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ABSTRACT

The response of a grassland ecosystem to climate change is discussed within the context of a theoret-
ical model. An optimization approach, a conditional nonlinear optimal perturbation related to parameter
(CNOP-P) approach, was employed in this study. The CNOP-P, a perturbation of moisture index in the
theoretical model, represents a nonlinear climate perturbation. Two kinds of linear climate perturbations
were also used to study the response of the grassland ecosystem to different types of climate changes.

The results show that the extent of grassland ecosystem variation caused by the CNOP-P-type climate
change is greater than that caused by the two linear types of climate change. In addition, the grassland
ecosystem affected by the CNOP-P-type climate change evolved into a desert ecosystem, and the two linear
types of climate changes failed within a specific amplitude range when the moisture index recovered to
its reference state. Therefore, the grassland ecosystem response to climate change was nonlinear. This
study yielded similar results for a desert ecosystem seeded with both living and wilted biomass litter. The
quantitative analysis performed in this study also accounted for the role of soil moisture in the root zone
and the shading effect of wilted biomass on the grassland ecosystem through nonlinear interactions between
soil and vegetation. The results of this study imply that the CNOP-P approach is a potentially effective
tool for assessing the impact of nonlinear climate change on grassland ecosystems.
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1. Introduction

The degeneration of grassland ecosystems has been
the focus of much research in recent decades. Observa-
tional and numerical modeling studies have indicated
that temporal and spatial degeneration often occurs
due to climate change and human activity (Wood-
ward, 1987; Klausmeier, 1999; Zeng et al., 2002; Ni,
2004; Woodward et al., 2004; Notaro et al., 2006; Liu
et al., 2006a). Such degeneration can have a great im-
pact on climate conditions and the terrestrial carbon
cycle (Xue and Shukla, 1993; Xue, 1996; Gao et al.,
2003; Piao et al., 2007; Jia et al., 2007). Therefore, it

is important to investigate the potential responses of
grassland ecosystems to climate change.

Climate change has an important influence on
grassland ecosystems, and many studies have inves-
tigated the response of these systems to such changes.
For example, Claussen et al. (1999) demonstrated
that the positive interaction between vegetation and
climate was an important desertification mechanism
within a complex model in the Sahel. Within a simple
model, one possible mechanism for desertification was
associated with climate variability (Liu et al., 2006b).
Zeng and Neelin (2000) emphasized that climate vari-
ability could smooth the gradient from desert to forest
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in the African savanna region due to the nonlinearity
of coupled ecosystems, which favored the maintenance
of unstable and grassland-like states. These investi-
gations generally concerned climate change relative to
desertification mechanisms. However, whether simple
or complex models were used, there has been little
discussion of the response of grassland ecosystems to
nonlinear climate change or of the potential use of a
nonlinear optimization method to analyze differences
in grassland responses to nonlinear and linear climate
changes. Recently, Mu and Wang (2007) employed a
nonlinear optimization method involving a conditional
nonlinear optimal perturbation related to the initial
condition (CNOP-I, Mu et al., 2003) and the linear
singular vector (LSV) to identify nonlinear stability
in the grassland ecosystems of Inner Mongolia. Their
results prompted this study of the response of grass-
land ecosystems to nonlinear climate change using a
nonlinear optimization method.

A conditional nonlinear optimal perturbation re-
lated to parameter (CNOP-P) approach (Mu et al.,
2010), based on the conditional nonlinear optimal per-
turbation related to initial perturbations (CNOP-I)
approach (Mu et al., 2003), is a nonlinear optimiza-
tion method. The CNOP-I approach has been used
to investigate the dynamics of ENSO predictability,
prediction error (Mu and Duan, 2003; Duan et al.,
2004; Duan and Mu, 2006; Mu et al., 2007a), the non-
linear stability of steady states of thermohaline cir-
culation (Mu et al., 2004; Sun et al., 2005), ensemble
prediction (Mu and Jiang, 2008), adaptive observation
(Mu et al., 2007b) and grassland ecosystems (Mu and
Wang, 2007; Sun and Mu, 2009). These applications
illustrate that the CNOP approach is a useful tool for
studying nonlinear systems.

In this study, we explored the response of grass-
land ecosystems to nonlinear climate change, both to
assess differences between the responses of grassland
ecosystems to nonlinear and linear climate changes
using a five-variable theoretical grassland ecosystem
model (Zeng et al., 2006) in Inner Mongolia, and to
determine how the impacted grassland (desert) ecosys-
tem reacts when the climate condition reverts to the
reference state. The CNOP-P, which represents the
perturbation of the moisture index in the theoretical
model, can be regarded as the most nonlinearly unsta-
ble (or most sensitive) climatic perturbation.

