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ABSTRACT

A reduced-gravity barotropic shallow-water model was used to simulate the Kuroshio path variations.
The results show that the model was able to capture the essential features of these path variations. We used
one simulation of the model as the reference state and investigated the effects of errors in model parameters
on the prediction of the transition to the Kuroshio large meander (KLM) state using the conditional nonlinear
optimal parameter perturbation (CNOP-P) method. Because of their relatively large uncertainties, three
model parameters were considered: the interfacial friction coefficient, the wind-stress amplitude, and the
lateral friction coefficient. We determined the CNOP-Ps optimized for each of these three parameters
independently, and we optimized all three parameters simultaneously using the Spectral Projected Gradient
2 (SPG2) algorithm. Similarly, the impacts caused by errors in initial conditions were examined using the
conditional nonlinear optimal initial perturbation (CNOP-I) method. Both the CNOP-I and CNOP-Ps can
result in significant prediction errors of the KLM over a lead time of 240 days. But the prediction error
caused by CNOP-I is greater than that caused by CNOP-P. The results of this study indicate not only that
initial condition errors have greater effects on the prediction of the KLM than errors in model parameters
but also that the latter cannot be ignored. Hence, to enhance the forecast skill of the KLM in this model,
the initial conditions should first be improved, the model parameters should use the best possible estimates.
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1. Introduction

The Kuroshio is the strong western boundary cur-
rent of the North Pacific subtropical gyre. It trans-
ports a large amount of heat from the tropical to the

subtropical regions. For this reason, the Kuroshio has
a significant impact on the climate of the North Pacific
(Latif and Barnett, 1994) and consequently on local fi-
sheries and ship navigation.

Observation data have shown that the Kuroshio
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Fig. 1. Examples of the bimodal paths of the Kuroshio south of Japan. The mean
sea surface height fields from AVISO for the period of (a) July 2003 to June 2004 and
(b) July 2004 to June 2005 are plotted. Contour intervals are 10 cm. Units: cm.

path south of Japan exhibits typical bimodal fea-
tures, namely, the nonlarge meander path (NLM) and
the large meander path (KLM; Taft, 1972). Figure
1 shows the observational sea-surface height (SSH)
patterns of the bimodal path of the Kuroshio as
determined using satellite altimetry. This satellite
SSH data was produced and distributed by Archiv-
ing, Validation and Interpretation of Satellite Oceano-
graphic data (AVISO). The data, which are high reso-
lution of (1/3)◦×(1/3)◦ Mercator grid, are available
at www.aviso.oceanobs.com. As shown in Fig. 1,
the Kuroshio was in a NLM state in JUL 2003–JUN
2004 (Fig. 1a), while it was in a KLM state in JUL
2004–JUN 2005 (Fig. 1b). Long-term observations
show that each path can persist from a few years to a
decade. In contrast, the actual transition between the
two typical paths can take place within several months
(Kawabe, 1995).

Several numerical and observational studies about
the transition between NLM and KLM have been per-
formed (Masuda, 1982; Chao and McCreary, 1982;
Kawabe, 1985; Yasuda et al., 1985; Akitomo et
al., 1997; Qiu and Miao, 2000; Schmeits and Dijk-
stra, 2001; Waseda et al., 2002, 2003; Tsujino et
al., 2006). The results of these studies have been
used to understand the mechanism of the transition
and to provide guidance for improving the numerical
model. Recently, several researchers investigated the
predictability of the Kuroshio path variations, espe-
cially the transition to the KLM state. Komori et
al. (2003) conducted the short-range forecast experi-
ments of the Kuroshio path variabilities using a 1.5-
layer shallow-water model and a variational data as-
similation scheme. They found the predictive limit

for the KLM to be ∼60 days. Kamachi et al. (2004)
performed the forecast experiments using an opera-
tional data assimilation scheme and prediction model.
They suggested the predictive limit for the KLM to be
∼80 days. Usui et al. (2006) also conducted similar
forecast experiments, but they used an eddy-resolving
model and concluded the predictive limit to be from
40 to 60 days and to depend on the transition stages
of the Kuroshio meander. Miyazawa et al. (2005) per-
formed an ensemble forecast of the Kuroshio meander
and concluded the predictive limit to be ∼80 days. In
addition to estimating the predictive limit, Ishikawa
et al. (2004) investigated the sensitivity of prediction
results of the KLM to initial conditions using the ad-
joint method. They concluded that initial error has
an important impact on prediction. In these stud-
ies, only the impacts of the initial error on prediction
were discussed. However, prediction errors are gen-
erally caused by both initial and model errors. In a
numerical forecast model, model error may also result
in a substantial prediction error (Orrell, 2003).

An important aspect of model error is the amount
of error in model parameters. Chu et al. (1999) stud-
ied the impact of uncertainty in a model parameter on
prediction results by superimposing different pertur-
bations on the model parameter. Similarly, Liu (2002)
and Orrell (2003) investigated the influence of the un-
certainty on each model parameter in a climate model.
However, when multiple model parameters simultane-
ously have uncertainties, it is difficult to estimate the
greatest impact on the prediction using a method in
which different perturbations are applied to model pa-
rameters.

To overcome this difficulty, Mu et al. (2010) ex-
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tended the conditional nonlinear optimal perturba-
tion (CNOP) method previously proposed by Mu et
al. (2003) to find the optimal mode of model param-
eter perturbations. The optimal parameter pertur-
bation has been referred to as CNOP-P. Yu (2009)
and Duan and Zhang (2010) studied the spring pre-
dictability barrier phenomenon for El Niño events us-
ing the CNOP-P approach and concluded that model
parameter errors may not cause a significant spring
predictability barrier for El Niño events.

In this study we used the CNOP-P approach
to investigate the effects of the uncertainties of the
model parameters on prediction of the KLM, ignoring
other possible kinds of model errors. Simultaneously,
the conditional nonlinear optimal initial perturbation
(CNOP-I) method was used to examine the impacts of
the uncertainties in initial conditions on the prediction
of the KLM. We compared the prediction errors caused
by CNOP-I error and CNOP-P errors, respectively,
and evaluated which kind of errors had the greatest
influence on the prediction of the KLM. In summary,
given a dynamical model that exhibits reasonable in-
stabilities of interest, the CNOP-P method was used
to investigate the potential prediction error related to
the model parameter uncertainties, in comparison with
the imperfection of initial conditions.

The paper is organized as follows. In section 2,
the CNOP-I and CNOP-P approaches are briefly re-
viewed. The numerical model adopted in this study is
briefly presented in section 3. In section 4, the ability
of the model to simulate the Kuroshio path variations
is examined. The effects of initial condition errors and
model parameter errors on the prediction of the KLM
are investigated in section 5. Some discussion about
the sensitivity of the results is presented in section 6.
The conclusions are summarized in section 7.

2. CNOP-I and CNOP-P approaches

In this section, we introduce the CNOP-I and the
CNOP-P methods.

