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ABSTRACT

The development and application of a regional ocean data assimilation system are among the aims of the Global Ocean
Data Assimilation Experiment. The ocean data assimilation system in the regions including the Indian and West Pacific
oceans is an endeavor motivated by this goal. In this study, we describe the system in detail. Moreover, the reanalysis in
the joint area of Asia, the Indian Ocean, and the western Pacific Ocean (hereafter AIPOcean) constructed using multi-year
model integration with data assimilation is used to test the performance of this system. The ocean model is an eddy-resolving,
hybrid coordinate ocean model. Various types of observations including in-situ temperature and salinity profiles (mechanical
bathythermograph, expendable bathythermograph, Array for Real-time Geostrophic Oceanography, Tropical Atmosphere
Ocean Array, conductivity–temperature–depth, station data), remotely-sensed sea surface temperature, and altimetry sea
level anomalies, are assimilated into the reanalysis via the ensemble optimal interpolation method. An ensemble of model
states sampled from a long-term integration is allowed to change with season, rather than remaining stationary. The estimated
background error covariance matrix may reasonably reflect the seasonality and anisotropy. We evaluate the performance of
AIPOcean during the period 1993–2006 by comparisons with independent observations, and some reanalysis products. We
show that AIPOcean reduces the errors of subsurface temperature and salinity, and reproduces mesoscale eddies. In contrast
to ECCO and SODA products, AIPOcean captures the interannual variability and linear trend of sea level anomalies very
well. AIPOcean also shows a good consistency with tide gauges.
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1. Introduction

The area surrounded by the Indian Ocean and West Pa-
cific Ocean is a key area influencing short-term climate vari-
ation (seasonal to interannual) over China. The air–sea in-
teraction (e.g., the exchange of energy, momentum and water
masses) in this area is an important factor leading to extreme
weather or meteorological disasters in China. Although some
types of observations are available in this area, their dis-
continuity in time and space is an obstacle to understanding
and studying air–sea interactions. Developing an ocean data-
assimilation system combining various types of observations
with an ocean model to construct a long-term reanalysis prod-
uct may provide an important dataset for improving the un-
derstanding of the ocean and air–sea interactions in this area.

Several ocean data assimilation systems on regional or
global scales have been developed for operational ocean fore-
casting or reanalysis products. The China Ocean Reanalysis
(CORA) used a three-dimensional variational (3DVAR) anal-
ysis scheme that considered multi-scale observations based
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on the Princeton Ocean Model with a generalized coordi-
nate system (POMgcs) (Han et al., 2011). CORA is also
an important reanalysis product in Chinese coastal and ad-
jacent seas. Han et al. (2013) completed a global reanaly-
sis product based on the CORA project. Xiao et al. (2008)
developed a 3DVAR system combined with the recursive-
filter method applied over the global ocean (Wang et al.,
2012). The Bluelink system focused on the Australian re-
gion using an ensemble optimal interpolation (Oke et al.,
2008). The Multivariate Ocean Variational Estimation sys-
tem, based on 3DVAR with coupled temperature and salinity
empirical orthogonal function modes, was developed in the
northwestern Pacific (Fujii and Kamachi, 2003). Addition-
ally, TOPAZ from Norway (http://topaz.nersc.no), FOAM
from the United Kingdom (Martin et al., 2007), ECCO and
SODA (http://www.ecco-group.org; Carton et al., 2000) fo-
cused on different regions.

This paper describes the components of an ocean data as-
similation system in the Indian Ocean and West Pacific Ocean
in detail, and evaluates the performance via a multi-year data
assimilation experiment. Here, we only focus on the evalua-
tion of the ocean data assimilation system and provide some
hints on the potential application of this system in a better
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understanding of air–sea interactions in the joint region. In
view of this, the structure of this paper is as follows. The
model is described in section 2. The assimilation scheme,
based on ensemble optimal interpolation (EnOI) is presented
in section 3. The pretreatment of the various types of observa-
tions used for the assimilation and domain partitioning with
lower computational cost are detailed in section 4. A sim-
ple assessment of the data assimilation through comparisons
with independent observations and other reanalysis products
(such as ECCO and SODA) is presented in section 5. Finally,
a conclusion and discussion are presented in section 6.

2. Model

The Hybrid Coordinate Ocean Model (HYCOM), which
was developed from the Miami Isopycnic Coordinate Ocean
Model (Bleck et al., 1992), is used. It is a primitive equa-
tion model with a hybrid vertical coordinate that is isopyc-
nic in the open, stratified ocean, and smoothly transfers to
a z-coordinate or terrain-following sigma coordinate in the
weakly stratified or shallow waters. The K-Profile Parame-
terization vertical mixing scheme is included in HYCOM.

The model domain spans the West Pacific and Indian
oceans over (28◦S–44◦N, 30◦–180◦E), which is one-way
nested in an external model domain of (51◦S–62◦N, 30◦–
291◦E) (Fig. 1). The conformal mapping of Bentsen et al.
(1999) is additionally included to generate the model hori-
zontal grid. The model resolution is increased from 20 km
at the equator to 28 km at the southern and northern bound-
ary of the domain, while the outer domain resolution ranges
from 39 km to 84 km. There are 22 vertical hybrid layers
with reference densities from 18.00 kg m−3 to 27.84 kg m−3

and with uniform resolution of 2/3 in the upper 10 layers.
The 6-hourly fields from the ERA-Interim (ERA: Eu-

ropean Centre for Medium-Range Weather Forescasts Re-
analysis) dataset including temperature, dew point tempera-
ture, mean sea level pressure and wind are used to force the
model. The precipitation data are taken from the climatology
of Legates and Willmott (1990). The temperature and salinity
are relaxed toward monthly climatologies from the General-
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Fig. 1. The grid layout of the model. The blue grids are for the
model domain, and the black for an external model domain. The
meshes are drawn every three grids for the model domain, and
every ten grids for the external domain.

ized Digital Environmental Model (Teague et al., 1990) with
a timescale of 60 days at the surface and lateral boundaries.