2. The model and method

2.1 The five-variable grassland ecosystem
model

A simple theoretical model is an appropriate
method to investigate the response of the grassland

ecosystem to climate change. In the section, the five-
variable grassland ecosystem model is introduced.

The five-variable grassland ecosystem model in-
cludes a three-variable ecosystem model and a three-
layer land-surface hydrological model dealing with one
species of grass (Zeng et al., 2005) native to Inner Mon-
golia. The model uses the following equations:

dMc

dt
=α∗[G(Mc, Wr) − Dc(Mc, Wr) − Cc(Mc)] ,

dMd

dt
=α∗[β

′
Dc(Mc, Wr) − Dd(Md) − Cd(Md)] ,

dWc

dt
=Pc(Mc) + Er(Mc, Wr)−

Ec(Mc, Wr) − Rc(Mc) ,

dWs

dt
=Ps(Mc) − Es(Mc, Ws, Md) + Rc(Mc)−

Qsr(Ws, Wr) − Rs(Mc, Ws, Md) ,

dWr

dt
=Pr(Mc) + αrRs(Mc, Ws, Md)−

Er(Mc, Wr) + Qsr(Ws, Wr) − Rr(Mc, Wr) .

where the variables of the model are living biomass
(Mc), wilted biomass (Md), water content in the vege-
tation canopy (Wc), water content in the thin surface
layer of soil (Ws) and water content in the rooting layer
(Wr). More details about the model parameters and
their physical explanations can be found in the ap-
pendix. Although the model is simple, it clearly and
concisely represents the essential features of the com-
plex atmosphere-ecosystem-soil system, including mul-
tiple equilibria, bifurcation and abrupt changes. This
model has also been employed to investigate the non-
linear stability of the grassland equilibrium in response
to human activity (Sun and Mu, 2009).

2.2 Conditional nonlinear optimal perturba-
tion: Parameter perturbation

To study the first kind of predictability, Mu et al.
(2003) proposed the CNOP-I approach. As the non-
linear generalization of the linear singular vector, the
CNOP-I is the initial perturbation whose nonlinear
evolution attains the maximal value of a cost func-
tion at a given time subject to the constraint condi-
tions. In the work of Mu et al. (2010), the CNOP-P
approach was proposed for studying the second kind of
predictability. The CNOP-P is the parameter pertur-
bation whose nonlinear evolution attains the maximal
value of a cost function. Here, we review the derivation
of this approach. The nonlinear differential equations
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follow:
⎧
⎪⎪⎨

⎪⎪⎩

∂U

∂t
= F (U, P(t)) U ∈ Rn, t ∈ [0, t′]

U |t=0 = U 0

P |t=0 = P0

(1)

where F is a nonlinear continuous operator, U 0 is an
initial value, and P(t) is a time-dependent parameter
vector. Rn is the n-dimensional vector space.

Let Mτ be the propagator of the nonlinear dif-
ferential equations from the initial time 0 to τ , and

let U (τ ;U 0,P(t)) be a solution of the nonlinear
equations at time τ , and satisfies U (τ ;U 0,P(t)) =
Mτ (U 0,P(t)), and P(t) indicates time-dependent
from the initial time 0 to τ during the integration of
the model.

Let U (t′;U 0,P(t)) and U (t′;U 0,P(t)) +
u(t′;U 0,p(t)) be the solutions of the nonlinear dif-
ferential Eq. (1), with parameters vector P(t) and
P(t) + p(t) respectively, where p(t) is a parameter
perturbation and U 0 is an initial value. The solutions
satisfy

{
U (t′;U 0,P(t)) = Mt′(U 0,P(t)) ,

U (t′;U 0,P(t)) + u(t′;U 0,p(t)) = Mt′(U 0,P(t) + p(t)) .

For a proper norm ‖ · ‖, a parameter perturbation
pδ(t) is called a CNOP-P if and only if

J(pδ(t)) = max
p(t)∈Ω

J(p(t)) , (2)

where

J(p(t)) =‖Mt′(U 0,P(t) + p(t))−
Mt′(U 0,P(t))‖ . (3)

P(t) is a reference state, p(t) is the perturbation of
the reference state, and p(t) ∈ Ω is a constraint condi-
tion. In general, the constraint condition is ‖p(t)‖ � δ,
and δ is the constraint condition parameter and rep-
resents the amplitude of the parameter perturbation
that the CNOP-P is the parameter perturbation whose
nonlinear evolution attains the maximum value of the
cost function J at time t′.