The equations governing the evolution of the state
vector X can be written as{

∂X

∂t
= F (X, p) ,

X|t=0 = X0 ,
(1)

where t indicates time, X0 is the initial condition,
p = (p1, p2, · · · , pm)T denotes the model parameter
vector, and F is a nonlinear differential operator. If
the initial state X0 is known, the future state X(t)
can be obtained by integrating Eq. (1). Hence, the
solution to Eq. (1) can be formally written as

X(t) = Mt(p)(X0) , (2)

where Mt(p) is the nonlinear propagator [it propa-
gates the initial state X0 to the future state X(t)]
with the parameter vector p.

Suppose there are two initial states X0 and X0 +
x0. Then from Eq. (1), we obtain two solutions X(t)
and X(t) + x(t):

X(t) = Mt(p)(X0), X(t) + x(t) = Mt(p)(X0 + x0) .

Hence when x0 is regarded as an initial perturbation
on the time-dependent reference state X(t), x(t) de-
notes the nonlinear evolution of this initial perturba-
tion.

A nonlinear constraint optimization problem is de-
fined as

J(x∗
0) = max

x0∈Cδ

J(x0) , (3)

where x0 ∈ Cδ denotes the initial constraint condition
and Cδ is closed, which often is defined as a ball with
a chosen norm such as Cδ = {x0| ‖x0‖ � δ}. J(x0) is
an objective function defined as follows:

J(x0) =
1
2
‖Mt(p)(X0 + x0) − Mt(p)(X0)‖2

. (4)

The solution x∗
0 to the optimization problem in Eq.

(3) is now called (Mu et al., 2003, 2010) the condi-
tional nonlinear optimal initial perturbation (CNOP-
I). It has the largest nonlinear evolution at a prediction
time t given the specific constraint. If the objective
function is regarded as a measurement of the predic-
tion error, the CNOP-I is the initial perturbation that
results in the largest prediction error at the prediction
time t. Previously, the CNOP-I approach has been
used to study the predictability of ENSO events, the
sensitivity analysis of the thermohaline ocean circula-
tion, the stability of the wind-driven ocean circulation,
and for defining objective observations for typhoons
(Mu and Duan, 2003; Mu et al., 2004; Terwisscha van
Scheltinga and Dijkstra, 2008; Mu et al., 2009).

To investigate the effects of model parameter er-
rors on the prediction, Mu et al. (2010) extended the
CNOP approach to find the optimal mode of model
parameter perturbations. Suppose a parameter per-
turbation p′ is superimposed on the model parameter
p, then the solution to Eq. (1) can be written as

X(t) + xp(t) = Mt(p + p′)(X0) , (5)

where xp(t) denotes the departure from the reference
state X(t) at the prediction time t. Generally, un-
certain model parameters result from parameteriza-
tions, and their values are determined from obser-
vations. The parameter perturbations should there-
fore satisfy some constraint conditions. Under the
given constraints, what are the parameter perturba-
tions that cause the largest departure from the given
reference state?
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To address this problem, we define a nonlinear op-
timization problem as follows:

J(p∗) = max
p′∈Cσ

J(p′) , (6)

where p′ ∈ Cσ denotes the parameter constraints, and
Cσ often is expressed as Cσ = {p′ = (p′1, p

′
2, · · · ,

p′m)‖p′1| � σ1, |p′2| � σ2, · · · , |p′m| � σm}. The ob-
jective function J(p′) is defined as

J(p′) =
1
2
‖Mt(p + p′)(X0) − Mt(p)(X0)‖2

. (7)

It follows that Mt(p + p′)(X0)−Mt(p)(X0) = xp(t).
The norm in Eq. (7) is used to measure magnitudes of
the departure xp(t), and its definition depends on the
physical problem under consideration. The solution
p∗ to Eq. (6) was referred to as CNOP-P (Mu et al.,
2010). From Eqs. (6) and (7), we can see that if the
reference state X(t) is the true state, then the CNOP-
P denotes the parameter perturbation that causes the
largest prediction errors under the given constraint
conditions. The upper bound of the prediction errors
can be estimated using Eq. (6).

To obtain the CNOP-I and CNOP-P by solving the
nonlinear optimization Eqs. (3) and (6) numerically,
the Spectral Projected Gradient 2 (SPG2) algorithm
is used. The detailed descriptions of how to derive the
CNOP-I and CNOP-P using the SPG2 algorithm are
shown in the Appendix A.

3. Description of the numerical ocean model

Although Qiu and Miao (2000) and Tsujino et
al. (2006) suggested that baroclinic instability and
mesoscale eddies play an important role in the for-
mation of the KLM, Schmeits and Dijkstra (2001)
and Pierini (2006) simulated the Kuroshio path tran-
sitions very well using a reduced-gravity shallow-water
model. The latter results indicate that a reduced-
gravity shallow-water model contains the essential dy-
namic mechanism of the Kuroshio path variations.
This motivated our choice to use this model to cal-
culate the CNOPs and address the predictability of
the KLM.

The reduced-gravity shallow-water model describes
the flow in a thin upper layer of the ocean superim-
posed on a much deeper quiescent lower layer. In
this study, the governing shallow-water equations were
nondimensionalized using the length scale r0 which is
radius of the earth, the mean depth of the upper layer
H , a characteristic horizontal velocity scale U , an ad-
vective time scale r0/U , and a wind-stress scale τ0.

The nondimensional equations are written as

ε

(
Du

dt
− uv tan θ

)
− v sin θ =

−εF

cos θ

∂h

∂φ
+

E

(
∇2u − u

cos2 θ
− 2 sin θ

cos2 θ

∂v

∂φ

)
+ Fφ , (8)

ε

(
Dv

dt
+ u2 tan θ

)
+ u sin θ = −εF

∂h

∂φ
+

E

(
∇2v − v

cos2 θ
+

2 sin θ

cos2 θ

∂u

∂φ

)
+ Fθ , (9)

∂h

∂t
+

1
cos θ

[
∂(hu)

∂φ
+

∂(hv cos θ)
∂θ

]
= 0 . (10)

In these equations u is the zonal velocity, v is the
meridional velocity, h is the layer thickness, φ is the co-
ordinate in the zonal direction, and θ is the coordinate
in the meridional direction. The material derivative is
given by

D

dt
=

∂

∂t
+

u

cos θ

∂

∂φ
+ v

∂

∂θ
. (11)

Expressions for the parameters in the equations are

ε =
U

2Ωr0
, E =

AH

2Ωr2
0

, F =
g′H
U2

,

where Ω is the angular velocity of the earth, AH is the
lateral friction coefficient, and g′ is the reduced grav-
ity. The terms Fφ and Fθ in Eqs. (8) and (9) are
defined as follows:

Fφ =
ατφ

h
− μu , (12)

Fθ =
ατθ

h
− μv , (13)

where τφ and τθ are the zonal component and merid-
ional component of wind stress, respectively. In ad-
dition, μ = RI/(2Ω), where RI is the interfacial fric-
tion coefficient. The wind stress coefficient is α =
τ0(2ΩρHU), where τ0 is the amplitude of wind stress.

