
Abstract Models to simulate the fate of pesticides in the
environment are frequently used for risk assessments
within the registration process. An adequate description
of pesticide degradation in soil is important to provide
input for these models. Often, DT50 values (time re-
quired for 50% dissipation of the initial concentration)
are used as model input, but there is no widely agreed
methodology to derive DT50 values from experimental
data. DT50 values are often obtained by fitting first-or-
der kinetics to observed degradation patterns. The result
depends on the handling of pesticide data (e.g. logarith-
mic transformation) and initial concentrations (variable
or fixed). Kinetics other than first-order may be more
suitable to describe the decline of measured concentra-
tions, but the derived DT50 values are then not appropri-
ate as input for many simulation models. Field or labora-
tory DT50 values can be used for modelling and this has
consequences for model parameterisation. Degradation
parameters derived from static laboratory experiments
may not be applicable to pesticide behaviour under flow
conditions in the field. Several methods to simulate the
fate of metabolites and to evaluate experimental data are
available. The methodology used to derive model input
parameters must be consistent with the approach used
within the simulation model.
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Introduction

Predictions of environmental concentrations of a pesti-
cide in soil, surface water and groundwater are a signifi-
cant part of the data package submitted for pesticide reg-
istration (STET 1995). These predictions often involve

the use of mathematical simulation models, such as
PERSIST (Walker and Barnes 1981), PELMO (Jene
1998), PRZM (Carsel et al. 1998), PEARL (Tiktak et al.
2000) and MACRO (Jarvis 1994). One of the most im-
portant processes influencing the environmental behav-
iour of a pesticide is its degradation in soil. Standard lab-
oratory and field dissipation studies are performed with-
in the regulatory process. DT50 values (time required for
50% dissipation of the initial concentration) are derived
from these experiments to provide a numerical indication
of pesticide persistence in soil. These are then used as in-
put data for the models. A consistent and widely agreed
methodology to characterise persistence has not been es-
tablished. Several methods to derive degradation param-
eters from experimental data are available, and these
may result in different DT50 values. This paper evalu-
ates existing methods and discusses implications for the
parameterisation of regulatory simulation models.

Estimation of degradation parameters 
from laboratory data

Data transformation

Degradation parameters required for modelling can be
derived from laboratory studies where the dissipation of
a pesticide in soil is investigated under controlled condi-
tions. The decline of concentrations with time is often
described according to first-order kinetics (Eq. 1a):

(1a)

where C is the concentration (mg kg–1 soil), t is the time
(days) and k is the degradation rate (days–1). The change
of pesticide concentration with time (dC/dt) is propor-
tional to the concentration at this time. The integrated
form of Eq. 1a gives Eq. 1b:

C(t) = C0 exp (–kt) (1b)

where C(t) is the concentration at time t (mg kg–1 soil)
and C0 is the concentration at time 0 (mg kg–1 soil). A
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linear relationship is given for the logarithmic form of
Eq. 1b with:

ln C(t) = ln C0–kt (2)

The time at which the concentration reaches half the ini-
tial concentration is referred to as the half-life [t1/2; time
for 50% degradation of the initial amount of a pesticide
(days)]. Substitution into Eq. 2 gives:

(3)

Under practical conditions, particularly in the field, deg-
radation cannot always be separated from other process-
es leading to pesticide dissipation. In this case, the term
DT50 value is more appropriate and reflects the time for
the dissipation of 50% of the initial concentration.

The initial pesticide concentration C0 and the degra-
dation rate k can be estimated by fitting Eqs. 1a or 1b to
experimental data on the decline of pesticide residues in
soil. Formerly, this was restricted by the limited avail-
ability of appropriate parameter optimisation methods
and by extended computing times. To address this prob-
lem, the linear form (Eq. 2) was used. C0 and k in Eq. 2
could then be derived by fitting a straight line to the da-
ta. Today, several tools are available which efficiently fit
Eqs. 1a or 1b to measured data and estimate those pa-
rameters that give the best possible agreement between
calculated and observed concentrations. These include
ModelMaker (Cherwell Scientific, Oxford, UK), Micro-
soft Excel Solver (note that the fit of an exponential
trendline with Microsoft Excel uses Eq. 2 and not Eq. 1),
statistical packages (e.g. SAS, SAS, USA; STATISTICA,
StatSoft, Tulsa, USA), and Easyfit (K. Schittkowski,
University of Bayreuth, Germany). The use of different
tools to fit Eq. 1 to experimental data or of different op-
tions within one programme may result in different
DT50 values. This can be attributed to differences in the
approach used to solve the equation and to discrepancies
in statistical criteria to identify “best-fit” parameters.

