θ ′ at the 13th model level for JF 2010. The root-
mean-square errors evolved linearly for Π′. It can be seen
that the estimated root-mean-square errors of Π′ increased
quicker than the systematic errors by about fivefold in both
hemispheres, and about tenfold in the tropics. As for θ ′, the
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Fig. 7. Mean forecast errors and estimated mean error corrections of 10000 ×Π′ at hour 6 at
the 13th model level for JF 2010. Mean forecast errors are the mean differences between model
forecasts at hour 6 and analyses, while the estimated mean error corrections are calculated by
linearly multiplying time on the mean MEs.
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Fig. 8. Zonally averaged latitude–height cross sections of forecasts errors (left column) and estimated
error corrections (right column) of u (m s−2), v (m s−2), θ ′ (◦C) and 2000 ×Π′ at hour 6 for JF 2010.
The vertical axis shows the model level.
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Fig. 9. Forecast errors and estimated error correction evolution of (a, b) 10000 ×Π′ and (c, d) θ ′ (◦C) for JF 2010.

error evolution rates were linear during the first two days, and
then decreased slightly after the two-day forecast. Similar to
Π′, the estimated error rates of θ ′ were also steeper than the
forecast error’s. These results suggest that the patterns of the
estimated model error corrections can match well to the mean
forecast errors but the linear estimation should be weighted in
real model correction.

5. Conclusions and discussion

To improve NWP model performance, an unknown ten-
dency term (ME) was introduced into GRAPES-GFS, which
was presumed to represent the imperfection of the NWP
model. This part (Part I of this series) of the study presents
an iterative method for obtaining MEs in the past to provide
the basis for further uses. These MEs were compared with
model forecast errors and were expected to offset the system-
atic MEs. The following key conclusions can be drawn:

(1) Having developed this new iteration method to obtain
the MEs in past intervals, and having tested its convergence in
idealized experiments, the indication was that using the linear
form of the ME together with the direct method for the first
guess caused the iteration to be convergent.

(2) Batches of iteration test results indicated that the fore-
cast errors at hour 6 were reduced to 10% of their original

value after 20 steps of iteration.
(3) By comparing the error corrections estimated by MEs

to the mean forecast errors, the patterns of estimated errors
were considered to agree well with those of the forecasts, but
the linear growth rates of the estimated errors were sharper
than those of the forecasts. Therefore, it can be expected
that a larger proportion of the forecast errors will be off-
set by properly introducing the estimated ME correction into
GRAPES-GFS.

The purpose of this study was to provide a method and
basis for estimating the MEs in past intervals, to be used to
correct model forecasts. Since forecast errors are composed
of different components of different frequencies, they should
be decomposed into different components and dealt with sep-
arately. In this study, the systematic errors were the focus,
which could be canceled out by introducing the correspond-
ing error correction into the model for another study. How-
ever, it should also be noted that the forecast errors at hour 6
evolved flatly with clear diurnal fluctuation (Fig. 4). This im-
plies that, except for long existent climatological systematic
errors, the errors relating to the diurnal cycle and initial state
cannot be ignored. Therefore, spectral analysis is required for
the forecast errors and different strategies will be introduced
associated with different components of errors.
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