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ABSTRACT

An initial conditions (ICs) perturbation method was developed with the aim to improve an operational regional ensemble
prediction system (REPS). Three issues were identified and investigated: (1) the impacts of perturbation scale on the ensemble
spread and forecast skill of the REPS; (2) the scale characteristic of the IC perturbations of the REPS; and (3) whether the
REPS’s skill could be improved by adding large-scale information to the IC perturbations. Numerical experiments were
conducted to reveal the impact of perturbation scale on the ensemble spread and forecast skill. The scales of IC perturbations
from the REPS and an operational global ensemble prediction system (GEPS) were analyzed. A “multi-scale blending”
(MSB) IC perturbation scheme was developed, and the main findings can be summarized as follows: The growth rates
of the ensemble spread of the REPS are sensitive to the scale of the IC perturbations; the ensemble forecast skills can
benefit from large-scale perturbations; the global ensemble IC perturbations exhibit more power at larger scales, while the
regional ensemble IC perturbations contain more power at smaller scales; the MSB method can generate IC perturbations
by combining the small-scale component from the REPS and the large-scale component from the GEPS; the energy norm
growth of the MSB-generated perturbations can be appropriate at all forecast lead times; and the MSB-based REPS shows
higher skill than the original system, as determined by ensemble forecast verification.
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1. Introduction

The errors related to initial conditions (ICs), numer-
ical models, as well as the chaotic nature of the atmo-
sphere (Lorenz, 1969), lead to great uncertainty in numer-
ical weather prediction. It is desirable for numerical weather
prediction to describe the evolution of the model atmosphere
as a probability density function, rather than provide a deter-
ministic result. It was in this context that ensemble prediction
theory (Leith, 1974) was proposed. Ensemble prediction sys-
tems were originally implemented in the early 1990s at the
National Centers for Environmental Prediction (NCEP; Toth
and Kalnay, 1993) and at the European Center for Medium-
Range Weather Forecasts (ECMWF; Molteni et al., 1996).
Various ensemble perturbation schemes have since been
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developed to address the uncertainties in global ensemble
prediction systems (GEPSs) related to ICs, such as singular
vectors (SVs; Buizza and Palmer, 1995; Molteni et al., 1996),
breeding growing modes (BGMs; Toth and Kalnay, 1993;
1997) and perturbed observation (Houtekamer et al., 1996;
Buizza et al., 2005). Furthermore, with an increased empha-
sis on representing the analysis probability density function
in the initial analysis state, the ensemble transform Kalman
filter (ETKF; Wang and Bishop, 2003; Bowler et al., 2008;
Ma et al., 2008), ensemble transform, and ensemble trans-
form with rescaling (Wei et al., 2008), have been frequently
used in recent years.

The development of regional ensemble prediction lags
behind that of global ensemble prediction. Nevertheless,
the need for regional ensemble prediction systems (REPSs)
to provide mesoscale severe weather prediction is clear, so
increasing numbers of related studies have been conducted
(e.g., Du and Tracton, 2001; Grimit and Mass, 2002; Duan et

© Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag Berlin Heidelberg 2015



1144 MULTI-SCALE BLENDING INITIAL CONDITION PERTURBATIONS VOLUME 32

al., 2012). As the probability distributions of various sources
of errors are complicated, it is difficult to address the uncer-
tainties in the ICs, model physics and lateral boundary condi-
tions (LBCs) of regional numerical weather prediction (Chen
et al., 2004, 2005a). An important aspect of REPS research is
exploring the effective methods to generate IC perturbations.
One possibility in this regard is to apply dynamical down-
scaling to a GEPS (Marsigli et al., 2005; Frogner et al., 2006;
Bowler et al., 2009). However, despite this method being at-
tractive for its simplicity and good performance, small-scale
uncertainties cannot be explicitly represented through down-
scaling (Wang et al., 2011). Other studies have generated IC
perturbations for REPSs by using regional versions of tradi-
tional methods (i.e., BGMs, SVs, ETKF etc.) (Stensrud et
al., 1999; Du et al., 2003; Chen et al., 2005b; Li et al., 2008;
Wang et al., 2011; Zhang et al., 2014a), and demonstrated
that these methods can generate some ensemble spread and
benefit the forecast skill of the REPS. While it remains uncer-
tain whether or not these regional IC perturbation generators
are superior to dynamical downscaling (Bowler and Mylne,
2009; Saito et al., 2011), there is no doubt that they can pro-
duce more information on small/mesoscale uncertainties, and
this information is particularly useful for the forecasting of
high-impact weather, quantitative precipitation, and local se-
vere convective weather (Chen et al., 2005b; Stensrud and
Yussouf, 2007). However, when using these regional versions
of traditional IC perturbation generators, it was found that the
mismatches in the LBCs can be a significant source of spu-
rious perturbations, and thus the use of a “blending” scheme
was proposed (Wang et al., 2011; Caron, 2013; Du et al.,
2014). This method can combine the small-scale component
from the IC perturbations of a regional ensemble with the
large-scale component from the IC perturbations of a global
ensemble, and has proven to be effective in ameliorating the
problem of mismatch in the LBCs (Caron, 2013).