To obtain the maximum value of Eq. (2), the
sequential quadratic programming (SQP) algorithm
(Barclay et al., 1997) was employed. Mu et al. (2003)
reported the details regarding this algorithm. The gra-
dients of the cost function were computed using the
definition of the gradient.

2.3 Experimental design

An important parameter in the five-variable grass-
land ecosystem model is the moisture index μ, ex-
pressed as the ratio of annual precipitation to annual
potential evaporation. Although some studies have
examined the impact of interaction between parame-
ters on the Earth system (Hallgren and Pitman, 2000;
Rosero et al., 2010), the moisture index as a parame-
ter was applied to explore the response of grasslands
to climate change in this study. Because this ratio
represents a climatic condition, it was appropriate to
examine the response of the grassland ecosystem to cli-
mate change using this parameter. In our experiment,

the moisture index μ was regarded as an optimization
parameter, and its reference state was constant during
the optimization time. Two moisture indices (μ=0.305
and μ=0.31) and two optimization times (t′=15 years
and t′=20 years) were considered in order to deter-
mine whether or not the numerical results are depen-
dent on the reference state and the optimization time.
The model was discretized based on the fourth-order
Runge-Kutta method with a time step of dt = 1/24
(representing half a month). In Eq. (3), P(t) and
p(t) are continuous but are actually be discretized ac-
cording to the optimization time.

To analyze the grassland ecosystem response to cli-
mate change, we ran the model with the ecosystem
equilibrium state at the initial value for the CNOP-P-
type climate change during the optimization time. Af-
terward, the model was run successively with the refer-
ence state of the moisture index, to depict variations
in the grassland ecosystem. If the grassland ecosys-
tem degenerated into a desert ecosystem, it became
unstable and underwent an abrupt change; otherwise,
the grassland ecosystem was stable. Two kinds of lin-
ear parameter perturbations were designed to investi-
gate the nonlinear character of the response. Although
the parameter perturbation types were disparate, their
amplitudes were uniform.

3. Numerical results

3.1 Response of the grassland ecosystem to
the CNOP-P-type climate change

In this section, the moisture index μ was set at
0.31 as the reference state, and the numerical results
are presented for the optimization time t′=20 years.

Two different equilibrium states were chosen.
First, the linearly stable grassland equilibrium state
A was chosen, where x = 0.553 represents the living



NO. 6 SUN AND MU 1269

Fig. 1. Annual variation of moisture indices caused by
the CNOP-Ps superimposed upon the reference state
(μ=0.31) for the different constraint conditions for the
grassland ecosystem, with an optimization time of 20
years (t′=20 yr).

biomass, y1 = 0.641 represents the water content in
the thin soil surface layer, y2 = 0.653 represents the
water content in the rooting layer, and z = 0.580
represents the wilted biomass. Second, the linearly
stable desert equilibrium state B was chosen, where

x = 0.000, y1 = 0.368, y2 = 0.415, and z = 0.000. For
the desert equilibrium state, the response to climate
change was minor because there was no living biomass,
but this lack of living biomass was not taken into ac-
count. Therefore, for the desert equilibrium state, liv-
ing and wilted biomass terms were set to 0.1, which
represents ∼0.01 kg m−2.

Figure 1 shows the annual variation in the mois-
ture index μ during the optimization time, where the
CNOP-P was superimposed on the reference state. For
the different constraint condition parameters, the vari-
ations in moisture index were nonlinear. When the
CNOP-P was superimposed upon the reference state,
the moisture index lessened during the optimization
time. The parameter perturbation that caused the
grassland equilibrium state to become the least sta-
ble resulted in severe drought. Furthermore, the pat-
terns of moisture indices were distinct for the differ-
ent constraint conditions. For the small constraint
condition parameter (δ=0.1 and δ=0.2), the mois-
ture index resulting from the CNOP-P gradually de-
creased. When the constraint condition parameter was
enhanced (δ=0.3 and δ=0.4), the moisture index from
the CNOP-P gradually decreased in the initial phase,

Fig. 2. The nonlinear evolution of four components of the grassland ecosystem influenced by CNOP-
P-type climate change and their evolution when the moisture index recovered to the reference state.
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Fig. 3. Same as Fig. 1, but for the desert ecosystem.

increased in the following years, and ultimately de-
creased rapidly.