3. Assimilation method

The EnOI (Evensen, 2003; Oke et al., 2008) is used in
this study. The analysis is computed by solving the equation

ψψψa = ψψψb +α(CCC ◦PPP)HHHT[αHHH(CCC ◦PPP)HHHT +RRR]−1(ψψψo −HHHψψψb) ,
(1)

where ψψψ = (uuu,,,vvv,,,ddd,,, ttt,,,sss,,, pppB,uuuB,vvvB) is the state vector includ-
ing baroclinic velocities, layer thickness, temperature, salin-
ity, barotropic pressure, and barotropic velocities. The sub-
scripts a, b, o and superscript T denote the analysis, back-
ground, observation and matrixei transpose respectively. PPP
is the background error covariance matrix. RRR is the observa-
tion error covariance matrix. Since the relationship between
the measurement errors is rarely estimated, the matrix RRR is
usually considered as diagonal. HHH is the observation operator
that interpolates from the model space to observation space.
C is a localizing correlation function used to remove the ef-
fects of sampling error due to the ensemble size being smaller
than the dimension of the model space. Each element of CCC is
computed by a fifth-order piecewise rational function (Gas-
pari and Cohn, 1999) where the length scale is taken as 400
km. The localization function makes PPP equal to zero beyond
the distance of the length scale. The circle between CCC and PPP
denotes a Schur product. The parameter α is used to tune the
magnitude of the covariance. Here, it is taken as 0.6.

The background error covariance matrix PPP is given by

PPP =
AAAAAAT

(n−1)
,

where AAA is a matrix consisting of n ensemble members, and
is defined as AAA = (ψψψ1,ψψψ2, · · · ,ψψψn). The ensemble members
are taken from the model state anomalies and n is the ensem-
ble size (120 in this study). It is clear that such an ensemble
keeps the dynamical consistency between model variables.
The EnOI usually uses a stationary ensemble of model states
sampled during a long-term integration to estimate the struc-
ture of the background error covariances (Evensen, 2003). In
the monsoon-dominated Indian Ocean, the sea surface cur-
rent demonstrates seasonal differences. The structure of the
background error covariances estimated by the stationary en-
semble is not capable of reflecting the seasonal evolution of
the sea surface current very well. In view of this, different en-
sembles in different seasons are adopted in this study. The en-
semble AAA consists of anomaly data defined as the daily model
state minus the monthly average over the 18-year model run.
In each season, the ensemble with the size of 120 is ran-
domly sampled from the anomaly dataset, which subsamples
an anomaly every 9 days from the 18-year model integration
in this season.

The EnOI code taken from the TOPAZ system (Bertino
and Lisæter, 2008) is used to assimilate sea level anoma-
lies and SST. In view of the isopycnic coordinate included in
HYCOM, a different ensemble-based technique, that of Xie
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and Zhu (2010), is used to assimilate in-situ temperature and
salinity profiles. In this technique, the observed temperature
and salinity profiles are firstly converted to layer thicknesses
as “observations”. Secondly, the layer thickness “observa-
tions” are assimilated to adjust the model layer thickness and
model velocity fields. Finally, the observed temperature (or
salinity) profiles are assimilated to adjust the model temper-
ature (or salinity), followed by diagnosing the model salinity
(or temperature) from the equation of seawater state. This
technique ensures the linearity of observation operators. The
straightforward method is to adjust the model variables by
assimilating the temperature and salinity observations. This
may lead to the strong nonlinearity of observation operators,
and may cause serious problems.

Compared with the variational methods (such as 3DVAR),
the EnOI has some apparent differences. For 3DVAR, the
background error covariance matrix is usually estimated us-
ing the simplified correlation functions that exponentially
decay the correlations with the increasing spatial distance.
The EnOI uses an ensemble taken from the model simula-
tions to estimate the background error covariance that may
allow more anisotropic and inhomogeneous patterns. The
EnOI tends to improve the model results in a moderate and
tractable way, while the 3DVAR tends to somewhat intensify
false changes due to the empirical-function-determined vari-
ances of background errors in the sea level anomaly (SLA)
assimilation (Fu et al., 2009a).

4. Observations for assimilation

4.1. Observation sources for assimilation

The assimilated subsurface temperature and salinity ob-
servations are obtained from the Met Office quality controlled
EN dataset, using version EN3 1d, which was the version
available at the time the work was carried out (http://www.
metoffice.gov.uk/hadobs/en3), available from 1950. This
dataset consists of the World Ocean Database 2005, Global
Temperature and Salinity Profile Project, Array for real-time
geostrophic oceanography (ARGO), and the Arctic Synoptic
Basin-wide Observations, and is updated online on a fast and
regular basis. In this version of EN3, the XBT (expendable
bathythermograph) bias correction of Wijffels et al. (2008) is
applied. However, the ARGO biases due to the drift of the
pressure sensors are not corrected. As addressed by Willis et
al. (2009), the ARGO biases may cause false signals. There-
fore, it is necessary to carry out quality control on ARGO ob-
servations before the assimilation. We remove all suspected
ARGO profiles included in the ARGO grey list by the CSIRO
(Commonwealth Scientific and Industrial Research Organi-
sation) website. A large number of questionable ARGO pro-
files cover almost all of the global ocean. If these profiles
are assimilated into the model, the negative effects are not
negligible (Yan and Zhu, 2010).