For the spatial differential operators in the Eqs.
(8)–(10), a central finite difference discretization
scheme was used on a staggered grid and the local
discrete operators were defined. Subsequently, the lo-
cal operators were assembled over the whole domain,
forming global discrete operators (see, e.g., Dijkstra,
2005).

For the time discretization, the implicit Crank–
Nicholson scheme was used to define the discrete op-
erators. Hence, a large system of nonlinear algebraic
equations had to be solved at each time step. In this
study, we used the Newton–Raphson method to solve
the system of the equations. It is well known that the
Crank–Nicholson scheme is unconditionally stable for
linear equations, and thus supports a relatively large
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Table 1. The standard values of parameters in the
shallow-water model.

Parameter Value

Radius of the earth r0 6.37×106 m
Scale for upper-layer thickness H 500 m
Acceleration of gravity g 9.8 m s−2

Upper-layer density ρ 1023.5 kg m−3

Wind stress amplitude τ0 0.1 Pa
Lateral friction coefficient AH 450 m2 s−1

Scale for velocity U 0.1 m s−1

Angular velocity of the earth Ω 7.292×10−5 s−1

Interfacial friction coefficient RI 4.3752×10−8 s−1

The reduced gravity g′ 0.044 m s−2

time step. But we should note that a time step that
is too large leads to large discretization errors, limit-
ing the convergence domain of the Newton–Raphson
process (Schmeits and Dijkstra, 2001). By considering
different time steps to test the model, we found that a
time step of 10 days gives sufficiently accurate results.

An advantage of this implicit version of the
reduced-gravity shallow-water model is that the Ja-
cobian matrix, i.e., the tangent linear model, could
be directly obtained during the implicit time step-
ping. In addition, the adjoint model was obtained by
transposing the Jacobian matrix (see Appendix B).
This contributed to the efficiency of the calculation of
the CNOP-I (Terwisscha van Scheltinga and Dijkstra,
2008).

To simulate the Kuroshio path variations, the do-
main of integration was set as a part of the North
Pacific basin (15◦–55◦N, 122◦E–158◦W). The horizon-
tal resolution was 0.2◦ × 0.2◦; Simonnet et al. (2003)
suggested this spatial resolution to be sufficient to cap-
ture the strongly nonlinear behavior of the Kuroshio.
Some studies have found that the realistic inclination
of the Japanese coast is important to the simulation of
the Kuroshio path (Chao and McCreary, 1982; Saiki,
1982; Pierini, 2006, 2008). Hence, we use a realis-
tic coastline, but we used the 200-m depth contour
as the continental boundary; otherwise, the modeled
Kuroshio would enter the East China Sea. No-slip
boundary conditions were used in the model. The
model ocean was forced using the monthly averaged
climatological wind stress of Hellerman and Rosenstein
(1983). Standard parameter values in the model are
shown in Table 1.

4. Simulated results and analysis

After 10 years of time integration, the solution of
the ocean model reached a statistical steady state. The
model was next integrated for an additional 20 years;
the results of this 20-year integration are analyzed be-

Fig. 2. Time series of the kinetic energy in the Kuroshio
region south of Japan (25◦–35◦N, 132◦–140◦E).

low.
To show the Kuroshio path variations, we used the

kinetic energy in the Kuroshio region south of Japan
defined by

Ekin(t) =
∫

Λ

h(t)[u2(t) + v2(t)]dxdy, (14)

where Λ denotes the Kuroshio region south of Japan
(25◦–35◦N, 132◦–140◦E). This kinetic energy measure
was also used in Pierini (2006), who pointed out that
when the kinetic energy is large, the Kuroshio is in the
KLM; otherwise it is in the NLM.

The time series of the kinetic energy are plot-
ted in Fig. 2. The figure shows that the modeled
Kuroshio path variations were dominated by interan-
nual changes and that the KLMs occurred three times
in these 20 years. In model year 21, the Kuroshio
shifted to the KLM, and the time of transition was
a few months, which is similar to the observed tran-
sition time (Kawabe, 1995). However, the lifetime of
the modeled KLM was relatively short. The reason for
this may be the lack of the baroclinic instability and
bottom topography in the shallow-water model, but
this hypothesis needs further analysis.

To show how the modeled Kuroshio path evolved,
snapshots of the upper-layer thickness field, includ-
ing the KLM event of year 21–22, were shown in Fig.
3. In the reduced-gravity model, upper-layer thickness
contours were regarded as approximate streamlines of
the surface layer flow. As shown in Fig. 3, the se-
quence included the transition process of the Kuroshio
path from the NLM to the KLM (and back). Figure
3a shows the Kuroshio in the typical NLM. In model
year 21.33, a small meander emerged in the Kuroshio
path (Fig. 3b). Over the following months, the am-
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Fig. 3. Snapshots of the upper-layer thickness field including the KLM event around model year
22. Units: m.

plitude of the small meander grew steadily (Figs. 3c
and 3d). The Kuroshio developed into a significant
large KLM in model year 22 (Fig. 3e). The KLM
was maintained for a period of time, but then an iso-
lated cold-core eddy was shed (Fig. 3f). Figure 3g
shows that the isolated cold-core eddy was detached
from the KLM and propagated westward. This pro-
cess was actually detected in observation data from
the 1975–1979 KLM event (Nishida, 1982). Following
the detachment of the cold-core eddy, the Kuroshio
returned to a NLM state (Fig. 3h), similar to that
shown in Fig. 3a. Notably, the results in Fig. 3 are
similar to those in Fig. 9 of Qiu and Miao (2000),

where a two-layer primitive-equation model was used
to simulate the Kuroshio path variations.

In the following section, we focus on the formation
of the KLM, i.e., the transition process from the NLM
to the KLM (corresponding to the changes shown in
Figs. 3b–e). The simulation results show that, al-
though the duration of the modeled KLM is a some-
what short, the reduced-gravity shallow-water model
captured the essential features of the Kuroshio path
variations. In particular, the formation process of
the KLM was simulated adequately, which motivated
the predictability study of the KLM using the CNOP
methodology with this model.
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5. Impacts of the parameter errors and initial
errors

In this section, we address the effect of errors in pa-
rameter values and errors in the initial condition on the
prediction of the KLM by determining the CNOP-Ps
and the CNOP-I. The states shown in Figs. 3b–e were
the assumed reference states, and the corresponding
values of parameters shown in Table 1 were regarded
as reference parameter values.

To facilitate this discussion, several variables have
been defined. X(t) = Mt(p)(X0) = (ut, vt, ht)T indi-
cates the state vector at time t; x0 = (u′

0, v
′
0, h

′
0)

T rep-
resents the initial perturbation; x(t) = Mt(p)(X0 +
x0) − Mt(p)(X0) = (u′

t, v
′
t, h

′
t)T is the perturbation

vector at time t which results from the initial per-
turbation x0. Similarly, xp(t) = Mt(p + p′)(X0) −
Mt(p)(X0) = (u′

tp, v′tp, h′
tp)T is the perturbation vec-

tor at time t caused by the model parameter pertur-
bations p′.