We also analyzed the grassland equilibrium state
response to CNOP-P-type climate change in the first
20 years. We also analyzed how the altered grassland
ecosystem recovered when the moisture index returned
to the reference state. The nonlinear evolution for the
different constraint conditions of four components in
grassland ecosystems are presented in Fig. 2. The four
components decreased during the optimization time
due to the lower moisture index. Great dissimilarity
occurred among the different constraint conditions in

the nonlinear evolution of the four components when
the moisture index was equal to the reference state.
In the cases of δ=0.1, δ=0.2, or δ=0.3, the grassland
ecosystem, influenced by the CNOP-P-type climate
change, recovered to the grassland equilibrium state;
the difference lay in the time required for recovery.
However, for δ=0.4, the grassland ecosystem evolved
into a desert equilibrium state, and the abrupt change
occurred. The numerical results indicate that, when it
is influenced by a sufficiently large climate change, the
grassland ecosystem evolves to the desert state even
when the moisture index returns to the reference state.

For the desert ecosystem, the CNOP-Ps were ob-
tained for different constraint conditions with the op-
timization time of 20 years. The temporal patterns
of the moisture indices, which were the CNOP-Ps su-
perimposed upon the reference state for the four con-
straint conditions, are shown in Fig. 3. All four con-
straint conditions show that the moisture indices ini-
tially increased, decreased in the first phase, and in-
creased again in the later years of the optimization
time. This trend illustrates how the parameter per-
turbation, which led to the most unstable desert equi-
librium state, produced high moisture in this climatic
condition.

This study demonstrates how the desert ecosystem
responds to the CNOP-P-type climate change in the

Fig. 4. Same as Fig. 2, but for the desert ecosystem.
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Fig. 5. The annual variation in moisture indices for
the different types of climate change: (a) the grassland
ecosystem; (b) the desert ecosystem.

first 20 years and how the ecosystem is influenced by
climate change when the moisture index reverts to the
reference state. Figure 4 shows that the four com-
ponents of the desert ecosystem were enhanced dur-
ing the optimization time. When influenced by the
CNOP-P-type climate change with the moisture in-
dex at the reference state, the desert ecosystem will
recover to the desert equilibrium state when δ=0.1 or
δ=0.2, the only difference lies in the recovery time.
Simply put, the larger the constraint condition pa-
rameter, the longer the recovery time. In the case of
δ=0.3 or δ=0.4, the desert ecosystem influenced by the
CNOP-P-type climate change will attain the grassland
equilibrium state. The numerical results show that
a desert ecosystem, influenced by a sufficiently large
CNOP-P-type climate change and provided with a lit-
ter of living biomass and wilted biomass, is nonlinearly
unstable.

3.2 Comparison of responses to nonlinear cli-
mate change and linear climate change

As shown above, the moisture indices caused by the
CNOP-Ps had nonlinear character. How was the non-
linear evolution of the grassland ecosystem influenced
by nonlinear or linear climate change? To illustrate the
discrepancy between the two, we designed two linear
climate perturbations that could be classified by their
line slope, which was either zero or nonzero. Figure
5 shows the temporal variation around the moisture
indices for the different parameters. The amplitudes
of the parameter perturbations were δ=0.339 for the
grassland ecosystem and δ=0.24 for the desert ecosys-
tem.

For the grassland equilibrium state, the responses
to different types of climate change for the same op-
timization time and the same amplitude of parameter
perturbation are presented. For δ=0.1, δ=0.2, δ=0.3,
or δ=0.4, the variability of the grassland ecosystem
influenced by the CNOP-P-type climate change was
larger than what would be seen in the two linear cli-
mate change types for a given optimization time (Ta-
ble 1). This implies that nonlinear climate change
had a severe impact on the grassland ecosystem; as
δ, increased, the phenomenon became more visible.
Figure 6a shows the nonlinear evolution of the grass-
land ecosystem as influenced by CNOP-P-type cli-
mate change and two types of linear climate change
for δ=0.339. For convenience, the living biomass of
the grassland equilibrium state A was also plotted.
During the optimization time, living biomass gradu-
ally decreased due to climate change in the first 20
years. When the moisture index returned to the refer-
ence state, the grassland ecosystem influenced by the
CNOP-P-type climate change, degenerated into the
desert equilibrium state and became nonlinearly un-
stable. However, grassland ecosystems influenced by
one of the two types of linear climate changes fail.
These results are similar to those of Mitchell and Csil-
lag (2001) when the applied the Century model. The
numerical results show that the response of the grass-
land ecosystem to climate change is nonlinear.