Since the geoid is not well known, the sea surface height
cannot be used directly. In order to eliminate the uncertainty,
the SLA relative to the time average is used for scientific stud-

ies. In this study, the mean dynamical topography calculated
as a time average of the model sea surface height over 1993–
1999 is added to the observed SLA for the comparisons with
the model counterpart. The assimilated altimetry data are the
global, merged SLA from all altimeters: Jason-2, Jason-1,
Topex/Poseidon, Envisat, GFO, ERS-1/2 and Geosat. The
multi-mission data are processed by the Data Unification and
Altimeter Combination System developed by Collecte Lo-
calisation Satellite (CLS), to produce the merged SLA data,
which are obtained by subtracting a time average of sea level
measurement over the period 1993–1999. In this study, the
merged SLA on a (1/3)◦ Mercator projection grid with a tem-
poral resolution of 7 days from January 1993 to December
2006 is adopted. At each grid bin, the value represents the
difference from the 7-year average. More details can be found
in previous studies (Le Traon et al., 1998; Ducet et al., 2000).

The satellite-derived SST (Reynolds et al., 2007) is used
for assimilation. This is generated using satellite SST data
from the Advanced Very High Resolution Radiometer and
Advanced Microwave Scanning Radiometer, and in-situ data
from ships and buoys via the optimum interpolation method.
Additionally, in view of the sparseness of in-situ data, a bias
correction of the satellite data with respect to in-situ data is
also made, using an empirical orthogonal teleconnection al-
gorithm. The SST product has a spatial grid resolution of
(1/4)◦ and a temporal resolution of 1 day with global cover-
age. A more detailed description of this product can be found
in Reynolds et al. (2007).

4.2. Pretreatment of observations
According to the analysis equation, Eq. (1), a large ma-

trix needs to be stored and inverted. In practice, this is not
feasible, particularly for high-density observation areas. One
feasible technique to solve this problem is super-observation.
This method has been widely used for data assimilation
(Cummings, 2005; Salonen et al., 2009) and for remote sens-
ing data to remove random observation errors (Seko et al.,
2004). A so-called super-observation is a spatial average with
a smaller error over a small number of observations with
known errors. In the data assimilation, there is a one-to-one
matching between the observed quantity and the model coun-
terpart in a grid cell. If the number of observations is very
large, more than one observation may fall within a grid bin.
These observations can possibly detect information that is not
resolved due to the imperfectness of the numerical model, or
represent the same information. The super-observations may
filter some noise or eliminate redundant information relative
to the model.

In this study, a super-observation is produced by a sim-
ple weighted average over all observations in every 2 × 2
model grid bin. By applying super-observations, the num-
ber of assimilated SLA observations may be greatly reduced
from about 70 000 to 20 000. The computational demand is
also greatly reduced.

For SST observations, a different observation-thinning
scheme of Li et al. (2010) is adopted. This scheme can pick
out a subset of observations with a small analysis error vari-
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ance while keeping the observations as few as possible. With
this scheme, the optimal observation locations used in data
assimilation are identified. Moreover, the observation den-
sity is thinned by about 95%. This means only 5% of SST
observations are assimilated. The computational cost is not
expensive.

For in-situ temperature and salinity profiles, a different
scheme is used for thinning. Different profiles have different
vertical levels. Calculating the horizontal average over pro-
files presents some problems. Using a method similar to that
of Oke et al. (2008), we select a good profile from the profile
observations falling in each 2×2 model grid bin, rather than
take an average. The selection order is as follows: first an
ARGO profile, then CTD (conductivity–temperature–depth),
then TAO (Tropical Atmosphere Ocean Project), and finally
XBT/MBT (MBT: mechanical bathythermograph).

In order to better constrain the analysis with more obser-
vations, a 7-day window is used to assimilate temperature and
salinity profiles. The different weightings are imposed on the
observations based on the time distance from the assimilated
moment. SLAs and SST with approximate global coverage
are assimilated once every seven days.

4.3. Domain partition

Different types of observations have different temporal
and spatial distribution features. The remotely sensed data
provide approximate homogeneous cover. The distribution
of temperature and salinity observations is extremely irregu-
lar (Fig. 2), especially before the ARGO era. It can be seen
that the high-density profiles are concentrated in the vicin-
ity of Japan. In this study, the localization is performed at
each model gridpoint in the same way as Evensen (2003).

Therefore, more observations are available within the radius
of correlation scale for a given point in the profile-dense re-
gions. The resultant large matrix makes the inversion expen-
sive at every gridpoint. Moreover, the computation is very
time-consuming. For example, when using 192 000 horizon-
tal gridpoints with 5600 gridpoints near Japan, the computa-
tional time of assimilating in a single step is 72 hours. Ac-
cording to this efficiency, a 1-year assimilation experiment
with an assimilation frequency of four in every month will
last 144 days. That is extremely expensive.

