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ABSTRACT 

The uncertainties caused by the errors of the initial states and the parameters in the numerical model 
are investigated. Three problems of predictability in numerical weather and climate prediction are proposed, 
which are related to the maximum predictable time, the maximum prediction error, and the maximum ad- 

missible errors of the initial values and the parameters in the model respectively. The three problems are 
then formulated into nonlinear optimization problems. Effective approaches to deal with these nonlinear 
optimization problems are provided. The Lorenz' model is employed to demonstrate how to use these ideas 

in dealing with these three problems. 

Key words: Predictability, Weather, Climate, Numerical model, Optimization 

I. Introduct ion 

The pred ic tab i l i ty  p rob l em in numer ica l  wea ther  and  cl imate  pred ic t ion  is concerned  

with the uncer ta in t ies  o f  the forecast ,  which is usual ly  classified into two types. The first k ind 

o f  p red ic tab i l i ty  is re la ted to the initial  errors ,  and  the second kind o f  p red ic tab i l i ty  is to the 

mode l  errors .  A t  present,  it is genera l ly  accepted  in the society o f  the a tmosphe r i c  sciences 

that  the first k ind o f  p red ic tab i l i ty  is a main  p rob l e m in numer ica l  wea ther  predic t ion,  al- 

t hough  the mode l  er rors  in some models ,  e.g. the mesoscale  model ,  have not  been successfully 

solved yet. F o r  s h o r t - t e r m  numer ica l  c l imate  predict ion,  the second kind o f  p red ic tab i l i ty  is 

cons idered  to be the ma in  problem.  We should  also poin t  out  that  for the p red ic t ion  p rob l e m 

of  in t e rannua l  c l imate  var iab i l i ty  such as E N S O  (El Nifio and Sou the rn  Osci l la t ion) ,  the first 

k ind o f  p red ic tab i l i ty  has also been receiving increas ingly  a t t en t ion  ( T h o m p s o n  1998; Xue et 

al. 1997; Y u a n  et al. 2000). 

The def in i t ion  o f  the mode l  e r ror  varies with the au thors ,  in this paper ,  we a d o p t  the fol- 

lowing def in i t ion  (see T a l a g r a n d  1997): I f  the init ial  value o f  the mode l  is the true state, then 

the difference between the values o f  the forecast  and  the true state at the p red ic t ion  t ime is cal- 

led the mode l  error .  

F r o m  the above  def in i t ion  o f  the mode l  error ,  it is easily seen that  there are many  factors  

causing mode l  errors ,  for example ,  ignor ing some physical  processes,  the er rors  in the 
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parameters of  the model which includes the formulation of  the forcing, discretization error of  

the model, and even the round-o f f e r ro r  (Li et al. 2000), etc. 

Practically it is difficult to distinguish the first kind of  predictability from the second kind 
of  predictability. And it is almost impossible to study the model error completely. The main 
purpose of  this paper is to consider the uncertainty of  the prediction caused by the initial er- 
ror and the parameter error in the model, which is generally considered to be the main prob- 

lem in the model error. The explicit meaning of  this is explained as follows. Denote M t the 
propagator which propagates the state from the initial time to time t, u 0 is the initial value,/~ 

is the parameter, u t = M t (Uo,  #) .  u o and u I are the true values of the state at initial time 

and time t respectively, #, is the true value of  parameter, throughout this paper we assume 

u t u, M, (u0, ) , (1.1) 

that is to say, the prediction error is only caused by the initial error and parameter error. In 
this paper, we will first classify three problems of  the predictability in the numerical weather 

and climate prediction and reduce them into nonlinear optimization problems respectively. 

Then how to deal with these problems by using the information on the errors of  the initial 
value and the parameter are investigated. Finally, we use Lorenz I model (Lorenz 1965a, b) to 
show how to realize the above idea in the research of  predictability. 