The response to climate change was nonlinear for
the desert ecosystem as well. For the given optimiza-
tion time, the variability of the desert ecosystem influ-
enced by the CNOP-P-type climate change and pro-
vided with a litter of living and wilted biomass was
larger than the variability found for the two types of
linear climate change (Table 2). Figure 6b shows that
the desert ecosystem influenced by the CNOP-P-type

Table 1. The relative change of the grassland ecosystem
caused by three types of climate change for t′=20 yr.

δ CNOP-P Type Linear Type 1 Linear Type 2

0.1 0.121 0.120 0.111
0.2 0.252 0.249 0.243
0.3 0.402 0.379 0.399
0.4 0.566 0.504 0.557

Table 2. Same as Table 1, but for the desert ecosystem.

δ CNOP-P Type Linear Type 1 Linear Type 2

0.1 0.141 0.106 0.126
0.2 0.425 0.219 0.368
0.3 1.005 0.423 0.896
0.4 1.556 0.769 1.491
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Fig. 6. The nonlinear evolution of the living biomass in-
fluenced by different climate change types and their evo-
lution when the moisture index recovers to the reference
state: (a) the grassland ecosystem; (b) the desert ecosys-
tem.

Fig. 7. Same as Figs. 1 and 3, but for the optimization
time of 15 years and the reference state μ=0.31: (a) the
grassland ecosystem; (b) the desert ecosystem.

climate change evolved into the grassland equilibrium
state when the moisture index recovered to the refer-
ence state. However, the desert ecosystems that were
influenced by the two kinds of linear climate change
failed.

3.3 The interaction between the vegetation
and the soil

In recent research, there is much discussion about
the mechanism of grassland degeneration (Zeng and
Neelin, 2000; Liu et al., 2006b). In the present study,
we analyzed the variation of the grassland ecosystem
as a consequence of the interaction between the vege-
tation and the soil (Zeng et al., 2005).

Within this five-variable grassland ecosystem
model, the maintenance and the degradation of the
grassland directly depend on the variation of living
biomass and on the variation of the soil moisture
within the root zone. The gain (deficit) in living
biomass needs a certain amount of soil moisture in the
root zone in order to satisfy the its annual variation
�x > 0 (�x < 0). During the first 20 years, the four
components of the grassland ecosystem decreased due
to the reduction of moisture indices. When the mois-
ture index recovered to the reference state, the effects
were complex. Because the soil moisture in the root
zone affected by the CNOP-P-type climate change did
not reach a certain threshold when δ=0.4 and t′=20 yr,
the annual variation of the living biomass �x < 0 and
the annual variation of the wilted biomass �z < 0. It
follows that in the year 21, the living biomass and the
wilted biomass both decreased. The variations �y1

and �y2, i.e., the soil moisture in the surface layer
and root zone, were positive. Although the soil mois-
ture increased, this did not ensure that variation in
living and wilted biomass were positive. Because of
this persistent reduction in living and wilted biomass,
the shading effect of the wilted biomass weakened, and
evaporation (Es) and runoff (Rs) of the surface layer
were enhanced. In year 22, the soil moisture of the
surface layer decreased, and in year 23, the soil mois-
ture in the root zone decreased while the runoff of
the root zone (Rr) increased. The interaction between
the vegetation and the soil moisture was responsible
for this abrupt shift. When δ=0.1, δ=0.2, or δ=0.3,
the soil moisture in the root zone did not decrease
beyond a certain amount, and the variation in living
biomass influenced by CNOP-P-type climate change
was positive. Therefore, the transition from the grass-
land ecosystem to the desert ecosystem failed.

Different types of climate change lead to different
levels of variation in grassland ecosystems. The pri-
mary difference lies in whether the soil moisture in
the root zone decreases past a certain level. When
δ=0.339, the soil moisture in the root zone influenced
by the CNOP-P-type climate change decreased to a
particular threshold, and the amounts of living and
wilted biomass decreased. The persistent decrease in
wilted biomass led to a weakening of the shading effect,
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Fig. 8. The nonlinear evolution of living biomass influ-
enced by CNOP-P-type climate change and their evolu-
tion when the moisture index recovered to the reference
state for the optimization time of 15 years: (a) the grass-
land ecosystem; (b) the desert ecosystem.