The Numerical Weather Prediction Center of the China
Meteorological Administration (CMA) has been routinely
running a REPS since 2014. The system calculates IC per-
turbations by using a regional version of ETKF. Although
this REPS has proven to be feasible in providing probabilis-
tic forecasts of mesoscale phenomena, the system still faces
several obstacles, such as a lack of ensemble spread, obvious
systematic bias, and imperfect prediction of mesoscale uncer-
tainty (Zhang et al., 2014b). Therefore, further improvement
is needed. Bowler et al. (2009) reported that using downscal-
ing, rather than the regional ETKF approach, to produce IC
perturbations for REPSs can achieve better ensemble spread
and forecast skill. As downscaling can create IC perturba-
tions with more information at large scales, while regional
perturbation generators can create IC perturbations with more
information at small scales (Bowler and Mylne, 2009), ques-
tions arise as to whether the perturbation scale is an important
factor, or to what extent different scale perturbations can af-
fect the REPS’ spread and forecast skill. Addressing these
issues could lead to improvements in current REPSs.

In this study, we examine the impacts of perturbation
scale on the ensemble spread and forecast skill of a REPS.

Meanwhile, the scale characteristics of the IC perturbations
generated by an operational ETKF are studied. We also ex-
plore the benefits of adding more large-scale information into
the REPS IC perturbations, leading to the development of a
multi-scale blending (MSB) perturbation method. The pa-
per is structured as follows: section 2 introduces the model
and data; section 3 compares the results of different numer-
ical experiments that used different initial perturbation scale
settings; and section 4 demonstrates the positive impacts of
the MSB perturbation method on the ensemble spread and
forecast skill of the REPS. A conclusion and discussion are
provided in section 5.

2. Model and data

2.1. The regional ensemble prediction system
The REPS of the CMA, which has been running op-

erationally since May 2014, was constructed based on
the regional version of the Global/Regional Assimilation
and Prediction Enhanced System (GRAPES) model (i.e.,
GRAPES Meso; Chen and Shen, 2006). This REPS (referred
to as GRAPES-REPS hereafter) aims to provide probabilistic
forecasts of mesoscale severe weather, such as intense pre-
cipitation and strong convection, as well as the tracks and
intensity of tropical cyclones.

2.1.1. Operational configuration

The GRAPES Meso model runs on a regular latitude–
longitude grid with a resolution of 0.15◦ in the horizontal
direction and 33 levels in the vertical. The model domain
of GRAPES-REPS is set to (15◦–64.35◦N, 70◦–145.15◦E)
(Fig. 1), and the background data and LBCs are provided
by a T639 global ensemble prediction system (T639-GEPS).
GRAPES-REPS consists of 15 members, including a control
run and 14 perturbed ensemble members, and is initiated at
0600, 1200, 1800 and 0000 UTC each day. Five variables
(zonal wind u, meridional wind v, potential temperature θ ,
Exner pressure π , and specific humidity q) in the ICs are
perturbed using the ETKF scheme. For each initiation time,
the system provides 6 h forecast perturbations for the next

Fig. 1. GRAPES-REPS domain and model topography (units: m).
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ETKF cycle; specifically, for the 1200 and 0000 UTC initia-
tion times, the model integrates to 72 h to provide ensemble
prediction products.

2.1.2. Operational scheme

GRAPES-REPS generates IC perturbations via the ETKF
method, while the model uncertainty is represented by multi-
physics. The LBCs of GRAPES-REPS are perturbed through
coupling with T639-GEPS.

The ETKF scheme (Wang and Bishop, 2003), in gener-
ating IC perturbations, is based on the hypothesis that the
forecast covariance matrices and analysis covariance matri-
ces can be represented by forecast perturbations XXX f and anal-
ysis perturbations XXXa. The relationship between XXXa and XXX f is
established after solving the optimal data assimilation equa-
tion. As a result, the forecast perturbation can be transformed
to the analysis perturbation through a transformation matrix
TTT :

XXXa = XXX fT Π , (1)

where forecast perturbations are listed as columns in the ma-
trix XXX f and analysis perturbations are listed as columns in the
matrix XXXa. TTT is the transformation matrix and Π is a scalar
inflation factor to inflate the analysis perturbation amplitude
so as to ensure that the 6 h forecast ensemble variance is con-
sistent with the control forecast variance (Wang and Bishop,
2003; Wang et al., 2004).

The model uncertainty of GRAPES-REPS is represented
by multi-physics (Houtekamer et al., 1996; Chen and Xue,
2009). GRAPES Meso contains multiple physical process
parameterizations, and different options for each physical
process are provided. Since the microphysics and cumulus
parameterization are closely related to precipitation, and the
planetary boundary layer is critical for the transport of mo-
mentum and heat fluxes, the scheme of multi-physics is com-
bining different options of the three processes randomly.