The domain partition technique is one approach to deal
with this issue. Oke et al. (2008) divided the global domain
into about 800 sub-domains. Fu et al. (2009b) divided the
global ocean into three ocean basin domains. In this study,
a domain-partition method based on the model grid cells is
attempted. Every 5× 5 model grid cell is regarded as a sub-
domain. In each sub-domain, the assimilation is carried out
locally and is seamless and continuous between adjoining
sub-domains. The approach is more suitable to the assimi-
lation of irregular observations, and with high computational
efficiency. By application to the above instance, the time con-
sumed in a single assimilation is reduced to 2 hours.

5. Results

In this section, we assess the data assimilation system by
comparing with a free-run experiment without data assimila-
tion, and with reanalysis products such as ECCO and SODA.
Moreover, independent observations such as surface drifters,
observed current fields, tide gauges, and withdrawn temper-
ature and salinity profiles are further examined to assess the
performance.

Fig. 2. The distribution of in-situ temperature observations in February 1999.
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A long-duration (1992–2006) data assimilation experi-
ment is carried out in the Indian and West Pacific oceans
(hereinafter referred to as AIPOcean), combining tempera-
ture and salinity profiles from XBT, TAO (McPhaden et al.,
1998), CTD and ARGO, remotely-sensed SST, and altime-
try SLA data with the HYCOM model by the EnOI. The
multi-year free-run experiment with no data assimilation is
performed to provide an ensemble member for estimation of
the background error covariance matrix, and also to be used
for evaluating the assimilation system.

5.1. Comparison with independent in-situ temperature
and salinity profiles

Not all ARGO profiles are assimilated in the HYCOM.
A fraction of ARGO profiles withheld from the assimilated
data are used to validate the performance. In the studied do-
main, more than 5000 ARGO profiles are not assimilated in
the period 2004–2006 (Figs. 3a and b). The withheld ob-
servations are mostly distributed in the open sea, while in

some coastal regions, such as the China Sea and Indonesian
Throughflow, they are very sparse (Figs. 3a and b). The root-
mean-square error (RMSE) of AIPOcean is consistently less
than the RMSE of the free-run (Figs. 3d–g). This indicates an
advantage of the assimilation method. However, there is an
obvious temperature difference between AIPOcean and the
World Ocean Atlas (WOA05), especially in the thermocline
(Fig. 3d). The possible reason for the difference is as follows.
The RMSEs are very sensitive to the accuracy in the loca-
tions of mesoscale eddies, meanders and fronts. For exam-
ple, if an eddy is misplaced, the magnitude of the errors may
be increased greatly. Therefore, the climatological estimate
including no eddies has a smaller RMSE than an estimate
from the reanalysis containing eddies that are in the wrong
place (Oke et al., 2008). In the western Pacific, the RMSE
of AIPOcean is slightly greater than the RMSE of WOA05
(Fig. 3f). This indicates that the large difference comes from
the Indian Ocean, and is possibly associated with the model
configuration (such as the parameterization scheme, vertical

Fig. 3. The distribution of (a) temperature and (b) salinity observations withheld from the data assimilation during the period
of 2004–2006, and depth profiles of the RMSEs of (d, f) temperature and (e, g) salinity, relative to the independent ARGO ob-
servations from the free run without data assimilation (blue), AIPOcean (red), climatology data WOA05 (black), ECCO (blue),
and SODA (orange) in the (d, e) model domain and (f, g) western Pacific, and (c) the variability (units: psu) of sea surface
salinity relative to the period of 2004–2006.



NOVEMBER 2015 YAN ET AL. 1465

resolution etc.). The large temperature gradient in the ther-
mocline needs a fine vertical resolution. The vertical param-
eterization scheme may affect the vertical mixing, and the
vertical stratification. In our study, the performance of the
model is not very good in the thermocline (Fig. 3: the ex-
periment without data assimilation). For the salinity in the
near surface, the RMSE of AIPOcean is significantly less
than the RMSE of WOA05 in the whole domain (Fig. 3e).
This mainly comes from the positive contribution of the In-
dian Ocean because the RMSE of AIPOcean is slightly less
than that of WOA05 in the western Pacific (Fig. 3g). The
interannual variabilities of sea surface salinity (SSS) from
AIPOcean in the Bay of Bengal and Arabian Sea are much
greater for the period of 2004–2006 (Fig. 3c). The interan-
nual signals are lacking in the climatology of WOA05, which
may partly demonstrate why the AIPOcean SSS is better than
that of WOA05. Additionally, we calculate the RMSEs of
ECCO and SODA using the monthly mean data related to
the same observations. It is very clear the RMSE of ECCO
is typically greater than that of the WOA05 climatology for
both temperature and salinity profiles. SODA shows the best
results with the lowest RMSEs. Possibly, the observations
used for calculating RMSE were assimilated in SODA, which
would reduce the RMSE, and the performance of SODA is
possibly better for temperature and salinity assimilation.

5.2. Comparison with independent current observations
Surface velocity measurements are much more scarce

compared with temperature and salinity observations. How-
ever, the coverage of surface velocity measurements is greatly
improved by the global drifter program. Since no veloc-
ity observations are assimilated in the AIPOcean reanalysis,
drifters provide an independent dataset to validate the reanal-
ysis. The drifter data collected and processed by the At-
lantic Oceanographic and Meteorological Laboratory under
the global drifter program, formerly the World Ocean Circu-
lation Experiment–Surface Velocity Programme, are used in
this study.