Fig. 9. Same as Fig. 6, but for the optimization time
of 15 years: (a) the grassland ecosystem; (b) the desert
ecosystem.

and evaporation (Es) and runoff (Rs) intensified in
turn. Eventually, the grassland ecosystem transitioned
to a desert ecosystem. In contrast, because soil mois-
ture in the root zone influenced by either of the two
linear types of climate change did not decrease past
this threshold, living biomass increased and no tran-
sition occurred. Our results show that the amount
of soil moisture in the root zone and the shading ef-
fect of wilted biomass are important for maintaining
the grassland ecosystem. These results also validate
the conclusions of Zeng et al. (2004), Mu and Wang
(2007), and Sun and Mu (2009) about the shading ef-
fect of wilted biomass.

3.4 Altering optimization time

To assess the time-independence of the results de-
scribed above, we briefly describe the effects of an op-
timization time of t′ = 15 yr. The temporal variation
in the moisture index caused by the CNOP-P over 15
years was similar to that over a 20-year period in the
grassland and desert ecosystems (Fig. 7). The model
design of the two linear parameter perturbation types
for the 15-year period were analogous to those for the
20-year period.

Figure 8 shows that grassland and desert ecosys-
tems influenced by a sufficiently large enough CNOP-
P parameter perturbation were unstable when t′=15
yr. When δ=0.3675, the grassland ecosystem influ-
enced by the CNOP-P-type climate change evolved
into the desert equilibrium state. However, the grass-
land ecosystems that were influenced by either of the
two linear climate-change types failed (Fig. 9a). For
the desert ecosystem, the results were similar when
δ=0.24 (Fig. 9b).

4. Altering reference state

To investigate the robustness of the numerical re-
sults, we evaluated the other reference state: μ=0.305.
We selected a grassland equilibrium state where x =
0.467, y1 =0.595, y2 =0.602, and z =0.512, and we se-
lected a desert equilibrium state where x=0.000, y1=
0.361, y2 = 0.407, and z = 0.000. Importantly, the liv-
ing and wilted biomass values for the desert ecosystem
were 0.1 in both states.

The results of the temporal variation in the mois-
ture index and the nonlinear evolution of grassland
and desert ecosystems for the reference state μ=0.305
(Figs. 10 and 11) were similar to those for the ref-
erence state μ=0.31 (Figs. 7 and 8). For the same
amplitude of parameter perturbation, the grassland
(desert) ecosystem influenced by the CNOP-P-type cli-
mate change convert into the desert (grassland) equi-
librium state, whereas those influenced by the two lin-
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Fig. 10. Same as Fig. 7, but for the reference state μ=0.305: (a) the grassland
ecosystem; (b) the desert ecosystem.

Fig. 11. Same as Fig. 8, but for the reference state μ=0.305: (a) the grassland
ecosystem; (b) the desert ecosystem.

ear climate change types do not (Fig. 12).

5. Variations of the grassland ecosystem to
real moisture index

To further explore the impact of nonlinear climate
change on the grassland ecosystem, the moisture in-
dex derived from monthly precipitation and tempera-
ture data in Inner Mongolia was calculated. According
to the definition of the moisture index μ = Prec/e∗s ,
the precipitation and temperature data based on the

data from 160 observational station obtained from the
China Meteorological Administration were employed.
Prec and e∗s denote the precipitation and the maximal
potential evaporation from the soil surface layer. The
maximal potential evaporation was calculated using
(Ma and Fu, 2001):

e∗s =
{

0 (T � 0)
1.6d(10T/I)ξ (0 � T � 26.5) ,

where T denotes monthly temperature, and d was
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Fig. 12. Same as Fig. 9, but for the reference state
μ=0.305: (a) the grassland ecosystem; (b) the desert
ecosystem.

Fig. 13. The case of observational data: (a) the mois-
ture index; (b) the nonlinear evolution of the grassland
ecosystem.

equal to monthly number of days divided by 30. ξ =
0.49239+1.792×10−2I−7.71×10−5I2+6.75×10−7I3,
I =

∑12
i=1(

Ti

5 )1.514. Ti represents the temperature in
month i. The Urad Zhongqi (41.50◦N, 108.28◦E) was
chosen based on the observed biomass amount and, of
the 160 stations, the Shanba (40.58◦N, 107.1◦E) sta-
tion is closest to Urad Zhongqi. The precipitation and
temperature data from the Shanba station was applied
over the period 1980–1999. The moisture index, which
is similar to that calculated employing the CNOP-P
approach, is given in Fig. 13a. The nonlinear evolu-
tion of the grassland ecosystem is shown in Fig. 13b.
The change was abrupt when using the observational
data, which might be due to the fact that biomass
levels in the theoretical model decrease when climate

conditions are poor. Our results are similar to the ob-
servational data on biomass levels in the Urad Zhongqi
during the last 20 years of the 21st century (Ni, 2004).