5.1 Calculation of the CNOP-P

In the shallow-water model, there are three
parameters—lateral friction coefficient AH, wind stress
amplitude τ0, and interfacial friction coefficient RI—
that are often determined empirically and have rela-
tively large uncertainties. Hence we will examine the
effects of the uncertainties in these three parameters
on the prediction of the KLM.

To use the CNOP-P method, we first defined an
objective function, which is a measurement of the pre-
diction error, then we solved the maximum points of
the objective function. The objective function was de-
fined as the kinetic energy of the final perturbation
in the Kuroshio region south of Japan, which can be
written as

J(p′) =
1
2
‖Mt(p + p′)(X0) − Mt(p)(X0)‖KE

=
1
2
‖xp(t)‖KE , (15)

where

‖xp(t)‖KE =
∫

Λ

(ht + h′
tp)[(u′

tp)2 + (v′tp)2]dxdy .

This objective function was defined according to a cri-
terion in which the larger the difference between the
forecast Kuroshio path and reference Kuroshio path
is, the larger value the objective function should take,
and the smaller the difference, the smaller the value
of the objective function. In fact, before the objec-
tive function norm ‖xp(t)‖KE was defined, we chose
three different function norms to perform some exper-
iments: (1) the difference of kinetic energies between
the forecast and reference states, (2) the first-order

approximation of the difference of the kinetic energies,
and (3) ‖xp(t)‖KE. We found that ‖xp(t)‖KE was able
to satisfy the above criterion more than other norms.
For this reason, we defined ‖xp(t)‖KE as the objective
function norm.

After determining the objective function, we solved
the nonlinear optimization problem using [Eq. (6)] to
obtain the CNOP-P numerically using the SPG2 algo-
rithm (Birgin et al., 2000).

Four cases were considered: optimizing separately
for each of the three parameters—including lateral
friction coefficient AH (case AH), amplitude of wind
stress τ0 (case TAU), and interfacial friction coefficient
RI (case RI)—and optimizing simultaneously over all
three parameters (case ALL). For these four cases, the
initial condition X0 in Eq. (6) was taken as the state
corresponding to Fig. 3b. The optimization time was
set as t = 240 d. The reference state corresponded to
that shown in Figs. 3b–e. The reference values of the
three parameters are shown in Table 1.

Next, we set the constraint condition of parame-
ter perturbations for each case. For the amplitude of
wind stress (case TAU), Kutsuwada (1982) estimated
its standard deviation using the observation data and
found its maximum error to be ∼0.02 Pa in the North
Pacific. Hence, we set the constraint condition for case
TAU as |τ ′

0| � 0.02 Pa. For cases RI and AH, however,
there were no observations based on error estimates
for RI and AH. In these cases, we based our estimates
on the precondition that the parameter perturbation
should be in an interval for which the numerical model
was still able to capture the essential features of the
KLM path. According to this precondition, the con-
straint conditions for cases RI and AH were set as
|R′

I| � 1.4584 × 10−8 s−1 and |A′
H| � 150 m2 s−1, re-

spectively. For case ALL, the condition was set as the
combination of the above three conditions:⎧⎪⎪⎨

⎪⎪⎩
|R′

I| � 1.4584× 10−8 ,

|τ ′
0| � 0.02 ,

|A′
H| � 150 .

(16)

For the precondition related to the R′
I and A′

H, we in-
vestigated the following question: How does the model
respond to the parameter perturbations the are out-
side the bounds? We performed four experiments us-
ing different values of R′

I and A′
H to address this prob-

lem.
First, we used a value of R′

I larger than the up-
per bound of the constraint condition, and the value
was set as R′

I = 2.1 × 10−8, which resulted in RI =
6.4752×10−8. The model was integrated for 30 years,
and the simulation results of the latter 20 years were
used to calculate the kinetic energy using Eq. (14).
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Fig. 4. Same as the Fig. 2 but for another two different values of RI, (a) RI = 6.4752×10−8 ,
(b) RI = 2.2752 × 10−8.

Figure 4a shows the time series of the kinetic energy.
We found the kinetic energy to be ∼1.5× 1013 m5 s−2

over the latter 20 years. In this case, the Kuroshio al-
ways had an NLM path (see Fig. 2 and Fig. 4a). That
is to say, when RI = 6.4752×10−8, the model was not
able to capture the KLM path. On the other hand,
when R′

I = −2.1×10−8 (namely RI = 2.2752×10−8), a
similar experiment was performed, and the kinetic en-
ergy for simulation over the latter 20 years was plotted
(Fig. 4b). Figure 4b shows that, although the model
was able to simulate the KLM path, the path occurred
too many times, i.e., the frequency of the oscillation of
the Kuroshio path was higher than that of observation
data. In addition, when the KLM paths occurred, all
of the kinetic energies were >2.6× 1013 m5 s−2, while
the kinetic energy was only ∼2.2 × 1013 m5 s−2 in
Fig. 2. This means that the simulated KLM paths
were too strong. Hence, when RI = 2.2752 × 10−8,
the model was not able to capture a reasonable KLM
path. For case AH, we performed similar computa-
tions and found that KLM paths in the model were
too weak (figure not shown) when A′

H = 200 (namely
AH = 650). In addition, when A′

H = −200 (namely
AH = 250), the model became numerically unstable.
Therefore, when the model parameter perturbations
were outside the bounds set by the constraint condi-
tions, the model was not able to capture reasonable

KLM paths.
Next we calculated the CNOP-Ps. For each case,

one CNOP-P was obtained using Eq. (6). The results
are shown in Table 2. The CNOP-P for case ALL is
not equal to a simple combination of the CNOP-Ps of
the cases RI, TAU, and AH. Specifically, the simple
combination of the CNOP-P for the parameter was
−1.4584× 10−8 s−1, 0.02 Pa, −150 m2 s−1. The sign
of R′

I in the combination was opposite that of the cor-
responding component of the CNOP-P for case ALL.

Notably, the CNOP-P for case RI caused the KLM
to be overpredicted (Fig. 5, yellow line), while the cor-
responding component of the CNOP-P for case ALL
caused the KLM to be underpredicted (Fig. 5, red
line). Additionally, the CNOP-Ps for the wind stress
amplitude and the lateral friction coefficient caused
the KLM to be underpredicted. The error compo-
nents for these two parameters in the CNOP-P for
case ALL were the same as the simple combination of
the CNOP-Ps for both case AH and TAU; they also
caused the KLM to be underpredicted (Fig. 5, blue
line). The CNOP-P for case RI demonstrated model
behavior opposite that of the CNOP-Ps for case TAU
and AH. Hence, if the error component for the inter-
facial friction coefficient in the CNOP-P for case ALL
was the same as the CNOP-P for this parameter, it
would have reduced the prediction error caused by the

Table 2. The CNOP-Ps for different cases.