Both the direct fit of the exponential equation (Eq. 1)
to untransformed data and the fit of a straight line to log-
arithmically transformed concentrations (Eq. 2) are
based on first-order kinetics. Nonetheless, these ap-
proaches may result in different DT50 values. This is
demonstrated in Fig. 1 for two hypothetical datasets. For
the first set of concentrations, the logarithmic transfor-
mation has only a small impact on the estimated DT50
value relative to an exponential fit. For the second data-
set, however, the logarithmic method results in a DT50
value which is twice as long as that obtained by fitting
an exponential curve to untransformed data. Logarithmic
transformation assigns a larger weight to smaller concen-
trations (Fig. 1). Today, there are no computational limi-
tations to the direct fit of the exponential equation and
this approach is recommended unless experimental evi-
dence suggests otherwise.

Initial pesticide concentration

The initial concentration of the pesticide in soil was op-
timised to obtain the best fit to the data in the analyses
presented above. It was assumed that the initial concen-
tration is subject to experimental error. Often, however,
the initial concentration is fixed to: (1) the concentration
measured immediately after application, or (2) the theo-
retically applied amount. This may have a strong impact
on the estimated DT50 value, particularly if deviations
from first-order kinetics occur. This is demonstrated for
an example dataset in Fig. 2.

Deviation from simple first-order kinetics

Often, degradation does not follow simple first-order ki-
netics (mono-phasic or one-compartment kinetics), but
shows a bi-phasic pattern where soil residues decrease

t k1 2
2
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Fig. 1a,b Fit of first-order kinetics to untransformed data
(Eqs. 1a, 1b) or to logarithmically transformed concentrations
(Eq. 2) for two hypothetical datasets. DT50 Time required for 50%
dissipation of the initial concentration
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Fig. 3 Pesticide residues in soil fitted by first-order kinetics or a
bi-exponential curve, where A (mg kg–1 soil) and B (mg kg–1 soil)
are constants, k1 (days–1) and k2 (days–1) are rate constants, and t
(days) is time

and the second component of the curve, respectively, and
t is in days. The bi-exponential curve is compared to
mono-phasic first-order kinetics in Fig. 3. If bi-exponen-
tial kinetics are used, DT50 values should be estimated
with care. Often, DT50 values are derived only from the
first term of the equation. This is not appropriate as the
degradation pattern is determined by both exponential
curves simultaneously. The DT50 value derived from the
first component of the bi-exponential curve shown in
Fig. 3 is 8 days. This is much shorter than the DT50 val-
ue of 16 days which was determined for the complete bi-
exponential curve.

It should also be noted that the concept of the DT50
value in the simple first-order equation differs from that
in a non-linear model. Only for first-order kinetics is the
time for a decrease in pesticide concentration from 100%
to 50% the same as the time required for a decline from
50% to 25% of the initial value. DT50 values are often
used as input data for simulation models to assess the
fate of pesticides. In this case, the approach used to de-
rive degradation parameters from experimental data must
be consistent with the methodology used in the simula-
tion model. Most models assume that degradation fol-
lows simple first-order kinetics. Parameters estimated
using non-linear equations are thus usually inappropri-
ate. This leads to conflicts where degradation data clear-
ly deviate from simple first-order kinetics. Figure 4
shows pesticide concentrations in soil predicted with a
simulation model which uses first-order kinetics to de-
scribe degradation. Concentrations were simulated using
the DT50 values derived by fitting first-order kinetics
(54 days) or a bi-exponential curve (16 days) to the data
shown in Fig. 3. Much smaller soil residues are simulat-
ed on the basis of the bi-exponential DT50 value com-
pared to the first-order DT50 value. This is likely to lead
to smaller predicted environmental concentrations in
groundwater and surface water. The selection of appro-