6. Summary and discussion

Our objective was to investigate the nonlinear re-
sponse of the grassland ecosystem to climate change
using the CNOP-P approach. With sufficiently large
and finite amplitude parameter perturbations, the
grassland (desert) ecosystem induced by CNOP-P-
type climate change was nonlinearly unstable. For the
same parameter perturbation amplitude, the response
of the grassland (desert) ecosystem to nonlinear cli-
mate change was more intense than the response to lin-
ear climate change. An abrupt change occurred in the
nonlinear conversion of the grassland (desert) ecosys-
tem in the context of the CNOP-P. During this transi-
tion, the soil moisture in the root zone and the wilted
biomass play crucial roles in the grassland ecosystem.
Furthermore, the numerical results reveal that these
findings are optimization time- and reference state-
independent.

In our study, a theoretical model was applied to as-
sess the response of the grassland ecosystem using the
CNOP-P approach. Our study presents a new way to
discuss the impact of nonlinear climate change on the
grassland ecosystem. However, the model specifically
dealt with the stability of the grassland ecosystem of
the Inner Mongolia region. Other theoretical models
(Klausmeier, 1999; Sherratt and Lord, 2007) may have
exhibited nonlinear characteristics using the CNOP
approach in other regions. In addition, it would be
worthwhile to examine the response using more com-
plex models, including the Lund-Potsdam-Jena (Sitch
et al., 2003) model and the Biosphere-Atmosphere
Transfer Scheme [BATS, Dickinson et al. (1986); Dick-
inson et al., 1993]. Mitchell and Csillag (2001)) stated
that an increase in precipitation variability decreased
stability of the grassland ecosystem, which is corrobo-
rated by our work. Previous studies have established
the stability of the grassland ecosystem in response to
human activity (Mu and Wang, 2007; Sun and Mu,
2009). Taking ecosystem responses to human activity
and climate change into account will help lay a sound
foundation for ecosystem management.
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Table A1. The parameter values in the five-variable ecosystem model.

PA VA Explanation

M∗
c 0.1 the characteristic value of the living biomass

M∗
d 0.1 the characteristic value of the wilted biomass

W ∗
s 40 the characteristic value of the soil moisture of surface layer

W ∗
r 200 the characteristic value of the soil moisture of root zone

α 0.4 the maximum growth rate
β 0.1 the characteristic wilting rate
εgx 1.0 exponential attenuation coefficients about the living biomass in term G
εgy2 1.0 exponential attenuation coefficients about the soil moisture of root zone in term G
εdx 1.0 exponential attenuation coefficients about the living biomass in term D
εdy2 1.0 exponential attenuation coefficients about the soil moisture of root zone in term D
γ 0.1 the parameter describing consumption of the living biomass
εcx 1.0 exponential attenuation coefficients about the living biomass in term Cc

βz 0.1 the characteristic rate of wilted biomass decomposition
εdz 1.0 exponential attenuation coefficients about the wilted biomass in term Dd

e∗s 1000 the potential evaporation from the bare soil
εEsz 1.0 exponential attenuation coefficients about the wilted biomass in term Es

εf 200 the parameter of the fraction of living grass coverage
κ1 0.4 the parameter describing the vegetation-soil interaction
εEsx 0.7 exponential attenuation coefficients about the living biomass in term Es

εEsy1 1.0 exponential attenuation coefficients about the soil moisture of surface layer in term Es

φrs 0.6 the parameter describing the vegetation-soil interaction
κEr 1.0 attenuation coefficients about the living biomass in term Er

εErx 1.0 exponential attenuation coefficients about the living biomass in term Er

εEry2 1.0 exponential attenuation coefficients about the soil moisture of root zone in term Er

λrs 0.015 coefficients about precipitation loss due to surface layer in term Rs

εRsz 1.0 exponential attenuation coefficients about the wilted biomass in term Rs

κRs 0.4 coefficients about the living biomass in term Rs

εRsx 0.7 exponential attenuation coefficients about the living biomass in term Rs

εRsy1 1.0 exponential attenuation coefficients about the soil moisture of surface layer in term Rs

λRr 0.015 coefficients about precipitation loss due to surface layer in term Rr

εRry2 1.0 exponential attenuation coefficients about the soil moisture of root zone in term Rr

κRr 0.7 coefficients about the living biomass in term Rr

εRrx 0.7 exponential attenuation coefficients about the living biomass in term Rs

λQS 1.0 the characteristic timescale
Ds 100 the thickness of surface layer
Dr 500 the thickness of root zone
αs 0.85 coefficients about loss due to the surface layer in term P ∗

s

αc 0.05 coefficients about loss due to the living biomass in term P ∗
c

εc 1.0 exponential attenuation coefficients about the living biomass in term P ∗
c

Note: PA and VA denote the parameters and their values. The units of M∗
c , M∗

d , W ∗
s , W ∗

r , α, e∗s , Ds and Dr are kg m−2, kg m−2,

mm, mm, kg m−2 yr−1, mm yr−1, mm and mm.