Objective function value
Optimized parameter perturbation CNOP-P (m s−2)

Interfacial friction coefficient perturbation R′
I (case RI) −1.4584 × 10−8 s−1 6.7×1011

Wind stress amplitude perturbation τ ′
0 (case TAU) 0.02 Pa 3.7 × 1012

Lateral friction coefficient perturbation A′
H (case AH) −150 m2 s−1 6.0×1012

The perturbation of the three parameters (case ALL) (1.4584 × 10−8, 0.02, −150) 1.5×1013
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error components for the other two parameters in the
CNOP-P for case ALL. Then the simple combination
of the CNOP-P for each parameter would not have
resulted in the largest prediction error. As shown in
Fig. 5, the CNOP-P for case ALL caused the axis
of the Kuroshio to significantly deviate from the refer-
ence axis with respect to the simple combination of the
CNOP-Ps for cases RI, TAU, and AH (see the gray line
and the black solid line). For this reason, the CNOP-
P for case ALL, rather than the simple combination
of the CNOP-P for each of three parameters, has the
largest impact on the prediction of the KLM. In brief,
compared to the CNOP-P for case RI, the opposite
sign of the R′

I in the CNOP-P for case ALL achieves
the purpose of CNOP-P: to maximize the measure-
ment of the prediction error of the KLM.

5.2 Calculation of the CNOP-I

To determine the CNOP-I, the objective function
was defined as the kinetic energy of the final pertur-
bation in the Kuroshio region south of Japan. It is
written as

J(x0) =
1
2
‖Mt(p)(X0 + x0) − Mt(p)(X0)‖KE

=
1
2
‖x(t)‖KE , (17)

where ‖x(t)‖KE =
∫
Λ(ht + h′

t)[(u′
t)2 + (v′t)2]dxdy, the

initial state X0 is the state corresponding to the Fig.
3b. The values of the parameters were fixed (as in Ta-
ble 1), and the optimal time was set as t = 240 d. In
Eq. (3), the initial constraint norm was defined as the
total energy norm of initial perturbation in the whole
model domain. The total energy was defined as the
sum of the kinetic and potential energy, similar to the
one used by Primeau (2002). This norm was used to
assess all possible causes of the error growth. Hence,
the constraint condition was set as

∥∥x0

∥∥
TE

=
1
2
{
H

∫
[(u′

0)
2 + (v′0)

2]dxdy +

g′
∫

(h′
0)

2dxdy
}

� 3.6 × 1011. (18)

In this equation, H is the mean upper-layer depth, g′

is the reduced gravity, and the magnitude of the con-
straint condition is 3.6 × 1011 m5 s−2. For this value,
the maximal amplitudes of the perturbations of veloc-
ity of flow obtained in the initial perturbation were
close to the observation error.

We again used the SPG2 algorithm (Birgin et al.,
2000) to solve the optimization problem [Eq. (3)]. We
found that the CNOP-I located the boundary of the
initial constraint, which was consistent with the con-
clusion of Liu (2008). The value of the objective func-

Fig. 5. The Kuroshio axes at day 240 for reference state
(black dashed line), case RI (yellow line), RI compo-
nent of the CNOP-P for case ALL (red line), τ0 and AH

components of the CNOP-P for case ALL (blue line),
case ALL (gray line), and the simple combination of the
CNOP-Ps of the cases RI, TAU, and AH (black solid
line). The Kuroshio axis is represented as 520-m contour
of the upper-layer thickness.

tion at the optimum was 1.92 × 1013 m5 s−2. Figure
6a shows the distribution of the upper-layer thickness
anomaly of the CNOP-I. The upper-layer thickness of
the background field (Fig. 3b) was also plotted in
the figure to reveal the connection between the back-
ground and the CNOP-I pattern. Figure 6b shows
the evolution of the CNOP-I and the background field
(Fig. 3e) at the prediction time. The perturbation at
day 240 was mainly located in the target area (Fig.
6b).

Figure 6a shows that the largest amplitudes of
the CNOP-I were located south of Kuroshio exten-
sion and in the Kuroshio recirculation region south
of Japan. This means that the perturbations located
these two regions were key for the prediction of the
KLM. The reason for this CNOP-I pattern may be that
the Kuroshio recirculation plays an important role in
the formation of the KLM. Qiu and Miao (2000) sug-
gested that the intensification of the recirculation may
result in the development of the KLM. Hence, a posi-
tive anomaly of the CNOP-I in the recirculation region
had important effects on the prediction of the KLM
and resulted in the large prediction error. Also, the
mesoscale eddies south of the Kuroshio extension may
also have been responsible for the Kuroshio path vari-
ations (Ebuchi and Hanawa, 2003), but they were not
captured in this analysis. Investigating the time evolu-
tion of CNOP-I may help us to understand the physi-
cal mechanism for the formation of the KLM; however,
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Fig. 6. Upper-layer thickness component of the perturbations (shading) and that of background
field (contour) at (a) the initial time (corresponding to Fig. 3b) and (b) the prediction time
t = 240 d (corresponding to Fig. 3e), where the perturbations at the initial time and prediction
time indicate the CNOP-I and the evolution of the CNOP-I, respectively. Units: m.

this is outside the scope of this study.

5.3 Prediction errors

In this subsection, we compare the prediction er-
rors caused by CNOP-I and CNOP-Ps, respectively.
The value of the objective function is a measure of the
prediction error. Hence, the histogram of the values of
the objective function obtained during the calculation
the CNOP-Ps for the different cases AH, RI, TAU,
ALL, and CNOP-I were plotted (Fig. 7). The value
of the objective function caused by CNOP-P for case
ALL was that it was much larger than that caused by
CNOP-P optimized alone for each of the three param-
eters. In addition, the value of the objective function
caused by CNOP-I was larger than that caused by the
CNOP-P for case ALL. Therefore, initial error is the
most important factor in the prediction of the KLM.

Although the effects of the model parameter errors
and initial error on the prediction of the KLM can be
roughly seen in Fig. 7, we then focused on verifying

Fig. 7. The values of objective function for (1) case RI,
(2) case TAU, (3) case AH, (4) case ALL, and (5) the
CNOP-I.

the significance of the prediction errors and the pre-
diction results.

First, we superimposed the CNOP-Ps (Table 2) on
the reference values of the parameters, and we super-
imposed the CNOP-I on the initial reference state (cor-
responding to Fig. 3b). Then we integrated the model
for 240 days. Because there were four CNOP-Ps and
one CNOP-I, five forecast fields for 240 days were ob-
tained. For each forecast field, we computed the root
mean square error (RMSE; Fig. 8) with respect to the
reference fields (Figs. 3b–e) of the upper-layer thick-
ness in the Kuroshio region south of Japan (25◦–35◦N,
132◦–140◦E). The forecast skill was lower when the
RMSE was larger and greater when the RMSE was
smaller.

Fig. 8. Time series of root-mean-square error (RMSE)
of upper-layer thickness between forecast states and ref-
erence states in the Kuroshio region south of Japan (25◦–
35◦N, 132◦–140◦E).
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To determine whether the prediction results were
acceptable, we used a criterion based on the root mean
square (RMS) variation of the upper-layer thickness
in the Kuroshio region south of Japan. This criterion
(shown as the dot-dashed line in Fig. 8) was used by
Komori et al. (2003) and Miyazawa et al. (2005) to es-
timate the time limits for the prediction of the KLM.
When the RMSE was larger than the RMS variation,
the prediction results were unacceptable.