2.2. Experimental data
2.2.1. The T639-based global ensemble prediction system

The background states and LBCs of GRAPES-REPS are
provided by T639-GEPS. The resolution of this GEPS is
T639L60 (spectral triangular T639 with 60 vertical levels,
corresponding to 30 km resolution), with ICs perturbed us-
ing BGMs. The BGM cycle interval is 12 h, initiated at 0000
and 0012 UTC each day with a forecast lead time of 15 days.
A single control forecast is also initiated at 0006 and 0018
UTC to meet the requirements of GRAPES-REPS in terms of
the background states and LBCs at these two initiation times.
Model uncertainties are simulated using a stochastic physical
parameterization scheme (Buizza et al., 1999).

2.2.2. Data for verification

The T639-GEPS analysis states corresponding to each
forecast lead time are interpolated to a common regular
0.15◦ ×0.15◦ grid to verify the variables at different pressure
levels, while the precipitation is verified against observational
accumulative precipitation from 2507 meteorological stations
in China.

3. Numerical experiments with multi-scale IC

perturbations

To investigate whether or not the perturbation scale is an
important factor affecting the perturbation growth and fore-
cast skill of the REPS, the results from a series of numeri-
cal experiments that used different IC perturbation scales are
studied.

3.1. Construction of IC perturbations with different scales
A “scale selective perturbation generator”, which can

construct IC perturbations with a particular scale, was devel-
oped with the following steps:

Step 1: Generate a series of uniform random numbers
ri between −1.5 and 1.5 using a random number generator
(Buizza et al., 1999).

Step 2: Divide the regular grid domain into small do-
mains (D1,D2, . . . ,Di) of the same size (the size of the small
domains corresponds to the required scale in a test), and
then assign the random number ri derived from Step 1 to
the conjunctional grid points between the small domains as
their values. Meanwhile, the values of grid points within the
small domains are obtained through bilinear interpolation,
and thereby a random number grid state characterized by a
particular scale is formed, with values of all grids distributed
smoothly.

Step 3: Generate seven (half of the number of perturbed
members) two-dimensional random grid states via Step 2, and
then multiply the random grid states by the statistical analysis
error of the five variables (u, v, θ , π and q) at different model
levels to obtain seven groups of perturbations for all variables
at all levels.

Step 4: Add the seven groups of perturbations to (or sub-
tract from) the IC of the control, and then the IC perturbations
of the first (or last) seven of the 14 ensemble members are ob-
tained. Meanwhile, the IC perturbations for the 14 perturbed
members are positive–negative paired.

By using the “scale selective perturbation generator”,
three tests with different scale settings (namely, R1, R2 and
R3) were conducted. The scales for the three tests are listed
in Table 1. For all the tests in this section, the model con-
figuration was the same as the operational run. A test period
of 10 consecutive days (5–15 August 2012) was conducted.
The ensembles were initiated at 1200 UTC on each day, with
a forecast length of 72 h.

3.2. Analysis of results
The characteristics of different types of perturbations are

Table 1. Configuration of the IC perturbations for the three regional
ensemble forecast tests.

Smoothed
Perturbation with bilinear

Test scale Size of small interpolation?

R1 Smallest 1 grid space (about 15 km) No
R2 Larger 20 grid spaces (about 300 km) Yes
R3 Largest 70 grid spaces (about 1000 km) Yes



1146 MULTI-SCALE BLENDING INITIAL CONDITION PERTURBATIONS VOLUME 32

investigated. Here, we employ a total energy norm, which
is appropriate for weather forecasting and data assimilation
(Palmer et al., 1998). For one grid located at (i, j,k), the en-
ergy of the perturbation is computed from winds and temper-
ature using the approximate energy norm defined as

E(i, j,k) =
1
2
[u′2(i, j,k)+ v′2(i, j,k)]+

cp

Tr
T ′2(i, j,k) , (2)

where u′,v′ and T ′ are wind and temperature perturbations, cp
is the specific heat and Tr is the reference temperature (Wang
and Bishop, 2003; Wei et al., 2006).

Figure 2 shows the horizontal distribution of the vertically
averaged IC perturbation energy norm for the first ensemble
member. It can be seen that, although the amplitudes of the
three types of perturbations are similar, there are remarkable
differences in the horizontal distribution pattern. The per-
turbation for R1 is structured with very small scale, while
the perturbation scale for the R2 scheme is increased and the
number of perturbation centers is reduced, and the R3 scheme
presents perturbations with the largest scale and fewest cen-
ters.