2. Three problems of predictability 

On the basis of  pratical demands the study of  the predictability of  numerical weather and 
climate prediction can be classified into three problems. 

obs and the first given value of  the Problem 1. Assume that the initial observation u 0 

parameter j~g are known. At prediction time T, the maximum allowing prediction error in 

terms of  the norm [[ �9 II A measuring u is 

[ I M T ( U ~  bs , ~ g ) - -  UT]] A ~ /~ , (2.1) 

where u~ is the true value of  the state at time T. It is our purpose to find out the maximum 

predictable time T,; under the above conditions. This problem can be reduced to a nonlinear 
optimization problem: 

T~: = max{z[ [[Mt(u~bs,#g) - UlI[A~< ~, 0~< t~< Z} . (2.2) 

Since the true value utt cannot be obtained exactly, so it is impossible to obtain the exact val- 

ue of  T,  by solving this nonlinear optimization problem. However, if we know more informa- 
tion about the errors of  initial value and the parameters, useful estimation on T,: can be de- 
rived by using some methods. For  example, assume that the errors of  the initial value and the 

first given value of  the parameter are known as follows 

Ilu~- u0bSll A ~< 61 , [l# t -  /~gllB~< 6 2 , (2.3) 

where [I I[B is a norm of  # measuring the parameters in the model. Then we can investigate 
the following nonlinear optimization problem 
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T,:l= min {Tu0.~lTu0.~ = maxz 
u o EBb,. p~B& 

II M, (Uo, #)- Mt(u~ bs, #g)ll ~ ~, 0 4  t~< r} , .  (2.4) 

where B,~,, B~2 are the balls with centers at u 0~ #g and radius 6 ~, 62 respectively. 

It is not difficult to prove that 

T,: l ~< T~: . (2.5) 

F rom (2.4), we have the lower bound of  the maximum predictable time. It is also clear 

obs and the parameter/~,  the more accurate that the more accurate the initial observation u 0 

this lower bound. 
Remark: In the operational numerical weather and climate prediction, the observational 

data are seldom used as the initial values to the numerical model. Instead, the analysis fields, 

which are yielded by the initialization and data assimilation processes, are adopted as the ini- 

tial values. To make this paper more readable, we use the term " observation" rather than 

"analysis" in this paper. 

Problem 2. Suppose that the initial observation u0 bs and the first given values of  the 

parameter  ~g are known, for a given prediction time T, look for the prediction error, i. e., 

find out 

E =  II MT (u0 bs , Pg )-- Ur It A �9 (2.6) 

t Similar to the above problem, since the true value u r cannot  be obtained exactly, it is also 

impossible to get the exact value of E. But if some information on errors of  the initial value 

and the parameter  are available , e.g. (2.3) holds, then we can consider the nonlinear 

optimization problem 

E ,  = max t[ Mr (u0, P)- Mr (U~ bs , ] 2g )11A �9 (2.7) 
Uo CB6~ , it~B6~ 

Without much difficulty, we can prove that 

E~< E u . (2.8) 

In this way we establish the upper bounds on the prediction error, the accuracy of  these esti- 

mations depends on those of  the initial value and the parameters in the model too. 

obs the first given value of  the paramet- Problem 3. Assume that the initial observation u 0 , 

er pg are available. At the prediction time T, the allowing maximum prediction error is (2.1). 
Our purpose is to  determine the allowing maximum initial error and the parameter  error. 

More precisely, look for the maximum 6, such that if (2.3) holds with 6 =  6~ + 62, then (2.1) 

holds. 
This problem can also be reduced to an optimization problem as follows: 

6 m a x  = max{6l I l u~ -  u~bStlA ~< 6 l, [1#'-- #gl lB~ < 32 , 
6 

Z o b s  t 
if 6 1 + 6 2 = 6 ,  then [ [Mr tu  0 , # g ) - u r l l A ~ < ~ } .  (2.9) 

Following the above idea, we can estimate 3. Investigating the problem 
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(~ t o b s  
...... = max{61 it M7 *uo , / ) -  M~ (u,,, It)[I ,4 <<- ~: 

,) 

uo C B,~, , iteB,~,, (')1 + 6 2 -  6} , (2.10) 

we can conclude that 

..... ~< 6 ...... . (2.11) 

Remark: In the above problems, if the errors in the parameter  can be ignored, and 

fur thermore the model can be assumed to be perfect, the problems are the three ones o f  the 

first kind o f  predictability: on  the other  hand, if there exists no initial error, the problems be- 

come those o f  the second kind of  predictability concerning the parameter  error. 

3. An example-three problems with the first kind of predictability of Lorenz system 

In this section, we study the three problems of  predictability o f  Lorenz system as an ex- 

ample. For  simplicity, we assume that the model  is perfect. 