Fig. 2 Pesticide residues in soil fitted by first-order kinetics with
variable or fixed initial concentration (C0)

slowly after an initial rapid decline and persist at a low
level until the end of the experimental period. This was
the case for the hypothetical data presented in Fig. 1b.
The first-order equation is often considered acceptable
unless the r2 value falls below 0.70. The r2 value for the
fit shown in Fig. 1b is 0.81 (untransformed data). The
derived DT50 value (54 days) may thus be taken into ac-
count in regulatory risk assessments although the visual
agreement between observed and simulated data is rela-
tively poor. The decline of residues is under-estimated
by simple first-order kinetics early after treatment and
over-estimated later in the period (Fig. 1b).

A number of empirical non-linear equations or mech-
anistic models to describe bi-phasic (or two-compart-
ment) degradation patterns exists. Timme et al. (1986)
proposed a computer programme to fit first-order kinet-
ics, 1.5- and second-order kinetics, and a range of root
functions to experimental data. In all cases, the data are
transformed in order to allow a linear regression analy-
sis. The above discussion on the impacts of such trans-
formations on first-order DT50 values applies equally to
the non-linear kinetics proposed by Timme et al. (1986).
Several curve-fitting tools and models were compared by
Leake et al. (1995) and large differences in estimated
DT50 values were found.

Additional approaches to describe the non-linear de-
cline of pesticide residues in soil include bi-exponential
kinetics, the hockeystick model, the model proposed by
Gustafson and Holden (1990) and the protected compart-
ment model. The bi-exponential curve consists of two
exponential terms (Eq. 4).

C(t) = A exp(–k1t) + B exp(–k2t) (4)

where C(t) is the concentration at time t (mg kg–1 soil), A
(mg kg–1 soil) and B (mg kg–1 soil) are constants, k1
(days–1) and k2 (days–1) determine the decline of the first



16.9% of the studies. These results confirm the frequent-
ly stated tendency for the model to over-estimate pesti-
cide persistence in the field (Pestemer and Auspurg
1987; Walker and Zimdahl 1981). Discrepancies be-
tween simulated and observed data reviewed by Beulke
et al. (2000) were partly attributed to difficulties in char-
acterising pesticide behaviour under outdoor conditions
using laboratory studies. These arise because of differ-
ences in soil conditions between the laboratory and the
field, as well as the spatial and temporal variability of
degradation.

The use of information from field persistence studies
may be an alternative to the use of laboratory data. Of-
ten, the time-course of pesticide residues in the field can
be approximated by first-order kinetics, but the resulting
DT50 value reflects the time to 50% loss of the pesticide
due to a number of dissipation processes (e.g. volatilisat-
ion, photolysis, uptake by plants or leaching below sam-
pling depth). If these values are used for modelling, sub-
routines other than degradation which allow the separate
simulation of individual dissipation processes (e.g. volat-
ilisation) must be switched off. An advantage of field
DT50 values over laboratory data is that they are deter-
mined under conditions specific for the field and thus
may closely match the situation which is to be modelled.

Laboratory DT50 values refer to specific temperature
and moisture conditions. These values may be corrected
within simulation models for actual conditions. In con-
trast, field DT50 values reflect the variation in degrada-
tion over the course of the field study due to fluctuations
in soil temperature and moisture. If these values are used
as model input, the sub-routines describing temperature
and moisture dependence of degradation must be
switched off unless detailed temperature/moisture infor-
mation is available for the period of the field study. Un-
der certain conditions it seems to be acceptable to use
mean values for the season (e.g. 16°C air temperature for
central Europe).