As shown in Fig. 8, the CNOP-P for case ALL
resulted in a larger RMSE than that for each of the
three parameters. In addition, the RMSE caused by
the CNOP-P for case ALL was greater than the RMS
variation at day 240, while the RMSE caused by the
CNOP-P for each parameter was less than the RMS
variation. Therefore, the CNOP-P for case ALL re-
sulted in a significant prediction error that led to the
failure of the prediction. The RMSE caused by CNOP-
I was also much larger than the RMS variation. Fur-
thermore, the RMSE caused by CNOP-I was ∼50 m
at day 240, which was greater than the RMSE caused
by the CNOP-P for case ALL (∼39 m). This implies
that the initial error had a greater impact on the pre-
diction of the KLM. Simultaneously, the effects of the
errors of the model parameters on the prediction were
not negligible because they resulted in significant pre-
diction errors and made the forecast field unacceptable
at day 240. Hence, we needed to improve the initial
condition and then estimate the values of model pa-
rameters while forecasting the KLM.

Finally, to investigate the difference between the
reference path and forecast paths at day 240, we plot-
ted the Kuroshio axes from the five forecast fields (Fig.
9). The Kuroshio axis was represented as the 520-
m contour of the upper-layer thickness. In Fig. 9,
the forecast axis caused by CNOP-P for the case AH,
RI, and TAU was not significantly different from the
reference axis. However, there was a large difference
between the forecast axis caused by CNOP-P for case
ALL and the reference axis. The forecasted meander
was much weaker than that of the reference meander.
In contrast, the forecast meander caused by CNOP-I
was stronger than the reference meander. These re-
sults demonstrate that the errors of the three model
parameters and the initial error both had significant
effects on the prediction of the KLM.

6. The sensitive analyses of the results

Previous results indicate that the prediction error
caused by the CNOP-I was larger than that caused
by the CNOP-Ps in the prediction of the KLM. But
when calculating the CNOP-I and CNOP-Ps, we made
choices about the optimization time and the final

Fig. 9. The Kuroshio axes at day 240 for reference state
(black dashed line), the CNOP-I (black solid line), case
RI (yellow line), case TAU (red line), case AH (blue line)
and case ALL (gray line). The Kuroshio axis is repre-
sented as 520-m contour of the upper-layer thickness.

target region. Were these results sensitive to these
choices?

To answer this question, we investigated the sen-
sitivity of the results to the optimization time. As
discussed in the section 5.1 and 5.2, the optimization
time was set as t = 240 d. In this part of our investiga-
tion, we set another three different optimization times
t = 60 d, t=120 d, and t = 180 d to calculate the
CNOP-Ps and CNOP-Is. For the three different op-
timization times, the initial reference states were the
same (see Fig. 3b). Other settings were the same
as those in the sections 5.1 and 5.2. The CNOP-Ps
for different optimization times are shown in Table 3.
The table shows that the CNOP-Ps were different for
different optimization times. Therefore, the CNOP-
Ps were sensitive to the optimization time. To show
the differences among the patterns of the CNOP-Is for
different optimization times, the similarity coefficient
was used. It is defined as

S =
〈e1, e2〉
‖e1‖ ‖e2‖ , (19)

where ‖ei‖2 = 〈ei,ei〉, i=1,2, and the inner product is
Euclidean over the whole model region. In the Eq.
(19),e1 represents one of three CNOP-Is for the three
optimization times t=60 d, t=120 d, and t=180 d, and
e2 represents the CNOP-I for the optimization time
t=240 d. Based on Eq. (19), the closer to 1 S is, the
more similar e1 and e2 are. According to Eq. (19), the
similarity coefficients are S=0.66, S=0.94, and S=0.93
for the optimization times t=60 d, t=120 d, and t=180 d,
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Table 3. The CNOP-Ps for different optimization times.

Optimization times Case RI Case TAU Case AH
(d) (R′

I) (τ ′
0) (A′

H) Case ALL

t = 60 −1.4584 × 10−8 −0.02 −150 (−1.4584 × 10−8, 0.02,−150)
t = 120 −1.4584 × 10−8 −0.02 −150 (1.4584 × 10−8, 0.02,−150)
t = 180 −1.4584 × 10−8 0.02 150 (−1.4584 × 10−8,−0.02, 150)

respectively. Therefore, some differences among the
patterns of the CNOP-I for different optimization
times occurred, but the differences were very small for
t=120 d and t=180 d.

For each optimization time, we compared the RM-
SEs caused by the CNOP-Ps and CNOP-I, respec-
tively, and the results are shown in Fig. 10. For each
optimization time, the RMSE caused by the CNOP-I
was greater than that result from the CNOP-Ps for
different cases. This means that the initial error had
a greater impact on the prediction of the KLM, which
was consistent with the result presented in subsec-
tion 5.3. Hence, the conclusions obtained previously
were not sensitive to the optimization times, although
the CNOP-Ps were different for different optimiza-
tion times and there were some differences among the
CNOP-Is.

To investigate the sensitivity of the results to the fi-
nal target region, we chose another two regions, Region
1: (22◦–35◦N, 130◦–140◦ E) and Region 2: (28◦–35◦N,
135◦–140◦E). Because we considered the prediction of
the KLM south of Japan, other regions, such as east of
Taiwan or the Kuroshio extension region were not se-
lected. For the two regions, we calculated the CNOP-
Ps and the CNOP-Is, respectively. The CNOP-Ps for
different regions were the same and were equal to the
results shown in the Table 2. For the CNOP-Is for dif-

ferent target areas, we calculated the similarity coeffi-
cients using Eq. (19). In this case, the e1 in Eq. (19)
represented the CNOP-I obtained for target Region 1
or Region 2, and e2 represented the CNOP-I corre-
sponding to Fig. 6a. The coefficients were S = 0.996
and S = 0.994 for Region 1 and Region 2, respectively.
Hence, the CNOP-Is for different target regions were
very similar to those shown in Fig. 6a. Therefore,
CNOP-P and CNOP-I were not sensitive to the choice
of the final target regions in south of Japan. Simi-
larly, the RMSEs caused by CNOP-Ps and CNOP-I
for each target region were almost identical to Fig. 8
(figure not shown).

In short, the sensitivity analyses indicate that the
results presented in subsection 5.3 are robust for dif-
ferent optimization times and final target regions.

7. Conclusions and discussion

The uncertainties in the prediction of the KLM
caused by initial errors have been investigated by many
researchers, but the impact of errors caused by model
parameters has not. The CNOP method was capa-
ble of addressing the problems of these two aspects of
the predictability study. In this study, under the as-
sumption of ignoring other possible kinds of model er-
rors, we investigated the effects of the errors of model

Fig. 10. Same as the Fig. 8, but for different optimization times (a) t = 60 d, (b)
t = 120 d, (c) t = 180 d.
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Fig. 11. Upper-layer thickness component of the (a) CNOP-I and (b) FSV. Units: m.

parameters on the prediction of the KLM using the
CNOP-P method. Simultaneously, the impacts of ini-
tial error on the prediction were examined using the
CNOP-I method. Both methods were applied to a
reduced-gravity shallow-water model used to simulate
the Kuroshio path variations. Although the model
was equivalently barotropic, the results show that the
model can capture the essential features of the path
variations. One particular simulation was assumed as
reference state, and the standard values of the param-
eters were regarded as reference values.