The Lorenz system consists o f  a set o f  three ordinary  differential equations: 

- dx 
-- GX + 6J' , 

dt 

d3~ = -- Xz+  rx - -  J' , 
dt (3.1) 
dz 

= x y -  b z  , 

(x,y,z)l,= 0 = (x0,J '0,z0) . 

where ~, r and b are the parameters. Here we adopt  the Lorenz '  original choice o f  parameter  

values: a =  10, r =  28, b =  8 / 3  (Lorenz 1965). 
It is easy to find out  that Lorenz system has three s ta t ionary points: 

Io:  (x,y,z)= (0,0,0) 
�9 (x,y,z) = (-- ~b(r -  1 ) , -  "~b(r-- l ) , r - -  1) 

"C2: (x,y,z)= (qb(r-  1 ) , q b ( r -  ] ) , r -  1) .  

(3.2) 

We choose these three s ta t ionary points as initial observations to s tudy the three problems 

with the first kind o f  predictability o f  the system. It should be pointed out  that other  points 

could be adopted  as the initial observat ions too. The system is integrated by middle point 

scheme with time step dt = 0.01. 

3.1 The  f i r s t  predictabil i ty  problem o [ L o r e n z  sys tem 

Let M be the p ropaga tor  o f  system (3.1), O * the initial observation,  X=  (Xo,Yo,Zo)  , 

and u 0 = O * + X. Assume that the initial observat ional  error  in terms of  a chosen no rm II " II 

is not  larger than 6. With these notations,  u o ~B,~ (see section 2) is equivalent to H x]l ~< 6. The 

lower bound  o f  the max imum predictable time given by (2.4) under the above condit ions is 
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T, : l=  min{Tx[Tx = maxr , I IMt (O  * + X ) -  M t ( O  * )ll ~< ~ , 0~< t~< r} . (3.3) 
IIX11~ 6 

In this paper, two norms IIX]t 2 = ~/x~ + y~ + z~ and IlXll ~ -- max{Ix01,  [Y0 [, [z01} are 

employed to measure the errors. For different initial observational error bounds II X'll 2 ~< 5̀ 
and I[ Y~l ~ <~ 6, we adopt the following algorithms to obtain the lower bound of maximum 
predictable time T,: t . Firstly for the domain II Xll o~ ~< ,5, we take cube mesh of  side 0.01, then 
integrate the model from each mesh-point  and obtain the maximum predictable time Tx for 
this point. The minimum of  all these is what we require. Of course the result depends on the 
mesh we utilized. In the calculation, we have tried several different meshes, and find that there 
is no essential difference if the side of  the mesh is not larger than 0.01. So we use 0.01 in the 
calculation. 

Secondly for the ball It )~l 2 ~< &, we consider its circumscribed cube. For any mesh points 
outside the ball, we connect this point with the center of  the ball, and take the intersection 
point of  this line with the surface of the ball, then integrate the model from each of  these in- 
tersection points and the mesh points inside the ball. Similar to the case of  II XH ~ ~< `5, the re- 
suits are obtained. 

The details of  the results for initial observation O are shown in Tables 1 and 2, where 5̀ is 
the initial observational error bound and T,: t is the lower bound of the maximum predictable 
time with the maximum allowing prediction error e. Here T,: t is the number of the time steps 
of the numerical integration. 

Table 1. T,j for initial observation O with 11 ~1 ~ ~ 6 

0.6 

1.0 

1.4 

1.8 

2.2 

0.005 

76 

85 

91 

96 

99 

0.01 

64 

73 

79 

84 

87 

0.05 

36 

45 

51 

56 

59 

0.1 

26 

33 

39 

43 

47 

0.15 

17 

26 

32 

36 

40 

0.2 

13 

21 

27 

31 

35 

Table 2. T~I for initial observation O with II XII 2 ~ ~ 

0.005 0.01 0.05 0.1 0.15 

22 

0.2 

17 0.6 81 69 41 29 

1.0 90 78 50 38 30 25 

1.4 95 83 55 43 36 31 

1.8 100 88 60 48 41 36 

2.2 103 91 63 51 44 39 

Obviously if (x(t), y(t),z(t)) is a solution to Lorenz system, ( -  x(t), - y(t),  z(t)) is a so- 
lution to that too. Due to this symmetric property, it is easy to know that the lower bounds of  
the maximum predictable time of  the initial observation C1 and C2 are equivalent. For sim- 
plicity, we only show the results of  C 1 in Tables 3 and 4. 
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Table 3. T a for initial observat ion  C I with II ~1 -~. ~ 