Coupling degradation with transport processes

In static laboratory experiments, degradation is assessed
isolated from transport processes. The true applicability
of parameters derived in static systems to flow condi-
tions in the field where degradation and transport occur
simultaneously has not been fully established. Estrella et
al. (1993) investigated the degradation of 2,4-D in static
incubation studies and in column leaching experiments
under saturated and unsaturated conditions. Degradation
in incubation studies was 3 times faster than that under
saturated flow conditions and 14 times faster than in un-
saturated column studies. This was partly attributed to
differences in aeration and mixing and to the decreasing
substrate concentrations in incubation studies compared
to a constant influent concentration in the column exper-
iments. Degradation of alachlor occurred more rapidly
under transport conditions than in static incubation stud-
ies in work by Guo and Wagenet (1999). This was attrib-
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priate degradation parameters is important as model out-
puts are particularly sensitive to these parameters (Dubus
et al. 1999).

At present, there is no agreed guidance on how to de-
rive appropriate data for modelling in cases with clear
deviation from mono-phasic first-order kinetics. The FO-
CUS groundwater working group has recently developed
standard scenarios to assess the potential for groundwa-
ter contamination within pesticide registration at the Eu-
ropean level (FOCUS, 2000). Four models can be used
to simulate pesticide leaching (PELMO, PRZM, PEARL
and MACRO). Version 3.14 of PRZM is the only one of
these four models which considers non-first-order degra-
dation. It enables the user to calculate degradation ac-
cording to mono-phasic first-order kinetics or a bi-phasic
model. The inclusion of approaches which deviate from
simple first-order kinetics into the remaining models ap-
pears desirable.

Field dissipation data

Laboratory DT50 values may not always be appropriate
to simulate pesticide persistence in the field. Beulke et
al. (2000) evaluated 178 published studies which pre-
sented pesticide residues measured in the field and those
simulated on the basis of laboratory DT50 values using
the persistence model PERSIST (Walker and Barnes
1981) and related approaches. The simulated percentage
of the initial pesticide concentration at the time of 50%
measured loss was taken as a common criterion for mod-
el performance. Of the 178 studies, 28.1% over-estimat-
ed the “observed” value (50% loss) by up to a factor of
1.25. An under-estimation by up to a factor of 1.25 was
found in only 11.2% of the studies. Simulated values
over-estimated those observed by more than a factor of
1.25 in 43.8% of the studies, whereas an under-estima-
tion by more than a factor of 1.25 occurred in only

Fig. 4 Pesticide residues in soil predicted by a first-order simula-
tion model using DT50 values which were derived by fitting
mono-phasic first-order kinetics (DT50=54 days) or a bi-exponen-
tial curve (DT50 value=16 days) to laboratory data



uted to non-equilibrium sorption during transport where
the time for interaction between the pesticide and soil
aggregates may be short and an equilibrium between
sorbed and dissolved phases may only rarely be
achieved. Sorption is often considered to limit pesticide
degradation due to a reduced availability to degrading
micro-organisms (Scow 1993).

The applicability of degradation rates derived in iso-
lation of transport processes to complex systems in the
field was discussed by Rao et al. (1993). The authors
concluded that the linkage between degradation and
transport and the influence of non-equilibrium sorption
on degradation should be studied more extensively and
considered in modelling the fate of chemicals in soil. A
combination of analytical modelling techniques with col-
umn leaching studies where degradation, sorption and
transport are studied simultaneously offers the potential
to provide more realistic degradation parameters for use
in environmental fate models (Gamerdinger et al. 1993).
However, the mathematical description of these systems
is relatively complex and parameters may be difficult to
estimate, particularly under flow conditions similar to
the field situation. More work is required in this area to
establish an experimental and modelling framework
which allows robust estimation of realistic model param-
eters with reasonable effort.