Figure 4 shows the distribution of the monthly sea surface
current from the AIPOcean in November 2006 superimposed
by the trace of drifters in the Indian Ocean. The drifters with
trajectories longer than 10 days in November 2006 are used
for comparison. The red points denote the start locations of
the drifters. The characteristics of the sea surface current can
be seen (such as eddies, eastern current, western boundary
current, etc.). In the Bay of Bengal, an anticyclonic eddy is
clearly present in the AIPOcean (Fig. 4b), which is traced by
drifter B4. The AIPOcean also shows good agreement with
other drifters. In the Arabian sea, the drifters basically trace
the ocean circulation of the AIPOcean closely (Fig. 4a). This
implies that the AIPOcean has a certain potential for captur-
ing the eddies and reproducing the features of the circulation
in the northern Indian Ocean.

Additionally, the velocity measurements from moored
ocean buoys of the TAO project are also used for valida-
tion. Since reanalysis products such as ECCO, SODA and
AIPOcean are monthly, the monthly TAO data are used for

Fig. 4. The monthly sea surface current and trajectories (red)
of surface drifters in the northern Indian Ocean including the
Arabian sea (a) and the Bengal bay (b) in November 2006.
The drifters with trajectories longer than 10 days in Novem-
ber 2006 are used. The red points denote the start positions of
drifters as follows: A1 (13.6◦N, 56.7◦E), A2 (12◦N, 58.7◦E),
A3 (1.2◦N, 46.1◦E), A4 (0.4◦N, 52.8◦E), A5 (0.3◦N, 54.4◦E),
A6 (0.9◦N, 57◦E), A7 (0.4◦N, 61.4◦E), A8 (3◦N, 61.8◦E), B1
(12.6◦N, 84.1◦E), B2 (11.9◦N, 88.1◦E), B3 (8◦N, 86.5◦E), B4
(8.3◦N, 83.4◦E), B5 (4.7◦N, 88.1◦E), B6 (0.8◦N, 89.6◦E).

comparison.
Figures 5a and c show the evolution of a zonal current

and zonal current difference at the sea surface at the loca-
tion (2◦S, 156◦E). It is very clear that the model simulations
without data assimilation and all reanalysis products capture
the interannual variability of sea surface current, and show
a similar pattern to observations. This is also indicated by
strong correlations between reanalysis datasets and obser-
vations. AIPOcean basically shows small differences from
observations. Moreover, the AIPOcean reanalysis is closer
to the Research moored Array for Afican–Asian–Australian
Monsoon Analysis and prediction (RAMA; McPhaden et al.,
2009) data than other products in terms of the RMSEs and
correlations. For a location in the Indian Ocean [(1.5◦S,
90◦E); Figs. 5b and d), the AIPOcean reanalysis is strongly
correlated with observations. The consistency between the
AIPOcean reanalysis and RAMA is better. The correlation
coefficient reaches 0.8, while it is slightly smaller for the
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Fig. 5. Monthly sea surface zonal current (left) (units: cm s−1) from TAO (black), No assimilation (green), AIPOcean
(red), ECCO (blue), and SODA (orange) and the differences (right) (units: cm s−1) between the products and TAO
observations at the location of (a, c) (2◦S, 156◦E) and (b, d) (90◦E, 1.5◦S). The numbers in brackets indicate the
correlation between the reanalysis and TAO observations and the RMSE of reanalysis, respectively.

other two products. Moreover, the RMSE of the AIPOcean
reanalysis is the lowest. The improvement over the experi-
ment without assimilation is also very clear.

The Indonesian seas provide a series of complex pas-
sages linking the Pacific and Indian oceans. The Indonesian
Throughflow (ITF), which transports water from the tropi-
cal Pacific Ocean to the Indian Ocean through the Indonesian
seas, is an interoceanic exchange process. The ITF has been
shown to play an important role in the thermocline-driven
global circulation system (Gordon, 1986). Some studies have
also shown a significant influence of the ITF on the global
air–sea system via ocean general circulation models or cou-
pled climate models (Hirst and Godfrey, 1993; Schneider and
Barnett, 1997; Schneider, 1998; Banks, 2000; Wajsowicz and
Schneider, 2001; Lee et al., 2002; Pandey et al., 2007). In
this subsection, the ITF transport of the AIPOcean reanalysis
is evaluated.

The Indonesian water is exported to the Indian Ocean
via three main passages: the Lombok Strait, Ombai Strait
and Timor Passage; and is imported from the Pacific Ocean
by the Makassar Strait, Lifamatola Passage and other straits
(e.g. the Karimata Strait, Torres Strait etc.). For a consis-
tent comparison with observations from the INSTANT pro-
gram (Gordon et al., 2009), the 3-year mean inflow transport
is calculated as the sum of the Makassar Strait and Lifama-
tola Passage inflows, while outflow is calculated as the sum of
the Lombok Strait, Ombai Strait and Timor Passage outflows.
The INSTANT program observed a 3-year net outflow of 15
Sv, and an inflow of 12.7 Sv (Table 1). The ITF transports

from the three reanalyses (AIPOcean, ECCO and SODA) are
overall lower than the observations. For the inflow, SODA
yields 8.2 Sv, which is much lower than observations, while
AIPOcean and ECCO show 11.9 Sv and 10.2 Sv, respectively.
For the outflow, ECCO presents the lowest transport of 11.7
Sv, while AIPOcean and SODA present similar magnitudes
greater than 14 Sv. The AIPOcean shows a better 3-year net
ITF transport than ECCO and SODA. The difference in ITF
transports may be related to the resolution and topography of
different reanalyses in the Indonesian passages.