To examine the vertical distributions and evolutions of the
three types of perturbations, we averaged the energy norm of
all grid points at each level. Figure 3 shows the resulting ver-
tical distribution profiles of the perturbation energy norm for
the R1, R2 and R3 ensembles. It is clear that the perturbation
growth is quite different for the three schemes. The energy
norm at all levels in the R1 ensemble is larger than that of
the other two at the initial time (00 h). For the R1 scheme,
the energy norm at 200 hPa can reach 2.3 J kg−1, while for
R2 and R3 the corresponding values are about 2.15 J kg−1.
For the 6 h forecast, the R1 scheme perturbations at most lev-
els are sharply reduced to less than 1 J kg−1, whereas for the
R2 and R3 ensembles the perturbations exhibit growth. As
the forecast lead time increases, the perturbations of the three
ensembles grow gradually. The R3 perturbations show the
largest growth, as the 36 h energy magnitude at 250 hPa is
3.6 J kg−1. For the R2 ensemble, the perturbation growth is
relatively smaller; the 36 h energy value at 250 hPa is 2.9 J
kg−1. The perturbations for R1 are smallest, as the energy at
all levels is even smaller than that at the initial time. For the
total energy norm of all three schemes demonstrated in Fig.
3, it seems that the differences at the upper levels are dom-
inated by kinetic energy, while the differences at the lower
levels are dominated by internal energy (not shown). This
is because the kinetic energy has larger magnitude at the up-
per levels and the internal energy has larger magnitude at the
lower levels.

The above result indicates that perturbations with larger
scale exhibit more adequate perturbation growth. The reason
for this behavior might be that larger scale perturbations can
easily form “organized structure”, and perturbations with this
“organized structure” can easily evolve into “flow dependent”
perturbations that can develop well with the atmospheric flow
(Toth and Kalnay, 1993). Meanwhile, smaller scale perturba-
tions are more like inertial gravity waves and are generally
decaying (e.g. Lacarra and Talagrand, 1988), and thus the

perturbation growth would be constrained. This result indi-
cates that the spread growth of the regional ensemble is sen-
sitive to the perturbation scale, with large-scale perturbations
more prone to growth.

Verification of the three ensembles was performed (not
shown). Results averaged over 10 days showed remarkable

Fig. 2. Horizontal distribution of vertically averaged IC pertur-
bation energy norm (units: J kg−1) for the first member of three
ensemble schemes of (a) R1, (b) R2 and (c) R3.
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Fig. 3. Vertical distributions of the perturbation energy norm
(units: J kg−1) of the (a) R1 scheme, (b) R2 scheme and (c)
R3 scheme. Different lines denote different forecast lead times.

differences in the spread and root-mean-square error
(RMSE). R3 maintained the largest spread at all forecast lead
times, followed by R2 and then R1. This indicates that pertur-
bations with larger scale favor the growth of ensemble spread.
As the current REPS is known for its lack of spread (Zhang et
al., 2014a), the amplified spread due to the enlarged perturba-
tion scale could also lead to RMSE reduction, thus enabling
large-scale perturbations to produce a much better ensemble
forecast. The improved probability verification scores due to
amplified perturbation scale also supported this conclusion.

4. Multi-scale blending experiment

4.1. Power spectra analysis of IC perturbations derived
from T639-GEPS and GRAPES-REPS

Because of the effect of perturbation scale on ensemble
forecast spread and forecast skill, as reported in section 3, it is

necessary to investigate the scale characteristics of GRAPE-
REPS IC perturbations generated by the ETKF. The scale
characteristics of T639-GEPS IC perturbations are also stud-
ied as comparison. The power spectra of IC perturbations
were calculated for both T639-GEPS and GRAPE-REPS us-
ing a 2-dimemsional discrete cosine transform (2D-DCT, De-
nis et al., 2002), which is suitable for spectral analysis and
spectral filtering of data in a limited area.

For a two-dimensional field f (i, j) of Ni by Nj grid points,
the direct and inverse 2D-DCT are defined as

F(m,n) = β (m)β (n)
i=Ni−1

∑
i=0

j=Nj−1

∑
j=0

f (i, j)×

cos
[

πm
(i+1/2)

Ni

]
cos

[
πn

( j +1/2)
Nj

]
, (3)

and

f (i, j) =
m=Ni−1

∑
m=0

n=Nj−1

∑
n=0

β (m)β (n)F(m,n)×

cos
[

πm
(i+1/2)

Ni

]
cos

[
πn

( j +1/2)
Nj

]
, (4)

respectively, with

β (m) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
1
Ni

m = 0

√
2
Ni

m = 1,2, . . . ,Ni −1

, (5)

and

β (n) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

√
1

Nj
n = 0

√
2

Nj
n = 1,2, . . . ,Nj −1

. (6)

Here, f (i, j) is the field value at grid point (i, j), and F(m,n)
is the spectral coefficient corresponding to the (m,n) dimen-
sional wave numbers. A 2D-DCT applied to a physical field
f (i, j) of Ni by Nj values can produce an Ni by Nj array of
F(m,n) real spectral coefficients.