0.4 

0.005 

2.0 

2204 

0.01 

1812 

0.05 

909 

0.1 

516 

0.15 

290 

0.2 

145 

0.8 2614 2244 1318 907 701 516 

1.2 2861 2431 1527 1133 907 762 

1.6 2982 2614 1527 1317 1072 907 

3112 2738 1812 1442 1195 1035 

Table 4. T a for initial observat ion C n with II ~12 ~ 6 

0.4 

0.8 

0.005 

2.0 

2367 

2745 

0.01 

1991 

2366 

0.05 

1069 

1445 

0.1 

694 

1068 

0.15 

450 

826 

0.2 

271 

693 

1.2 2985 2609 1687 1312 1068 889 

1.6 3164 2743 1867 1444 1249 1068 

3288 2867 1991 1568 1373 1192 

It is clear from Tables 1 - 4  that the lower bound of  maximum predictable time o f  the ini- 
tial observat ion C~ is much longer than the corresponding one o f  the initial observation O. 
This indicate that there exists stronger predictability around C l �9 

Fig. 1 is T,: t for initial observation O with II XTI 2 ~< 6. Fig. 2 is T,: l for initial observation 
C l with II ~12 ~< ~, 

3.2. The second predictability problem of Lorenz system 

Denote  M,  O * and X a s  above,  if the initial observational  error in terms o f  a chosen 
norm II ~ II is not  larger than 6, the upper bound  of  prediction error o f  the initial observation 
O* at t i m e T i s  

110 7 
100- ~ 
90 -" ..... e=0.6 

5 \  . . . . .  1. 

70 

I'-- 50 

40  �9 

30. ~ = ~ , ~  ~ - ~ o ~  g 
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Fig. 1. T,t for in i t ia lobservat ion O with norm II II 2. 
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Fig. 2. T,I 

~ --= E--0.4 

�9 \ \  ..... : 2 . 0  

o.;5 o.~o o.~5 o.)o 

for initial observat ion C] with n o r m  11 112, 
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Eu : maxll M r (O* + X ) -  M r (O*)11 . (3.4) 

I f  the initial per turbat ion X6* = (xo*6, Y0~, z0a ) superposed on O satisfies 

E u =  I IMT(O* + X6*) -  M r (O*) l [  , (3.5) 

it is called condit ional  opt imally growing per turbat ion o f  O * . The value 

Eu 
2 6 -  6 

represents the max imum rate o f  the evolution o f  the initial per turbat ions superposed on  the 

observation.  

In the following numerical  experiments, the opt imizat ion algori thms adopted  are limited 

memory  B F G S  method (Liu and Nocedal  1989) for no rm I[ " II o~, which is an extension o f  the 

conjugate gradient method.  And  for n o r m  I[ �9 II 2, the opt imizat ion a lgor i thm is the trust re- 
gion method (Yuan 1990). 

3.2.1 The prediction error o f  the initial observation 0 

= 2 2 
For  two different norms [IX[12 4 x ~ +  y0 + z 0 and I1~1~ = max{Ix0 l, ly0 l, Iz0 [}, 

and T = 20, 30 time steps, we obtained the upper  bounds  o f  the prediction error  o f  the initial 

observat ion O, the condit ional  nonlinear  opt imal ly  growing per turbat ions  ( C N O G P s )  and the 

max imum evolut ion rates o f  C N O G P s  numerically. It is found that  for initial observat ional  

error bound  l[ X]I 2 ~< 6 and II X]l ~ ~< 6, 6~[0.08,4.0], there are two C N O G P s  for T =  20 time 

steps respectively, which are only differ by  the signs o f  the x and y componen ts  and corre- 

spond to the same max imum growing rate 26 . It is clear f rom the symmet ry  o f  Lorenz  model  

that if (x, y,  z) is a C N O G P ,  ( -  x, - y,  z) is also a C N O G P .  Our  numerical  results do verify 

this. The results for T =  20 with error  bound  II ~l 2 ~< 6 and II Xll ~ ~< 6 are shown in Tables 5 

and 6, where E,, is the upper  bound  o f  prediction error, X6* = (x06 , Y0a, %6 ) is one o f  the two 

C N O G P s  respectively. Fo r  simplicity, the results o f  another  C N O G P  is not  shown here. 