5.3. Comparison with observed SLAs
The monthly averaged data from different products are

used to compute the standard variance of sea level over the
14-year period of 1993–2006 (Fig. 6). As a comparison,
the experiment with a horizontal resolution of 1◦ × 1◦ using
the EnOI method and HYCOM is also carried out (here-
after referred to as Exp1×1). The altimetry data show strong

Table 1. The three-year mean Indonesian Throughflow transport in
Sv (106 m3 s−1) during 2004–2006.

Annual mean inflow
(2004–2006)

Annual mean
outflow (2004–2006)

Observation (Gor-
don et al. 2009)

12.7 Sv 15 Sv

AIPOcean 11.9 Sv 14.5 Sv
ECCO 10.2 Sv 11.7 Sv
SODA 8.2 Sv 14.2 Sv



NOVEMBER 2015 YAN ET AL. 1467

Fig. 6. The variability (units: m) of monthly sea level anoma-
lies during the period 1993–2006 from (a) observations, (b)
No assimilation, (c) AIPOcean, (d) Exp1x1, (e) ECCO and (f)
SODA.

signals of sea level variability greater than 20 cm in a zonal
band east of Japan in the northwestern Pacific. The large vari-
ability is related to the plentiful eddies in this region. Ad-
ditionally, large variation can also occur in some regions of
western boundary currents and in the coastal regions. Some
large variabilities show a correspondence with large current
systems. For example, the region of large variation corre-
sponds to the Kuroshio Current in the West Pacific.

The experiment without assimilation can capture the
strong signals in the northwestern Pacific. However, the large-
variability area extends from the south of Japan to the north-
east. The path seems inconsistent with the observations. This
is possibly related to the Kuroshio extension simulated by the
model. The AIPOcean reanalysis reproduces strong variabil-
ity and demonstrates a good agreement with observations. In
the northwestern Pacific, the Exp1 × 1 also captures some
signals. Moreover, the zonal band with large variabilities
is similar to observations. The signals concerned with ed-
dies are relatively weak. Overall, the pattern of variabilities
from the Exp1× 1 is consistent with observations. The pat-
tern of sea level variability for SODA, with a resolution of
0.25◦ ×0.4◦ in zonal and meridional directions, is similar to
observations, but the magnitudes are weaker than those for
AIPOcean. ECCO greatly underestimates the standard vari-
ance of sea level, meaning it misses the strongest variability
peak compared with the altimetry data. Since the resolution
of ECCO is relatively coarse at 1◦ × 1◦, enhanced to (1/3)◦
in the north–south direction within 10◦ of the equator in the
northwestern Pacific, some mesoscale eddies are not resolved
well. As a result, the variability signal concerned with eddy
development, especially in the northwestern Pacific, is not
captured well. The resolution is one of the important factors
affecting the variability. Additionally, the assimilation of the
high-resolution SLA also plays a certain role. The AIPOcean
reanalysis does have an advantage over the other two prod-
ucts in terms of resolution. Compared with Exp1 × 1, the
variabilities of ECCO are low throughout the domain, despite
relatively high resolution in the equatorial ocean. This is pos-
sibly related to the assimilation method used.

Additionally, we compare the linear trend in sea level
over the past 14 years from the observations and each of
the reanalysis products (Fig. 7). The distribution of the trend
in sea level is not spatially uniform. During the past 14
years, the western Pacific south of 30◦N and the south Indian
Ocean basically show an increase in sea level. The band of
30◦–40◦N presents both strongly decreasing and increasing
trends. These complicated phenomena are associated with
the Kuroshio Current extension and nearby active eddies. For
the experiment without assimilation, a significant rise in sea
level is shown in some zonal bands of the western Pacific.
For the AIPOcean reanalysis, the obvious trend is concen-
trated in the western Pacific, and is very similar to the spatial
distribution of observations. ECCO shows a rise in sea level
throughout the western Pacific. The zonal band of a mixture
of increased and decreased sea level cannot be found. SODA
shows a notable decrease to the south of 18◦S, different from
the altimetry data. Additionally, in the zonal band of 18◦–
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Fig. 7. The linear trend (units: mm yr−1) of monthly sea level
anomalies during the period 1993–2006 from (a) observations,
(b) No assimilation, (c) AIPOcean, (d) ECCO and (e) SODA.

30◦N, an opposite trend to the observations is also demon-
strated.

To further evaluate the AIPOcean reanalysis, we compare
it with the independent tide gauge dataset processed by the
University of Hawaii Sea Level Center. In this study, we ex-
amine the dataset to identify stations with a time span of no

less than 10 years, located in the model domain, and situ-
ated within four different model ocean grids. According to
these criteria, 57 gauges are available. At each station, the
correlation between the annual AIPOcean reanalysis and tide
gauge sea level is calculated (Table 2). To discard the ef-
fect of sea level rise due to model biases, land ice-melt, and
other factors unresolved by the ocean model, we remove the
linear trend from the annual sea level data. The gauge and
AIPOcean reanalysis sea level data show correlation greater
than 0.8 at 43 stations. A correlation below 0.7 is found only
for one station. The average correlation over all stations is
0.87. Moreover, the correlations of gauge and AIPOcean re-
analysis sea level data in almost all stations exceed the 99%
level of statistical significance, except for two stations with a
98% significance level.