Using this model and the CNOP methodology, we
examined the differences between the forecast mean-
der states and reference states. In particular, for
the model parameters, we considered four cases, in-
cluding optimizing separately each of three uncer-
tain parameters—interfacial friction coefficient, wind-
stress amplitude, and lateral friction coefficient—and
we optimized simultaneously for all three parameters.
The results showed that the CNOP-P for all three pa-
rameters was not equal to the simple combination of
the CNOP-P for each of the three parameters. For the
same model and reference state, the CNOP-I was also
obtained.

The impacts caused by CNOP-Ps for the different
cases and CNOP-I on the prediction of the KLM were
substantial. The results demonstrate that the CNOP-
P optimized simultaneously for all three parameters
(case ALL) resulted in a significant prediction error
and made the forecast field unacceptable after 240
days. The CNOP-P optimized alone for each of three
parameters, however, did not cause a large prediction
error. The prediction error caused by CNOP-I was
greater than that caused by the CNOP-P for case ALL.
This implies that the initial condition may play a more
important role in the prediction of the KLM. The role
of multiple parameter uncertainties in this model, how-
ever, cannot be neglected because they also resulted in
significant prediction errors. Simultaneously, the sen-
sitive analyses indicated that these results are robust

for different optimization times and final target re-
gions. Thus, all of these results show initial error to be
the dominant source of the uncertainties in the predic-
tion of the KLM, although the model parameter errors
are also important for predicting the KLM. Further-
more, to enhance the predictability of the KLM, the
initial conditions should first be improved. This moti-
vates us to develop the data assimilation system and
to improve the observation parameters for Kuroshio
path variations. Of course, to further reduce the pre-
diction error, we should also estimate the values of
model parameters as well as possible.

Mu et al. (2003) pointed out that the CNOP-I
method is a natural generalization of the linear sin-
gular vector (SV) method into the nonlinear regime.
Therefore, it was necessary to compare the CNOP-
I and SV methods. Considering the first SV (FSV)
to be dominant, the difference between the CNOP-
I and FSV is briefly discussed here. The calculation
settings for the CNOP-I and FSV are almost the same
as that shown in the subsection 5.2. The only differ-
ence is that the objective function value is obtained
by integrating the tangent linear model when deriv-
ing the FSV. The upper-layer thickness components
of the CNOP-I and FSV are shown in Fig. 11. From
the figure, we can see that the CNOP-I and FSV are
similar, but there are some differences around the lo-
cation (30◦N, 142◦E). Also, their amplitudes are dif-
ferent. To investigate their respective evolutions, the
CNOP-I and FSV were superimposed on the initial
reference state (corresponding to Fig. 3b), and then
the nonlinear model was integrated for 240 days. Fig-
ure 12 shows the kinetic energy of development of the
CNOP-I and FSV, demonstrating that the kinetic en-
ergy of the perturbation caused by the CNOP-I was
larger than that caused by the FSV. This implies that
the optimal perturbation in the nonlinear model was
the CNOP-I rather than the FSV (which is optimal in
the tangent linear model).

The generality of these results with respect to the
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Fig. 12. The time evolution of the CNOP-I and FSV in
the nonlinear model. The kinetic energy of perturbation
is defined by Eq. (17) in which the time t is from day 0
to day 240.

reference state was also investigated. In fact, we cal-
culated the CNOP-Ps and CNOP-Is for different ref-
erence states and compared their effects on the pre-
diction of the KLM. We found there to be no qual-
itative differences among the results, and hence, the
details are not shown in this paper. These conclusions
were also obtained using a reduced-gravity shallow-
water model. Whether the results are model depen-
dent needs be further investigated, and in the near
future we will use a more realistic ocean general cir-
culation model to explore the predictability of the
Kuroshio path transitions. It may be possible to bet-
ter estimate the effects of the model parameter errors
and initial error on the prediction of the KLM using a
more realistic model.
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APPENDIX A

The Derivations of the CNOP-P and
CNOP-I by the Spectral Projected

Gradient 2 Algorithm

The Spectral Projected Gradient 2 algorithm
(SPG2) was designed to solve the minimum problem of

a nonlinear function subject to a set of constraints on
the variables. The formation of the problem is written
as

min
x∈Ω

f(x) , (A1)

where f(x) is the objective function and x ∈ Ω indi-
cates the set of constraints. For the readers’ conve-
nience, we provide the details of the SPG2 algorithm
based on Birgin et al. (2000). The mathematical sym-
bols used in following algorithm are similar to those
used by Birgin et al. (2000).

Steps of algorithm SPG2 are:
Step 0: Given an integral m � 1; set the param-

eters αmin > 0 and αmax > αmin; set a constant
parameter γ ∈ (0, 1) and 0 < σ1 < σ2 < 1; and
α0 ∈ [αmin, αmax] is arbitrary. Given a starting it-
erate point x0, if x0 /∈ Ω, replace x0 by PΩ(x0). The
PΩ is an projection operator and defined as PΩ(x) =
argminx̂∈Ω ‖x̂ − x‖. Set k = 0, where k indicates iter-
ation step.

Step 1: If ‖PΩ[xk −∇f(xk)] − xk‖2 � ε, the itera-
tion stop and go to step 7.

Step 2: Compute dk = PΩ(xk − αk∇f(xk)) − xk.
Step 3: Determine λk using line search algorithm:
Step 3.1: Compute fmax = max{f(xj−k)|0 � j �

min{k, m − 1}}, x+ = xk + dk, δ = 〈∇f(xk), dk〉, set
λ = 1;

Step 3.2: If f(x+) � fmax + γλδ, the line search
stop and go to step 3.6;

Step 3.3: Compute λtemp = − 1
2λ2δ

/
(f(x+)−f(xk)

−λδ);
Step 3.4: If (λtemp � σ1 and λtemp � σ2λ), set

λ = λtemp, else set λ = λ/2;
Step 3.5: Compute x+ = xk + λdk, go to step 3.2;
Step 3.6: Set λk = λ.
Step 4: Compute xk+1 = xk+λkdk, sk = xk+1−xk,

yk = ∇f(xk+1) −∇f(xk) and βk = 〈sk, yk〉.
Step 5: If βk � 0, set αk+1 = αmax, else αk+1 =

min{αmax, max{αmin, 〈sk, sk〉 /βk }}.
Step 6: Set k = k + 1, go to step 1.
Step 7: Set x∗ = xk.
The derivations of the above algorithm have been

shown by Birgin et al. (2000). In the following sec-
tion, we demonstrate how to use this algorithm. In
our study, the parameters in Step 0 of the algorithm
are set as follows:

m = 10, αmin = 10−3, αmax = 103,

γ = 10−4, σ1 = 0.1, σ2 = 0.9, α0 = 1.