Table 5. Eu,2,~ andX~ forT= 20 withl]X]l. ~< 6 

6 0.08 0.8 1.6 2.4 3.2 4.0 
E u 0.2828 2.8272 5.6501 8.4644 11.2658 14.0502 
2~ 3.5349 3.5340 3.5313 3.5268 3.5206 3.5126 
x~ 6.2549 • 10 2 0.6254 1.2503 1.8743 2.4967 3.1171 
y~ 4.9876 x 10 2 0.4986 0.9967 1.4936 1.9887 2.4812 
z~ -1.2695 • 10 4 -1.4073 • 10 -2 -5.6623 • 10 -2 -0.1277 -0.2274 --0.3561 

Table 6. E ,2~ andX~ ~ r T =  20 withl[~[, ~ 6 

6 0.08 0.8 1.6 2.4 3.2 4.0 
E~ 0.3607 3.6833 7.4995 11.3888 15.2860 19.1216 
2~ 4.5097 4.6041 4.6871 4.7453 4.7769 4.7804 
x~ -0.0800 -0.800 -1.6000 -2.4000 -3.2000 -4.0000 
y~ -0.0800 -0.800 -1.6000 -2.4000 -3.2000 -4.0000 
z~ -0.0800 -0.800 -1.6000 -2.4000 -3.2000 -4.0000 
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Similar  to the case o f  T =  20, there exist two symmetr ica l  C N O G P s  for  T = 30 with 
IIXN 2 ~< 5 and [IX]I ~ ~< 6 respectively. Tables  7 and 8 show the results o f  one o f  the two 

C N O G P s  for  initial observa t iona l  error  bounds  I] XI] 2 ~< 6 and ]l XH ~ ~< 6 respectively. 

T a b l e  7. E,,  26 and X~* for T= 30 with II Y~I ~ ,5 

6 0.08 0.8 1.6 2.4 3.2 4.0 

E, 0.5048 5.0408 10.0394 14.9548 19.7485 24.3850 

2~ 6.3097 6.3010 6.2746 6.2312 6.1714 6.0963 
xo~ 6.3015 x 10 -2 0.6300 1.2587 1.8851 2.5078 3.1251 

Yo~ 4.9286 x 10 2 0.4927 0.9843 1.4736 1.9595 2.4406 
zo~ -2.0179 • l 0  -4 -2.0518 • 10 -2 -8.2388 • 10 -2 --0.1863 --0.3338 --0.5265 

Table 8. E, ,  2~ and X~* for T = 30 with II Xql ~ ~< 

6 0.08 0.8 1.6 2.4 3.2 4.0 

E, 0.6458 6.5926 13.2358 19.5124 25.0001 29.3198 

2~ 8.0735 8.2407 8.2724 8.1302 7.8126 7.3299 

x~ -0.0800 -0.800 -1.6000 -2.4000 -3.2000 -4.0000 

y ~ -0.0800 -0.800 - 1.6000 -2.4000 -3.2000 -4.0000 

z0~ ~ -0.0800 -0.800 -1.6000 -2.4000 -3.2000 -4.0000 

Fig. 3 is X6* for  T = 30 with II X]l 2 ~< 5. Fig. 4 is 26 for  T = 30 with II ~12 ~ c5 and II Xll o~ 

~< 5. Fig. 5 is E .  for T =  30 with II X]I 2 ~< 5 and  II Xll ~ ~ ~. 

3.2.2 The  predict ion error o f  the initial observations C l a n d  C 2 

We  have  po i n t e d  o u t  tha t  if (x( t) ,  y ( t ) ,  z ( t ) )  is a s o l u t i o n  o f  (3.1), ( -  x( t ) ,  - y ( t ) ,  z ( t ) )  is 

a s o l u t i o n  o f  (3.1) too. Since C 1 a n d  C 2 o n l y  differ  by  the signs o f  their  x a n d y  c o m p o n e n t s ,  

we der ived  tha t  the C N O G P s  o f  the in i t ia l  o b s e r v a t i o n s  C~ a n d  C 2 o n l y  differ b y  the s igns o f  

the i r  x a n d  y c o m p o n e n t s  for  the s ame  p red ic t i on  e r ro r  b o u n d .  F o r  s impl ic i ty ,  in the follow- 

ing we o n l y  cons ide r  the case o f  in i t ia l  o b s e r v a t i o n  C j .  

I t  is d i f fe ren t  f r o m  the case o f  in i t ia l  o b s e r v a t i o n  O for ini t ia l  o b s e r v a t i o n  C ~, there  ex- 

ists a C N O G P  for  T = 5 0 ,  80 t ime  steps respectively.  Tab l e  9 is the u p p e r  b o u n d s  o f  the 

3.5 �9 

3 0  

2.5. 

,.o : -  
1.5 X o~ 

1.0 �9  Y'o,~ 

Z o,~ 
0.5 �9 

0 . 0 -  I �9 �9 �9 �9 

-0 .5 .  ~ - ~ , L  

cS 

Fig. 3. X~* for T = 30 with norm II It 2 in case of ini- 

tial observation O. 