The comparison of time series at three stations shows
good agreement between AIPOcean reanalysis and observed
sea level (Fig. 8). The high and low sea level events in the
time series reflect the effects of El Niño in the western trop-
ical Pacific. The strongest event in the studied period is the
1997–1998 El Niño event, which corresponds to a decrease in
sea level. Moreover, the AIPOcean reanalysis demonstrates
consistent interannual signals with observed sea level. Com-
pared with the experiment without assimilation, ECCO and
SODA, the AIPOcean also shows the best results, as implied
by the reduced RMSE and the high correlation with observa
tions. Moreover, the magnitude of the difference between
AIPOcean and tide gauge data is relatively small.

6. Discussion and conclusions

A data assimilation system generating an AIPOcean re-
analysis in the Indian Ocean and western Pacific Ocean has
been described in detail. The thinning of observations (super-
observing) and domain partitioning for lower computational
cost have been presented. The EnOI method is used to assim-
ilate various types of observations. However, for temperature
and salinity profiles, a different scheme is used to assimilate
layer thickness observations, calculated from observed tem-
perature and salinity profiles, to adjust the model layer thick-
ness and current fields, and then to assimilate temperature or
salinity observations to adjust the model temperature or salin-
ity, followed by diagnosing the model salinity or temperature.

We evaluated the data assimilation system through a
series of qualitative and quantitative comparisons between
AIPOcean and other reanalysis products, satellite data, inde-
pendent temperature and salinity observations, observed cur-
rent fields, surface drifters, and tide gauges. Through these
comparisons, we have shown that AIPOcean reconstructs the
basin-scale ocean circulation and mesoscale eddies. The sub-
surface temperature and salinity from AIPOcean are typically
improved, especially at the thermocline in the Indian Ocean
and western Pacific Ocean. Surface zonal currents capture
seasonal or interannual variabilities with strong correlations
with observations and reduced RMSEs in comparison to other
reanalyses. The sea level data show good agreement with tide
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Table 2. Correlations between AIPOcean and tide gauge sea level at
different stations.

No. Station name Location Years Correlation

1 Betio 1◦22′N, 172◦56′E 14 0.97
2 Majuro 7◦6′N, 171◦22′E 14 0.95
3 Malakal 7◦20′N, 134◦28′E 14 0.99
4 Yap 9◦31′N, 138◦8′E 14 0.96
5 Honiara 9◦26′S, 159◦57′E 13 0.98
6 Saipan 15◦14′N, 145◦45′E 13 0.95
7 Kapingam 1◦6′N, 154◦47′E 14 0.91
8 Port vil 17◦46′S, 168◦18′E 14 0.94
9 Chichiji 27◦6′N, 142◦11′E 14 0.89
10 Minamito 24◦18′N, 153◦58′E 10 0.79
11 Wake isl 19◦17′N, 166◦37′E 14 0.91
12 Guam 13◦26′N, 144◦39′E 13 0.96
13 Kwajalei 8◦44′N, 167◦44′E 14 0.95
14 Mombasa 4◦4′S, 39◦39′E 12 0.82
15 Port lou 20◦9′S, 57◦30′E 14 0.78
16 Rodrigue 19◦40′S, 63◦25′E 14 0.83
17 Gan 0◦41′S, 73◦9′E 14 0.92
18 Point la 4◦40′S, 55◦32′E 14 0.88
19 Langkawi 6◦26′N, 99◦46′E 14 0.95
20 Tapha 7◦50′N, 98◦26′E 14 0.76
21 LAMU 2◦16′S, 40◦54′E 12 0.9
22 Zanzibar 6◦9′S, 39◦11′E 14 0.92
23 Carnarvo 24◦53′S, 113◦37′E 13 0.99
24 Cocos is 12◦7′S–96◦54′E 14 0.75
25 Booby is 10◦36′S, 141◦55′E 14 0.83
26 Nakano s 29◦50′N, 129◦51′E 14 0.9
27 Abashiri 44◦1′N, 144◦17′E 14 0.87
28 Aburatsu 31◦34′N, 131◦25′E 14 0.78
29 Naha 26◦13′N, 127◦40′E 14 0.78
30 Maisaka 34◦41′N, 137◦37′E 14 0.79
31 Nase 28◦23′N, 129◦30′E 14 0.83
32 Nagasaki 32◦44′N, 129◦52′E 14 0.75
33 Nishinoo 30◦44′N, 131◦E 14 0.84
34 Ishigaki 24◦20′N, 124◦9′E 14 0.77
35 Lombrum 2◦2′S, 147◦22′E 13 0.97
36 Lautoka 17◦36′S, 177◦26′E 14 0.79
37 Tanjong 1◦16′N, 103◦51′E 14 0.77
38 Hiron Point 21◦47′N, 89◦28′E 11 0.8
39 Coxs Bazaar 21◦27′N, 91◦50′E 11 0.7
40 Kelang 3◦3′N, 101◦22′E 14 0.97
41 Keling 2◦13′N, 102◦9′E 14 0.96
42 Lumut 4◦14′N, 100◦37′E 14 0.95
43 Penang 5◦25′N, 100◦21′E 14 0.97
44 Funafuti-B 8◦30′S, 179◦13′E 14 0.96
45 Cendering 5◦16′N, 103◦11′E 14 0.87
46 Johor Baharu 1◦28′N, 103◦48′E 14 0.85
47 Kuantan 3◦59′N, 103◦26′E 14 0.88
48 Tioman 2◦48′N, 104◦8′E 14 0.91
49 Sedili 1◦56′N, 104◦7′E 14 0.83
50 Kukup 1◦20′N, 103◦27′E 14 0.9
51 Geting 6◦14′N, 102◦6′E 14 0.86
52 Kaohsiung 22◦37′N, 120◦17′E 14 0.63
53 Keelung 25◦9′N, 121◦45′E 12 0.92
54 Miyakejima 34◦4′N, 139◦29′E 11 0.75
55 Legaspi 13◦9′N, 123◦45′E 12 0.95
56 Bintulu 3◦13′N, 113◦4′E 13 0.86
57 Sandakan 5◦49′N, 118◦4′E 13 0.96