APPENDIX

The Five-Variable Ecosystem Model

In this section, the details of the five-variable grass-
land ecosystem model are introduced referring to Zeng
et al. (2006) and Sun and Mu (2009). In the right
terms, G, Dc, and Cc are the growth, the wilting, and
the consumption of the living biomass, respectively.
Dd and Cd are decomposition and consumption of the
wilted biomass, respectively. Pc, Ps, and Pr are at-
mospheric precipitation in the vegetation canopy, the

surface layer of soil, and the rooting layer, respectively.
Ec, Es and Er represent evaporation from the vegeta-
tion canopy, the surface layer of soil and the rooting
layer, respectively. Rc, Rs and Rr correspond to tran-
spiration from the three layers. Qsr is the conductive
transport term. According to Zeng et al. (2006), to
filter the high frequency variations in Mc and Md,
we assume that the equation dWc/dt = Pc(Mc) +
Er(Mc, Wr)−Ec(Mc, Wr)−Rc(Mc) is in balance. That
is, Pc(Mc) + Er(Mc, Wr)−Ec(Mc, Wr)−Rc(Mc) = 0,
and Cd and Rc are zero. Next, the right terms of the
model are expressed as follows:
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G = (1 − e−εgxMc/M∗
c )(1 − e−εgy2Wr/W∗

r ) ,

Dc = β(eεdxMc/M∗
c − 1)(1 − e−εdy2Wr/W∗

r )−1 ,

Cc = γ(1 − e−εcxMc/M∗
c ) ,

Dd = βz(eεdzMd/M∗
d − 1) ,

Es = e∗s e
−εEszMd/M∗

d {e−εfMc/M∗
c + (1 − e−εfMc/M∗

c )×

[1 − κ1(1 − e−εEsxMc/M∗
c )]}(1 − e−εEsy1Ws/W∗

s ) ,

Er = e∗sφrs(1 − e−εfMc/M∗
c )(1 − κEre

−εErxMc/M∗
c )×

(1 − e−εEry2Wr/W∗
r ) ,

Rs = λrsPse
−εRszMd/M∗

d {e−εfMc/M∗
c + (1 − e−εfMc/M∗

c )×

[1 − κRs(1 − e−εRsxMc/M∗
c )]} × (eεRsy1Ws/W∗

s − 1) ,

Rr = λRrPr(eεRry2Wr/W∗
r − 1)[1 − κRr(1 − e−εRrxMc/M∗

c )] ,

Qsr = λQS
DsDr

Ds + Dr
(

Ws

W ∗
s Ds

− Wr

W ∗
r Dr

) .

Pc + Ps + Pr = Prec, Pc = min(P ∗
c , Prec), Ps =

min(P ∗
s , Prec − Pc), P ∗

c and P ∗
s are the permissibly

upper bounds of Pc and Ps respectively. Here, the
precipitation is assumed to be constant. It is assumed
that

0 � P ∗
c � Prec , 0 � P ∗

s < Prec − P ∗
c ,

and P ∗
c increases monotonically with Mc:

P ∗
c = αcPrec(1 − e−εcMc/M∗

c ) .

The expressions of the interception of surface layer and
root zone respectively are:

P ∗
s = αs(Prec − P ∗

c ) ,

Pr = (1 − αs)(Prec − P ∗
c ) .

Let x = Mc/M
∗
c , y1 = Ws/W ∗

s , y2 = Wr/W ∗
r , z =

Md/M
∗
d and t′′ = t/t∗ be the dimensionless variables

of the corresponding state variables. The equations of
the five-variable ecosystem model related to the liv-
ing biomass and the wilted biomass are multiplied by
t∗/M∗

c and t∗/M∗
d , and the equations related to the

soil moisture of surface layer and root zone are respec-
tively multiplied by (e∗s )−1. The equations of the five-
variable ecosystem model will be nondimensionalized.
In our study, we introduce a dimensionless variable

μ = P/e∗s ,

where μ is called the moisture index and is one of the
important parameters for describing climatic condi-
tions. The parameters of the above expressions are
shown in Table A1.
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