9.5-  

9.0 

8.5 

8.0 ~ 

7.5 

,~ 7.o~ 
6.5 ~ 

6.0 ~ 

- - -  X 6 for norm II I I 2 ~ - . ,  
�9 ~.~ for  norm II I L  

�9 �9 �9 �9 �9 --m 

5.5- 

5.0 - -  

0 

6 
Fig. 4. 26 fo rT= 30 with norm[l 1[2 andl[ [[r,~ in 

case of initial observation O. 
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4 0  

35. 

30. 

25" 

20- 

15- 

10- 

5- 

0- 

�9 E for norm II 112 
" -�9 E for norm II I1= . ~ i  

b 

Fig. 5. E, f o r T =  30 with norm lI 112 andll I[~ in case of initial observation O. 

prediction error E , ,  the C N O G P  X0* 6 and the maximum evolut ion rate o f  the C N O G P  2 a for 

time steps T =  50 with initial observational  error bound  II X]l 2 ~< 6. Table 10 is for T = 80's. 

Table 9. E , 2 a and X6* for T = 50 with II ~1 ~ 

6 0.08 0.8 1.6 2.4 3.2 4.0 

E. 0.09983 1.1043 2.0669 3.1625 4.3057 5.5012 

2 a 1.2478 1.2697 1.2918 1.3177 1.3455 1.3753 

x~ -0.00121 0.0038 0.0445 0.1241 0.2439 0.4044 

y~ 0.0605 0.6229 1.2838 1.9815 2.7133 3.4755 

z~ 0.0523 0.5023 0.9538 1.3484 1.6789 1.9384 

For initial observational  error bound  II X]L ~ ~< ~, 6~[0.08,4.0],  there is also a C N O G P  for 
T = 50,80 time steps respectively. The details are shown in Tables 11 and 12. 

Fig. 6 is X6 .2 for T =  80 with IIXl12~< a. Fig. 7 is 2 a for T =  80 with 11~12~< 

and II Xll ~ ~< a. Fig. 8 is E,  for T = 80 with  II XII 2 ~< a and  II X]l ~ ~< a. 

Tablel0.  E , , 2  a andX~* f o r T =  80 with[IXll. ~< 6 

6 0.08 0.8 1.6 2.4 3.2 4.0 

E. 0.1105 1.1125 2.2402 3.3824 4.5390 5.7098 

2 a 1.3817" 1.3906 1.4001 1.4093 1.4184 1.4275 

x~ -0.02809 -0.2786 -0.5552 -0.8347 -1.1219 -1.4275 

y~ -0.07489 -0.7492 -1.4978 -2.3441 -2.9869 -3.7252 

z~ -0.00179 -0.03292 -0.09157 -0.1652 -0.2445 -0.3214 

Table l l .  E, ,2~ and X~ ~ r T  = 50withl]~[~ ~ 6  

6 0.08 0.8 1.6 2.4 3.2 4.0 

E, 0.1170 1.1619 2.3048 3.4334 4.5565 5.6836 

2 a 1.4627 1.4523 1.4404 1.4306 1.4239 1.4208 

x~ -0.0800 -0.8000 -1.6000 -2.4000 -3.2000 -4.0000 

y~ -0.0800 -0.8000 -1.6000 -2.4000 -3.2000 -4.0000 

0.0800 0.8000 1.6000 2.4000 3.2000 4.0000 Zo; 
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Table 12. s , 2~ and X~* for T = 80 with II Y0[ o=. ~< 6 

6 0.08 0.8 1.6 2.4 3.2 4.0 

E. 0.1157 1.1548 2.2939 3.4109 4.5083 5.5916 

2~ 1.4468 1.4435 1.4337 1.4252 1.4088 1.3979 

x ~  0.0800 0.8000 1.6000 2.4000 3.2000 4.0000 

y ~  -0.0800 -0.8000 -1.6000 -2.4000 -3.2000 -4.0000 

z~ -0.0800 -0.8000 -1.6000 -2.4000 -3.2000 -4.0000 

3.3 The third predictability problem of  Lorenz system 

Suppose that the parameters in the system are accurate, M, O * and X are the same as 
above. For given allowing prediction error ~, at prediction time T, it follows from (2. I0) that 
the lower bound of the allowing maximum initial error is 

3 m a  x = max{6[ II M r  ( 0 "  + JO-  M r  (0") i t  ~ e, II X]I ~< 6} . (3.6) 
6 

O0 2 

- o z  
-1 o 
-1 5 

2 0  

-25~ 
-30 -" 