gauges. The AIPOcean captures the variability signals and
linear trend of sea level anomalies very well, in comparison
with ECCO and SODA. The analysis differences are partly
associated with the resolution of the models, and also with the
assimilation of high-resolution SLA observations. For SODA
and ECCO, relatively coarse-resolution SLA observations are
used for assimilation.

These comparisons demonstrate the performance of this
data assimilation system. The performance could be im-
proved when the new version of EN4 data are assimilated,
and the configurations of the model are redesigned. Data from
AIPOcean, including daily three-dimensional temperature,
salinity, and current fields, as well as sea surface height, is
freely available from the Information Center of the Institute
of Atmospheric Physics (http://dell2.iap.ac.cn/index.php/
component/mtree/142). Such data have been used to study
the evolution of mesoscale eddies (Zu et al., 2013). The
tropical cyclones (typhoons) formed in the tropical oceans
are an example of extreme air–sea interaction, and the en-
ergy of these typhoons is mainly supplied by the ocean
through sea surface fluxes (Emanuel, 1986). The impacts of
mesoscale eddies on typhoons are not negligible. Both warm
eddies and cold eddies may rapidly impact typhoon inten-
sities (Emanuel, 1999; Shay et al., 2000; Lin et al., 2005;
Walker et al., 2005; Wu et al., 2007; Zheng et al., 2008;
Lin et al., 2009; Jaimes and Shay, 2009; Zheng et al., 2010;
Walker et al., 2014). Warm eddies help to maintain and even
intensify typhoons by serving as an insulator against the neg-
ative feedback of the ocean (Lin et al., 2005). Cold eddies
can induce a rapid weakening of typhoons by the decrease in
the translation speed and SST cooling (Walker et al., 2014).
Compared with other reanalysis products, AIPOcean shows
better performance in capturing mesoscale eddies, particu-
larly in the western North Pacific, which contains many ed-
dies and frequent passages of typhoons. This suggests that
AIPOcean data have the potential for improving understand-
ing of typhoon–eddy interactions, which is very important for
improving typhoon intensity predictions. Additionally, the
ITF, as a connection between the Indian Ocean and Pacific
Ocean, can affect the latent heating over the Indian Ocean
either by warming the ocean or by changing the ocean cir-
culation (Godfrey and Weaver, 1991; Wajsowicz and Schopf,
2001; Wajsowicz, 2002). Moreover, latent heating is domi-
nant among the components of the net surface heat flux in the
Indian Ocean. Wajsowicz and Schopf (2001) showed that a
change of 4 Sv in the mean ITF induced net surface heat flux
differences of about 10 W m−2 in the region to the northeast
of Madagascar and in a band near the west Australian coast.
Furthermore, large evaporation rates occurred and were sus-
tained in the southern Indian Ocean from 10◦S to 30◦S due
to the heat supplied by the ITF in boreal summer. The re-
sultant abundant water vapor in the atmosphere was carried
northward across the equator by the summer monsoon. The
moisture supply from the southern Indian Ocean fueled the
rainfall. Thus, the strength of the Indian monsoon measured
by rainfall during the southwest monsoon may be affected by
the ITF. For the ITF, AIPOcean presents a similar magnitude
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Fig. 8. Monthly sea level anomalies (left) (units: mm) removing the linear trend from tide gauge (black), No assim-
ilation (green), AIPOcean (red), ECCO (blue), and SODA (orange), and the differences (right) (units: mm) between
products and tide gauge observations at different stations: (a, d) (7.3◦N, 134.5◦E); (b, e) (2.2◦N, 102.1◦E); (c, f) (6.4◦N,
99.7◦E). The numbers in brackets indicate the correlation between the reanalysis and TAO observations and the RMSE
of reanalysis, respectively.

of the transport to observations, compared with other reanal-
ysis products. Moreover, resolution can affect the impact of
the ITF on the Indian Ocean: for a coarse-resolution system
the signatures of the ITF in the mixed layer and themocline
can be lost or diluted soon after entering the Indian Ocean;
while for a fine-resolution system, there is little loss in heat
and mass (Wajsowicz and Schopf, 2001). This implies that
the AIPOcean data may be potentially useful to study the air–
sea interaction in the Indian Ocean. AIPOcean is also use-
ful for ENSO-related studies (Wang and Zhou, 2012). More
studies are required to further explore the air–sea interaction
phenomenon via AIPOcean.
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