In this section, the 2D-DCT is used to compute the power
spectra from two-dimensional perturbation fields. In two di-
mensions, the perturbation state p(i, j) with Ni by Nj grid
points, for a variable at one level of a member, is defined as

p(i, j) = a(i, j)−actl(i, j) , (7)

where a(i, j) is an ensemble member’s IC state and actl(i, j)
is the control analysis state. According to Eq. (3) the two-
dimensional perturbation fields p(i, j) can be decomposed
into a spectral field forming an Ni by Nj two-dimensional ar-
ray, P(m,n). Since our goal in generating spectra is to evalu-
ate the perturbation of two-dimensional fields as a function of
spatial scales, each two-dimensional wave number pair (m,n)
needs to be associated with a single-scale parameter; namely,
a wavelength λ . For a rectangular domain of Ni by Nj, we
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have

λ =
2Δ√

m2

N2
i

+
n2

N2
j

, (8)

where Δ is the grid point spacing.
Figure 4a shows all-member averaged power spectra of

500 hPa temperature IC perturbations as a function of wave-
length, with T639-GEPS downscaled to the same domain and
resolution as GRAPES-REPS. We can see that the power of
GRAPES-REPS perturbations is greater than that of T639-
GEPS perturbations at wavelengths less than 1100 km. In
particular, for scales less than 60 km (around two grid lengths
of T639 global model), there is no power for T639-GEPS
perturbations, and this is mainly because these scales cannot
be resolved by the global model. Whereas, for scales over
1100 km, more power can be found in the global ensemble,
as the maximum power can reach 40 K2 (corresponding to the
wavelength of 5000 km), while the maximum value for the re-
gional ensemble can only reach 20 K2 (corresponding to the
wavelength of 3200 km). According to the analysis in section
3, the more power at large scales may lead to a larger spread
of the global ensemble, and thus if the large-scale compo-
nent of global ensemble perturbations is introduced into the
regional ensemble, we believe that this may be beneficial to
the spread and forecast skill of the REPS.

4.2. Construction methodology for the multi-scale blend-
ing IC perturbations

Based on the above analysis, it is highly desirable to ob-
tain the IC perturbations that contain the optimal components
of the regional ensemble and global ensemble. Thus, we ex-
plore an MSB perturbation approach. The MSB-generated IC
perturbations can be partitioned into two parts: a small-scale
component and a large-scale component, in which the terms
“small” and “large” are reflective of the relative relationship
between the two components, and are not defined by exact
values. The small-scale component is provided by the re-
gional ensemble IC perturbations computed from the ETKF,
while the large-scale component is provided by the global en-
semble IC perturbations. A digital filter was used to conduct
the scale selection.

4.2.1. Introduction to the filter

A low-pass filter for separating horizontal meteorological
fields into different scales can be easily designed based on the
aforementioned 2D-DCT (Denis et al., 2002). The direct ap-
plication of the 2D-DCT to a physical field produces an array
of spectral coefficients in which the spatial scales are related
to the two-dimensional wave numbers (or wavelength). Low-
pass filtering can easily be performed by applying a trans-
fer function onto the two-dimensional spectral coefficients.
This is done by multiplying the spectral coefficient array by
a transfer function array with values between 0 and 1. In this
study, a gradually varying transfer function with a soft cutoff
was used to avoid Gibbs phenomena (Wang et al., 2014). The
transfer function used for the cutoff transition zone follows a

squared cosine. Figure 5 shows an example of such a transfer
function, also commonly called the amplitude response func-
tion of the filter. For this low-pass filter, all scales shorter
than “w1” km were removed and all scales larger than “w2”
km were preserved. Thereafter, an inverse transform [Eq. (4)]
was applied to rebuild the filtered physical field.

4.2.2. Filter scheme for IC perturbations of T639-GEPS
and GRAPES-REPS

To conduct the scale filter for T639-GEPS and GRAPES-
REPS, we needed to choose appropriate critical wavelengths,
“w1” and “w2”, for the transition zone. We first divided the
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scales that can be represented by both the GEPS and REPS
into several intervals: 60–120 km, 120–240 km, 240–480 km,
480–960 km, 960–1920 km, and 1920–3840 km, with the
smallest wavelength (60 km) able to be represented by T639-
GEPS and the longest wavelength (3840 km) by GRAPES-
REPS (7530 km in the latitudinal direction and 4950 km in
the longitudinal direction). By comparing the one-month av-
eraged power-scale curves (similar to Fig. 4a) of the global
ensemble and the regional ensemble, we can identify the in-
tersection scale (at scales larger than the intersection scale,
the global ensemble contains more power, while at scales
smaller than the intersection scale, the regional ensemble
contains more power). The intersection scales for different
variables and different levels are listed in Table 2. In order
to obtain the optimal combination that contains the relatively
more powerful part of the two ensembles, the critical wave-
lengths (scales) for different variables and levels were de-
termined according to the corresponding intersection scales
listed in Table 2. Hence, for a particular variable at a given
level, the transition zone was determined by the aforemen-
tioned scale interval within which the intersection scale lays.

After the transition zones for all variables at all lev-
els were determined, the 2D-DCT low-pass filter was per-
formed directly to the downscaled T639-GEPS IC perturba-
tions. This enabled the scales larger than w2 to remain un-
touched, while the scales smaller than w1 to be removed com-
pletely.

In order to obtain the small-scale component from the re-
gional ensemble IC perturbations, we also applied the 2D-
DCT low-pass filter to the GRAPES-REPS IC perturbations,
with the critical wavelengths the same as those used in the
T639-GEPS filtering. We then subtracted the filtered large-
scale component from the original IC perturbation fields to
obtain the small-scale perturbation components.