3.5 

~4.0 

\ 

�9 Y'o~ ' ~  
�9 

�9 Z 06 

(3 

Fig. 6. X~ 2 for T = 80 with norm li II 2 in case o f  initial observation C~. 
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Fig. 7. 2,~ for T = 80 with norm I] I[ 2 and II II ~ in 

case of  initial observation C 1 �9 
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0 I 2 3 4 

Fig. 8. E. for T= 80 with norm 11 IF 2 and II II ~ in 

case of  initial observation C 1 �9 
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For different prediction time T and allowing max imum prediction errors e, we adopt the 

following algorithms to obtain the corresponding allowing maximum initial error bound ~max 
for norms II �9 II 2 and t] " II ~ .  For a first guess 3, we have its corresponding cube in case o f  
norm I1 " [[ o~ (the circumscribed cube in case o f  il �9 [l 2 ). Similar to the algorithms in section 

3.1, we use cube mesh o f  side 0.01, and integrate the model  from each grid point. If this 3 sat- 

isfies It M r  (O * + X ) -  M r (O * )11 ~< e, we try another 6 larger than this one. Step by step, we 

finally find the maximum one 3ma x . 
The details o f  the result for initial observation O * are shown in Tables 13-16.  

Table 13. S . . . .  for initial observation O with norm II �9 II 2 

0.6 

1.0 

1.4 

1.8 

2.2 

20 

0.1719 

0.2846 

0.3963 

0.5092 

0.6225 

40 

0.0597 

0.0901 

0.1270 

0.1638 

0.1977 

60 

0.0209 

0.0348 

0.0487 

0.0575 

0.0665 

80 

0.0066 

0.0099 

0.0154 

0.0198 

0.0242 

Table 1 4 .  ~max for initial observation O with norm 11 �9 II ~ 

0.6 

1.0 

1.4 

1.8 

2.2 

20 

0.1328 

0.2207 

0.3081 

0.3953 

0.4819 

40 

0.0418 

0.0695 

0.0973 

0.1250 

0.1528 

60 

0.0132 

0.0221 

0.0312 

0.0397 

0.0486 

80 

0.0042 

0.0071 

0.0098 

0.0126 

0.0154 

Table 15. 3m, x for initial observation Ci with norm 11 " I12 

0.4 

0.8 

1.2 

1.6 

2.0 

60 

0.3483 

0.6889 

1.0240 

1.3527 

1.6739 

460 

0.1418 

0.2832 

0.4239 

0.5641 

0.7036 

860 

0.0830 

0.1652 

0.2460 

0.3254 

0.4017 

1260 

0.0421 

0.0794 

0.1090 

0.1401 

0.1794 

Table 16, 3,~ for initial observation C 1 with norm II �9 II 

60 460 860 1260 

0.4 0.2501 0.1499 0.0611 0.0469 

0.8 0.4999 0.1201 0.0806 

0.7499 

0.9499 

1.1999 

1.2 

0.2259 

0.3493 

0.4499 

0.5499 

1.6 

0.1768 

0.2314 

0.2951 2.0 

0.0999 

0.1398 

0.1499 
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Fig .  10. ~ n ~  f o r  in i t ia l  o b s e r v a t i o n  C ]  w i t h  n o r m  Jl II 2" 

Tables 13-16 show that for given prediction error, the lower bound of the allowing max- 
imum initial error decreases with the prediction time T. On the other hand, for given predic- 
tion time T, the lower bound of the allowing maximum initial error increases with the predic- 
tion error. 

Fig. 9 i s  ~max for the initial observation O with norm J] �9 H z. Fig. 10 i s  ~max for initial 
observation C] with norm J] �9 ]l 2. 

In this section we only use Lorenz model as an example to show how to deal with these 
three predictability problems formulated in this paper. For much complicated models em- 
ployed in the numerical weather and climate prediction, the involved numerical optimization 
problems are challenging, we will discuss this in detail in the following section. 

4. Discussion and conclusion 

In this paper, we classified the study of predictability of numerical weather and climate 
prediction into three problems related to maximum prediction time, the maximum prediction 
error, and the maximum admissible errors of the initial values and of the parameters in the 
model. All of these problems can be reduced to nonlinear optimization problems. Because the 
true values of the state of the atmosphere and of the parameters in the model cannot be ob- 
tained, so it is impossible to obtain the exact information of the predictability. By utilizing the 
information about the errors of the initial state and the parameters, we proved that the effec- 
tive estimation of the predictability can be obtained by solving the corresponding nonlinear 
optimization problems. As an example, we employed the well-known Lorenz model to inves- 
tigate these three problems. 