Inverse modelling

Inverse modelling is a technique whereby selected input
parameters for a mathematical model are varied many
times to optimise the fit between model output and ob-
served behaviour. The method can be used to estimate
those degradation parameters that give the best fit be-
tween outputs of a pesticide leaching model and experi-
mental data obtained under outdoor conditions (e.g. soil
residues, concentrations in leachate from a lysimeter).
Tools are available to repeatedly run the model, compare
the output to experimental data and modify input param-
eters until a statistically optimised fit between simulated
and observed data is achieved (e.g. Doherty et al. 1994).
Gottesbüren (1991) estimated DT50 values at reference
temperature and moisture conditions and parameters re-
quired to correct degradation for actual conditions from
pesticide residues measured in the field. Gottesbüren
(1998) discusses the use of pesticide parameters derived
by inverse modelling to extrapolate the observed behav-
iour of a compound in lysimeter studies to a wider range
of conditions.

DT50 values provided by inverse modelling are cor-
rected for effects of fluctuations in temperature and
moisture conditions and correspond to reference condi-
tions set within the model. These parameters can be used
for simulations under different climatic conditions. As
with field DT50 values, those derived by inverse model-
ling are “lumped” parameters incorporating a number of
dissipation processes which also depend on the quality
of the dataset and the model used to simulate the data.

Results are influenced by the methodology used to de-
rive “best-fit” parameters. Inverse modelling should not
be considered as an alternative to experimental laborato-
ry and field studies, but as a complementary approach
which helps to characterise the behaviour of a pesticide
once released to the environment.

Metabolites

The parent compound is normally of main interest in as-
sessments of the environmental fate of pesticides be-
cause metabolites are often less biologically active and
occur at smaller concentrations. However, risk assess-
ments are required for metabolites which account at any
time for more than 10% of the amount of active sub-
stance applied and which exhibit pesticidal, ecotoxico-
logical or toxicological activity. Two main approaches
exist to simulate leaching of metabolites to depth. Both
are accepted by the FOCUS group although the first
method is preferred (FOCUS 2000).

Approach 1

The fate of the parent compound and the metabolite are
linked. The models PELMO, PRZM and PEARL allow
simulation of the fate of a parent compound and the for-
mation, degradation and leaching to depth of a metabo-
lite in a single model run. The MACRO model can be
run successively to simulate the linked fate of the parent
and the metabolite.

Approach 2

Alternatively, separate simulations can be performed for
the parent and the metabolite with both assumed to be
directly applied to the soil. The “application rate” for the
metabolite is usually calculated from its maximum accu-
mulation in soil.

Approaches 1 and 2 require different inputs, and the
method used to derive degradation parameters for metab-
olites must be consistent with the methodology used in
the simulation model. The most commonly used ap-
proaches to derive degradation parameters for metabo-
lites are:

A. The metabolite is added to the soil, its concentration
is determined at intervals and a first-order equation is
fitted to the data. The derived degradation rate is suit-
able for modelling the linked fate of the parent com-
pound and the metabolite in a single or successive
model runs (approach 1). The degradation rate for the
metabolite needs, however, to be supplemented by in-
formation on its formation. Parameters derived fol-
lowing addition of the metabolite to the soil are “true”
degradation rates (or half-lives) which do not account
for any other processes. Under practical conditions in
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for complex metabolite schemes or where the ob-
served pattern of concentrations does not allow the
confident estimation of degradation rates. Degrada-
tion rates estimated through the fit of kinetic models
are suitable to simulate the fate of a metabolite ac-
cording to approach 1. Non-linear kinetics may also
be applied and these may give a better fit to the data
(e.g. Dyson et al. 1999). However, the derived param-
eters can often not be used as input data for simula-
tion modelling as most models are restricted to the as-
sumption of first-order kinetics.

Conclusions

The method used to derive DT50 values for modelling
pesticide degradation from experimental data may have
large impacts on the modelling results. Approaches
agreed upon amongst members of research organisations,
industry and regulators appear desirable to ensure that
experimental data are evaluated in a consistent way. A
set of rules to support the selection of a scientifically rig-
orous approach should be established rather than a
unique, standard methodology. Particular conflicts arise
where degradation of a parent compound and/or its me-
tabolites clearly deviate from simple mono-phasic first-
order kinetics because DT50 values estimated on the ba-
sis of non-linear approaches are not suitable as input data
for most simulation models. Modifications of existing
models are required to address this problem.
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