4.2.3. Method for blending the filtered perturbations

The large-scale component of the T639-GEPS IC pertur-
bations (denoted as T639-LS) and the small-scale component
of the GRAPES-REPS IC perturbations (denoted as ETKF-
SS, because the IC generation method is the ETKF) were
linearly combined with equal weight, such that the MSB

Table 2. Intersection scales of the IC perturbation power spectra for
GRAPES-REPS and T639-GEPS.

Zonal Meridional Potential Exner Specific
Level wind wind temperature pressure humidity
(hPa) (u) (v) (θ ) (π) (q)

150 80 km 80 km 350 km 500 km 120 km
200 150 km 150 km 500 km 1360 km 180 km
300 230 km 230 km 800 km 1670 km 410 km
400 250 km 250 km 950 km 1810 km 540 km
500 540 km 540 km 1140 km 1990 km 720 km
600 770 km 770 km 1540 km 2380 km 610 km
700 850 km 850 km 1790 km 2500 km 760 km
800 950 km 950 km 1990 km 3100 km 1230 km
850 1150 km 1150 km 2500 km 3520 km 1120 km
925 1500 km 1500 km 2500 km 4300 km 1610 km

IC perturbations were obtained by

IPMSB = IPT639-LS + IPETKF-SS , (9)

where IPMSB denotes the MSB IC perturbations.
Figure 6 shows 850 hPa u wind perturbation for T639-LS,

ETKF-SS and MSB. It is clear that, after the filtering process,

-5     -4     -3      -2     -1       0      1       2      3       4       5

-5     -4     -3      -2     -1       0      1       2      3       4       5

-5     -4     -3      -2     -1       0      1       2      3       4       5

Fig. 6. IC perturbations of 850 hPa zonal wind for (a) T639-LS,
(b) ETKF-SS and (c) MSB.
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only the large-scale component remains in the T639-LS per-
turbation states, while the small-scale component remains in
the ETKF-SS perturbation states. As a combination of the
two, the MSB perturbation states include information at all
scales.

4.3. Experiment results
The MSB scheme was tested in the operational GRAPES-

REPS environment and compared with the operational ETKF
scheme. The experimental model configurations for both
schemes were the same, and the experiment was carried out
over a period of one month (August 2012).

4.3.1. Spectral analysis of MSB perturbations

The power spectrum of the MSB perturbations is evalu-
ated. From Fig. 4b, we can see that the MSB perturbations
of 500 hPa temperature present significant power not only at
large scales but also at small scales. Compared with Fig. 4a,
the MSB perturbations contain the same amount of power as
GRAPES-REPS at small scales, while exhibiting the same
characteristics as T639-GEPS at large scales, with the maxi-
mum power value of 43 K2.

4.3.2. Comparison of MSB perturbations with ETKF per-
turbations

The operational test results of GRAPES-REPS posed an
issue that the ETKF generated perturbations exhibited slow
growth. Indeed, the problem of “under-dispersion” of an en-
semble system is often encountered in today’s REPS studies.
This section presents the characteristics of the MSB perturba-
tions and perturbation evolution. Perturbations derived from
the ETKF are also presented as a comparison.

Figure 7 shows the energy norm profile at all levels for
0–36 h forecast lead times. For the initial time (00 h), the
ETKF ensemble perturbation energy norm has two maximum
values: one located at the upper levels of 150 hPa, with a
value of 2.2 J kg−1, and the other located at the bottom level,
with a value of 2.17 J kg−1. We speculate that this maximum
value at the bottom mainly lies underground, and that these
are spurious perturbations that come from interpolation, espe-
cially in the plateau area. Thus, these perturbations attenuate
rapidly within short forecast lead times, and then start to grow
gradually. For the MSB, the 00 h energy norm distribution at
the upper levels is different from that of the ETKF, with a
maximum value of 3 J kg−1 at 250 hPa. This is mainly due
to the introduction of the large-scale component from GEPS.
For levels above 850 hPa, the energy norm is significantly
larger than that of the ETKF ensemble, while for levels lower
than 850 hPa, the MSB energy norm profile is similar to that
of the ETKF.

We also note that the most remarkable growth level of the
ETKF perturbations is between 200 and 300 hPa, as the 36
h energy norm at 250 hPa can reach 4 J kg−1. For MSB, the
most obvious energy norm growth can also be found at 250
hPa, where the 36 h energy norm is 4.4 J kg−1, which is more
than that of the ETKF perturbations. The growth of MSB
perturbations at other levels can also exceed that of the ETKF
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Fig. 7. Vertical distribution of ensemble mean total energy
(units: J kg−1), with different lines denoting different forecast
lead times: (a) ETKF scheme; (b) MSB scheme.

perturbations. Since a rapid amplification of analysis error
can lead to large forecast errors, it is desirable for an ensem-
ble to contain perturbations representative of likely analysis
errors that can grow quickly (Wang and Bishop, 2003). For
the ETKF perturbations in Fig. 7a, the maximum energy
norm level does not correspond well to the fastest growth
level. In other words, the most powerful perturbation within
the ETKF ensemble subspace does not point to the most rapid
growth direction, whereas the MSB method can adjust the en-
ergy norm distribution through adding more perturbations to
the levels where energy can grow quickly, and thus higher
growth rates can be found within the MSB ensemble pertur-
bation subspace.