The choices of these parameters in the algorithm may
be sensitive. Some choices may cause the algorithm
not to reach convergence quickly. Hence, before using
this algorithm, some simple tests are needed. In Step
1 of the algorithm, the parameter ε is set as ε = 10−6.
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The SPG2 algorithm is used to compute minimiza-
tion problems; while CNOP-P and CNOP-I are re-
lated to the constrained maximization problems. In
this case, we turn the maximization problems into the
minimization problems. In particular, we rewrite the
objective functions as{

J1(p′) = −J(p′) forCNOP − P ,

J1(x0) = −J(x0) forCNOP − I ,
(A2)

where J(p′) and J(x0) are defined by Eqs. (15) and
(17), respectively. Then, we can obtain the CNOP-P
and CNOP-I by solving the minimum problems of the
objective function J1 using the SPG2 algorithm.

From the algorithm SPG2, we can see that, in or-
der to use the algorithm, three subroutines that define
the objective function, the constraint conditions, and
the gradient of objective function must be supplied. In
our study, the objective function can be directly ob-
tained using Eqs. (15) and (17) by the integral of the
nonlinear model, and the constraint conditions are also
readily derived using Eqs. (16) and (18). The most
important subroutine is the definition of the gradient
of objective function.

For the calculation of the CNOP-P, the gradients
of objective function with respect to the perturbations
of model parameters need to be supplied to the SPG2
algorithm. In this study, only three model parame-
ters were optimized. Because the number of the pa-
rameters is very few, the derivations of the gradients
become simple and need not to use the adjoint model
with respect to the model parameters. The gradients
can be obtained using the following finite difference
approximation

∇p′J1(p′) =
∂J1(p′)

∂p′ ≈ J1(p′ + δp) − J1(p′)
δp

, (A3)

where δp denotes the very small perturbation.
For the calculation of the CNOP-I, however, the di-

mension of the initial field is 240 000—too large to di-
rectly calculate the gradient of objective function with
respect to initial perturbations by the finite difference
approximation. In this case, we need to derive the
formula of the gradient of the objective function with
respect to initial perturbations.

According to Eqs. (A2) and (17), we have

J1(x0) = − J(x0) = −1
2

∥∥(u′
t, v

′
t, h

′
t)

T
∥∥

KE

= − 1
2

∫
Λ

(ht + h′
t)[(u

′
t)

2 + (v′t)
2]dxdy

≈ − 1
2

∑
Λ

ΔxΔy(ht + h′
t)[(u

′
t)

2 + (v′t)
2] ,

(A4)

where
∑

Λ denotes the summation over the region Λ.
The first-order variational of J1(x0) is as follows:

δJ1(x0) = − 1
2
ΔxΔy

〈
Q

(
(ht + h′

t) · 2u′
t, (ht + h′

t)·

2v′t, (u
′
t)

2 + (v′t)
2
)T

,Mδx0

〉

= − 1
2
ΔxΔy

〈
MTQ

(
(ht + h′

t) · 2u′
t, (ht + h′

t)·

2v′t, (u
′
t)

2 + (v′t)
2
)T

, δx0

〉
. (A5)

Hence, the gradient of J1(x0) with respect to x0 is

∇x0J1(x0) = − 1
2
ΔxΔyMTQ

(
(ht + h′

t) · 2u′
t, (ht + h′

t)·
2v′t, (u

′
t)

2 + (v′t)
2
)T

, (A6)

where Q is a local projection operator and takes value
1(0) within (without) the region Λ, and M and MT

indicate the tangent linear and adjoint model with re-
spect to initial field, respectively. From Eq. (A6), we
can see the adjoint model is needed when calculating
the gradient of the objective function with respect to
initial perturbations.

In summary, in this study the adjoint model with
respect to model parameters is not needed because the
number of the optimized parameters is very few. Of
course, if we consider more model parameters in fu-
ture, the adjoint model may be needed. For the cal-
culation of the CNOP-I, we need the adjoint model
with respect to the initial field, which is contributed
to calculating the gradient of the objective function
with respect to the initial perturbations.

APPENDIX B

Tangent Linear and Adjoint Models
for Implicit Model

In this appendix, we demonstrate how to obtain
the tangent linear and adjoint models for an implicit
model. The derivations below are based on Terwisscha
van Scheltinga and Dijkstra (2005).

Generally, a spatial discretization model can be
symbolically written as

T
∂w

∂t
+ Lw + N(w) = F , (B1)

where T and L are discretized linear operators; N is
a nonlinear operator, and F is the explicitly known
forcing. The Crank–Nicholson scheme is used to de-
fine the time discrete operators in Eq. (B1) with a
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time step Δt. Then, the implicit model can be written
as

1
Δt

Twi+1 + 0.5[Lwi+1 + N(wi+1)] = Gi, (B2)

where

Gi =
{

1
Δt

Twi − 0.5[Lwi + N(wi)]
}

+ 0.5(Fi + Fi+1) .

For simplicity, we denote P (wi+1) = 1
ΔtTwi+1 +

0.5[Lwi+1 + N(wi+1)].
To solve the nonlinear system of Eq. (B2),

Newton–Raphson method is used and the process of
the iteration is as follows:

wi+1,0 = wi , (B3a)

wi+1,l+1 = wi+1,l + Δwi+1,l+1 , (B3b)

JΔwi+1,l+1 = −P (wi+1,l) + Gi , (B3c)

J =
∂P

∂w

∣∣∣∣
wi+1,l

=
1

Δt
T + 0.5(L + Ni+1,l) , (B3d)

where l denotes the iteration index, and Ni+1,l is the
linearization of N around wi+1,l. From Eqs. (B3b)
and (B3c), we can obtain the following equation,

wi+1,l+1 = wi+1,l + J−1[Gi − P (wi+1,l)] . (B4)

Hence, we have

δwi+1,l+1 =δwi+1,l + J−1(
∂Gi

∂wi
δwi − Jδwi+1,l)

= J−1
∣∣
wi+1,l

∂Gi

∂wi
δwi . (B5)

Assume that wi+1,l+1 is the convergence point of
Newton–Raphson method, namely that wi+1,l+1 is the
solution of the nonlinear system of Eq. (B2). In this
case, according to the convergence criteria of Newton–
Raphson method, wi+1,l+1 is very close to wi+1,l.
Then, Eq. (B5) can be rewritten as

δwi+1 = J−1
∣∣
wi+1

∂Gi

∂wi
δwi . (B6)

So, the tangent linear model can be explicitly written
as

M = J−1
∣∣
wi+1

∂Gi

∂wi
=[

1
Δt

T + 0.5(L + Ni+1)]−1×

[
1

Δt
T − 0.5(L + Ni)], (B7)

where Ni+1 and Ni are the linearization of nonlinear
operators N around wi+1 and wi, respectively. We
can get the adjoint model by transposing the tangent
linear model M. Therefore, the tangent linear and ad-
joint models can be directly obtained during each time
step.
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