Although almost forty years has passed since the pioneer work of Lorenz on the 
predictability problem (Lorenz 1965a, b), the above three problems for the numerical weather 
and climate prediction have not been well-studied yet. The main reason could be as follows. 

Firstly, the operational numerical weather prediction models at present are of high di- 
mensions, e.g. the dimension of the model used in ECMWF in 1998 is 3 • 107. To solve the 
above nonlinear optimization problems with such high dimension, the capacity of the existing 
computers (memory, speed, etc.) could not serve our purpose. 

Secondly, the models governing the motions of the atmosphere are nonlinear ones, the 
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parameterization of the physical processes, the formulation of the external forcing, and the 
constraint conditions related to the errors of the observations and the parameters in the mod- 
el are complicated too. All these make the suggested three problems become nonlinear, 
optimization problems with complex constraint conditions. In some cases, the problems are 
non-smooth one too. At present, computational mathematicians are still attacking them in 
order to give effective and ripe algorithms. 

Thirdly, facing the above-mentioned difficulties, the scientists in atmospheric sciences 
considered that these problems could only be investigated in the future. Consequently there 
are little theoretical research on them. For example, the problems such as how to obtain the 
information on the errors of the observations and the parameters in the models, how to 
choose proper norms to measure the errors, and how to determine the maximum admissible 
errors, etc. have not been wellstudied yet. 

With the development of the economy and society, meteorologists are required to pro- 
vide the numerical weather and climate prediction with higher accuracy. Quantifying 
predictability will be one of the main subjects in the study of the uncertainties of the forecast. 
Although the above three problems of the predictability concerning the estimations of the 
uncertainties are reduced to nonlinear optimization problems with high dimensions, it is ex- 
pected that the rapid development of computers will serve our purpose in the future not too 
far, and it is time to devote our energies to this study. 

REFERENCES 

Lacarra, J. F., and O. Talagrand, 1988: Short-range evolution of small perturbation in a barotropic model. 

Tellus, 40A, 81-95. 

Li Jianping, Zeng Qingcun, and Chou Jifan, 2000: Computational uncertainty principle in nonlinear ordinary 

differential equations (I). Science #1 China, 43, 449-460. 

Liu Dong C., and Jorge Nocedal, 1989: On the memory BFGS method for large scale optimization. Mathematical 

Programming, 45, 503. 

Lorenz, E. N., 1965a: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 78-89. 

Lorenz, E. N., 1965b: A study of the predictability of a 28-variable atmospheric model. Tellus, 17. 321-333. 
Mu Mu, Guo Huan, Wang Jiafeng, and Li Yong, 2000: The impact of nonlinear stability and instability on the valid- 

ity of the tangent linear model. Advances in Atmospheric Sciences, 17, 375-390. 

Mu Mu, 2000: Nonlinear singular vectors and nonlinear singular values. Science in China, 43(D), 375-385. 

Mu Mu, and Wang Jiacheng, 2001: Nonlinear fastest growing perturbation and the first kind of predictability. Sci- 

ence in China, 44(D), 1128-1139. 

Talagrand, O., 1997: Assimilation of observations, an introduction. J. Meteor. Soc. Japan. IB, 191-209. 

Tanguay, M., P. Bartello, and P. Gauthier, 1995: Four-dimensional data assimilation with a wide range of scales. 

Tellus, 47A, 974. 

Thompson, C. J., 1998: Initial Conditions for optimal growth in a coupled ocean-atmosphere model of ENSO. J. 

Atmos. Sci., 35, 537-557. 

Xue, Y., M. A. Cane, and S. E. Zebika, 1997: Predictability of a coupled model of ENSO using singular vector analy- 

sis. Part I: Optimal growth in seasonal background and ENSO cycles. Mon. Wea. Rev., 125, 2043-2073. 

Yuan Fan, M. R. Allen, D. L. T. Anderson, and M. A. Balmaseda, 2000: How predictability depends on the nature 

of uncertainty in initial conditions in a coupled model of ENSO. J. Climate, 13, 3298-3313. 

Yuan Y., 1990: On a subproblem of trust region algorithms for constrained optimization. Mathematical Pro- 

gramming, 47, 53--63. 



204 Advances in Atmospheric Sciences Vol. 19 

~ N , ~ R N ~ N ~ N N L o r e n z ~ N ~ T ~ I N ~ o  