4.3.3. Statistical verification

An attempt was made to verify the performance of the
MSB-based REPS and ETKF-based REPS using various
score measures, including the RMSE of ensemble mean, en-
semble spread, continuous rank probability score (CRPS),
and percentage of outliers.

Figures 8a–c show the one month averaged RMSE of the
ensemble mean and the ensemble spread of 500 hPa temper-
ature (T500), 500 hPa wind speed (WS500) and 10m u wind
(U10m), for ETKF and MSB, respectively. For all variables
presented, the MSB shows an improved RMSE–spread rela-
tionship compared to that of the ETKF, given that the RMSE
is smaller while the spread is larger for the MSB ensemble.
Similar results can also be observed for other variables at dif-
ferent levels, indicating that the large-scale component from
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the GEPS can benefit the growth of ensemble spread and im-
prove the ensemble mean forecast quality.

Figures 8d–f show the CRPSs of T500, W500 and U10m,
respectively. The CRPS has a negative orientation, the
smaller the better (Hersbach, 2000). It is clear that MSB
performs better than the ETKF, and such an advantage of
MSB over the ETKF increases with forecast lead time. CRPS
verification on other variables produced similar results (not
shown).

Another measure of statistical reliability is the percentage
of outliers. This is a statistic of the number of cases when
the verifying analysis at any grid point lies outside the whole
ensemble. A more reliable ensemble should have a smaller
percentage of outliers (Wang et al., 2011). It is evident that
MSB has fewer outliers than ETKF for all the variables (Figs.
8g–i), indicating a greater tendency for the observation to lie
inside the MSB ensemble.

From the above analyses, we find an overall improve-

ment of MSB over ETKF, either for upper-air or near-surface
variables. While the improvement of MSB compared to the
ETKF is not overly substantial, in the context that enhancing
the performance of a REPS through the initial perturbations
is recognized a challenging issue, even a slight improvement
is desirable. Therefore, these one-month averaged results do
indeed indicate the superiority of the MSB method.

4.3.4. A typical heavy rainfall case

A typical heavy rainfall case in summer 2012 was stud-
ied. Both ensembles were initiated at 1200 UTC 19 August
2012, with all model configurations the same as those in the
operational setting.

Figure 9 shows the observation, the heavy precipitation
probability and the spread for 24 h accumulated precipitation
from 0000 UTC 20 to 0000 UTC 21 August 2012. As shown
in the observation (Fig. 9a), this case was characterized by
a large precipitation area over central China, with the rainfall
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Fig. 8. Ensemble verification results for ETKF and MSB. Panels (a–c) show the RMSE of ensemble mean and spread
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Fig. 9. Observational state, heavy precipitation probability and spread for 24 h accumulative
precipitation: (a) observation (units: mm); (b) precipitation probability over 50 mm (units: %)
for the ETKF ensemble forecast (all magnitudes are shown as shaded, with magnitudes over
40% contoured); (c) as in (b) but for the MSB; (d) spread of 24 h accumulative precipitation
(units: mm) for the ETKF ensemble forecast; (e) as in (d) but for the MSB.

band exhibiting a west–east pattern. Figures 9b and c present
the probability of 24 h accumulated precipitation over 50 mm.
All of the probability magnitudes are represented by shad-
ing, with magnitudes over 40% highlighted by contours. For
the ETKF ensemble (Fig. 9b), the area with magnitudes of
greater than 25% covers the northwest part of Shandong, and
the high probability region (contoured) exhibits a northeast

shift relative to the observed precipitation center. Also appar-
ent is an area with probability greater than 25% located over
the north coastal region of Shandong, whereas the observed
precipitation was less than 5 mm in this region. Furthermore,
an area with probability less than 25% can be seen over the
center of Henan, but the observation shows there was a pre-
cipitation center at the same location, with a maximum value
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over 90 mm. For MSB (Fig. 9c), the locations and ranges of
high probability areas are closer to the observation. For ex-
ample, the range of probability over 40% near the border of
Shandong and Henan is enlarged, and an area with probabil-
ity over 25% emerged at the center of Henan, corresponding
well with the observation.

The spread of the ETKF ensemble (Fig. 9d) places great
emphasis on the northern part of Shandong, where the ob-
served rain band was not located, and thus such a large pre-
cipitation spread at that location is meaningless. Whereas, the
spread of the MSB ensemble (Fig. 9e) has large values over
the west of Shandong, which is close to the observed rain-
fall band. This larger spread with better locations effectively
increases the chances of MSB ensemble members to capture
the location of heavy rainfall accurately.

The performances of the two ensembles with respect to
their precipitation forecasts were examined by computing the
one month averaged Brier Score (BS) and Area of Rela-
tive Operating Characteristic (AROC), which are appropriate
for measuring the probability forecast skill of an ensemble
in terms of the quantitative precipitation forecast. The BS
measures the mean squared difference between the predicted
probability and the observed occurrence of an event, produc-
ing a value of between zero and one, with a smaller value
indicating better performance. The AROC denotes the rela-
tive relationship between the hit rate and the false alarm rate
for a threshold of an event. A higher AROC means a higher
hit rate and better probability forecast, and vice versa. Fig-
ure 10a presents the BS for both the ETKF and MSB, with
a forecast lead time of 36 h. The MSB ensemble shows bet-
ter performance than the ETKF ensemble at all precipitation
magnitudes. For heavy rain greater than 50 mm, the BS of
the MSB ensemble (0.013) exhibits 50% improvement over
that of the ETKF (0.028). Figure 10b presents the AROC for
both ensembles with a forecast lead time of 36 h. For this
AROC index, the MSB ensemble has a higher score not only
for light and moderate rain but also for intense rain. There-
fore, this result supports the conclusion obtained from the BS
analyses.

Since the spatial distribution of heavy precipitation is sen-
sitive to the atmospheric flow, more information on MSB
perturbations at larger scales can help to improve the rep-
resentation of atmospheric circulation factors in the model,
thereby improving the spatial distribution forecast of heavy
rainfall. This case study clearly demonstrates that combin-
ing the small-scale component of the regional ensemble and
the large-scale component of the global ensemble is an effec-
tive way to improve the quality of probabilistic precipitation
forecasts.

5. Conclusions and discussion

To improve the operational regional ensemble prediction
system GRAPES-REPS, three issues were investigated in this
study: (1) whether the scale of perturbations is an important
factor affecting the ensemble spread and ensemble forecast
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Fig. 10. Comparison of the probabilistic precipitation forecast
skills of the ETKF and the MSB in terms of (a) BS and (b)
AROC.

skill; (2) what the scale characteristics of GRAPES-REPS
are; and (3) whether the REPS’s skill can be improved by
adding more large-scale information to the IC perturbations.
Experiments were conducted to test the impact of pertur-
bation scale on ensemble spread growth and forecast skill;
the scale characteristics of GRAPES-REPS were investigated
and compared with that of T639-GEPS; and an MSB IC per-
turbation scheme was tested. The key findings of the study
can be summarized as follows:

A “scale selective perturbation generator” was designed
to generate IC perturbations characterized by a particular
scale. Three sets of experiments were carried out with differ-
ent perturbation scales, and the results showed that the spread
growth rate of GRAPES-REPS is sensitive to the scale of IC
perturbations. Overall, perturbations with larger scale exhibit
a higher rate of spread growth and better skill.

The power spectra of IC perturbations from T639-GEPS
and GRAPES-REPS were analyzed and compared using a
2D-DCT. Results indicated that perturbations derived from
the global ensemble show more power at larger scales, while
the regional ensemble perturbations contain more power at
smaller scales. The fact that the ETKF generated regional en-
semble perturbations lacking large-scale information led us to
consider if adding more large-scale information from a GEPS
would improve the REPS’s performance.

An MSB IC perturbation scheme was developed. This
method takes advantage of both the large-scale component
of global ensemble perturbations and the small-scale compo-
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nent of ETKF-generated IC perturbations, with the two com-
ponents obtained using a 2D-DCT filter and linearly com-
bined with equal weight. The MSB and ETKF schemes were
compared through a series of experiments in the operational
environment. Results showed that, compared to the ETKF,
the MSB scheme can generate IC perturbations with more
power at larger scales, and the power at smaller scales is also
preserved. The total energy norm of MSB perturbations can
maintain appropriate growth at all forecast lead times. Veri-
fication showed a higher skill of the MSB ensemble than the
ETKF ensemble. A comparison between MSB and ETKF in
terms of precipitation forecasting also showed better perfor-
mance of the MSB ensemble. All of the results indicated that
introducing a large-scale component into the regional ensem-
ble IC perturbations can enhance the REPS’s spread and fore-
cast skill, basically because it is this introduced large-scale
information that the regional ensemble otherwise lacks. The
findings of this study are useful for directing future upgrades
of the current REPS.

The effect of the MSB method on the mismatch in the
LBCs of GRAPES-REPS was not investigated in the present
study because the domain for GRAPES-REPS covers a wide
area including the whole of China, and so the spurious gravity
waves caused by the mismatch in the LBCs take little account
of the IC perturbations within the whole domain. Further ex-
periments that take account of the mismatch in the LBCs in a
small-domain ensemble will be carried out in the future.

As the MSB method is better at representing large-scale
uncertainties relative to the regional ETKF, we speculate that
the advantages of MSB over ETKF might be greater in cases
with stronger synoptic forcing, but less so in cases with
weaker synoptic forcing. We plan to investigate more cases
in the future to verify this hypothesis.
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