ORIGINAL PAPER

C. Müller 7 **R. R. Sherlock** 7 **P. H. Williams**

Field method to determine N_2O emission from nitrification and denitrification

Received: 31 October 1997

Abstract Nitrous oxide (N_2O) emissions via the nitrification (I_{nit}) and denitrification (I_{den}) pathways were successfully measured with in-field incubation of soil cores in preserving jars at 0 Pa and 5–10 Pa acetylene. From the incubations, fractions of nitrification – N_2O over total N₂O ($I_{\text{nit}}/I_{\text{tot}}$) – and denitrification – N₂O over total N₂O (I_{den}/I_{tot}) – were obtained. Actual field emissions of N_2O via nitrification (F_{nit}) and denitrification (F_{den}) were calculated by multiplying the fractions from the incubation technique with the daily N_2O emission (F_{day}) determined with a direct soil cover method. The approach presented here was successful for a whole range of soil moisture conditions in intensive grassland. F_{nit} and F_{den} followed the trends of soil ammonium and soil nitrate.

Key words Nitrous oxide · Nitrification · Denitrification \cdot Soil cores \cdot Acetylene

Introduction

Denitrification and nitrification are believed to be the two main nitrous oxide (N_2O) producing processes in soils (Davidson 1991). Therefore, an easy-to-apply field-based method would be very valuable in order to track the relative contributions of the two processes under various soil and environmental conditions.

C. Müller (\boxtimes)

Tel.: $+49-0641-9937355$, Fax: $+49-0641-9937359$

R. R. Sherlock

P. H. Williams

New Zealand Institute for Crop and Food Research, Lincoln, Canterbury, New Zealand

Currently, there are two methods under development to distinguish nitrification and denitrification N_2O production in soil. The first method involves a 15 N technique (Stevens and Laughlin 1996) and seems to provide good results. However, so far it has been tested only in laboratory incubations and it appears labor intensive, which may preclude routine measurements in the field. Moreover, the addition of $15N$ fertilizers to the soil may preclude observations in natural ecosystems where changes in the N pool may alter the nitrification and denitrification rates.

The second approach distinguishes the two processes by comparing N_2O emissions from soil previously treated with and without nitrification inhibitors. Research has shown that acetylene (C_2H_2) applied to soil at low concentrations $(5-10 \text{ Pa } C_2H_2)$ is an effective nitrification inhibitor without affecting the last reduction step in the denitrification sequence (Klemedtsson et al. 1998). In comparison to other nitrification inhibitors such as nitrapyrin, C_2H_2 appears to have the least impact on soil conditions and other microbiological processes and can be readily applied in short-term incubations (5–10 h) (Klemedtsson et al. 1988).

The C_2H_2 method to distinguish N₂O from nitrification and denitrification is based on the inhibition of nitrification in the presence 5–10 Pa C_2H_2 . The resulting flux from this treatment is therefore due only to denitrification. The contribution due to nitrification is then estimated by the difference between emissions from soils with and without the C_2H_2 block.

In this paper, an approach is presented where C_2H_2 incubations are performed in the field alongside a range of other accompanying measurements. This has the advantage that incubations can be directly related to the concomitant observations. The main advantage of the field incubation is that possible changes in the fractions of nitrification and denitrification N_2O due to soil temperature changes can be precluded. The relative contributions of nitrification N_2O and denitrification N_2O from the incubations are converted to actual emissions of nitrification N_2O (F_{nit}) and denitrification

Department of Applied Microbiology, Justus-Liebig University Giessen, D-35390 Giessen, Germany e-mail: Christoph.Mueller@agrar.uni-giessen.de,

Department of Soil Science, Lincoln University, Canterbury, New Zealand

 N_2O (F_{den}) by multiplying them with the integrated N_2O emission measurement (F_{day}) over the incubation period using a direct soil cover method. These measurements were performed on a gas sampling plot adjacent to the plots from where the soil cores originated.

Nomenclature

- A_{arr} = Arrhenius constant (g N₂O-N ha⁻¹ h⁻¹) (direct cover method 2000 to 0800 hours estimate)
- $E =$ Apparent activation energy, Arrhenius equation (J mol⁻¹)
- F_{day} = Integrated daily N₂O flux (g N₂O-N ha⁻¹ day^{-1})
- F_{arr} = N₂O emission calculated with an Arrhenius relationship (g N₂O-N ha⁻¹ h⁻¹)
- $F_{\text{meas}} = N_2O$ emission measured between 800 and 2000 hours (g N₂O-N ha⁻¹ day⁻¹) (soil cover method)
- F_{nit} = N₂O emission due to nitrification (g N₂O-N ha⁻¹ day⁻¹) (soil cover method)
- $F_{den} = N_2O$ emission due to denitrification (g N₂O-N ha⁻¹ day⁻¹) (soil cover method)
- I_{tot} = Total N₂O emission (g N₂O-N ha⁻¹ day⁻¹) (jar incubation)
- I_{den} = N₂O emission due to denitrification (g N₂O-N ha^{-1} day^{-1}) (jar incubation)
- I_{nit} = N₂O emission due to nitrification (g N₂O-N ha^{-1} day^{-1}) (jar incubation)
- I_{0Pa} = Mean N₂O emission from incubations with 0 Pa C_2H_2 (control) (g N₂O-N ha⁻¹ day⁻¹)
- I_{5Pa} = Mean N₂O emission from incubations with 5 Pa C_2H_2 (g N₂O-N ha⁻¹ day⁻¹)
- N_{NO3} = Soil nitrate concentration (kg N ha⁻¹)
- N_{NH4} = Soil ammonium concentration (kg N ha⁻¹)
- *R* = Gas constant (8.314) (J mol⁻¹ K⁻¹)
- T_t = average soil temperature, 0–5 cm (K)

Materials and methods

Experimental design

Investigations were carried out during April 1994, in a field trial near Lincoln University, New Zealand. The site was sown in ryegrass (*Lolium perenne*) and white clover (*Tifolium repens*) on Templeton silt loam (Udic Ustochrept; USDA Soil Taxonomy). Texture, bulk density and soil moisture characteristics from the top 5 cm of the soil are presented in Table 1.

The experimental plots were arranged in a randomized block design with three replications. Separate adjacent areas were designated for gas sampling (each plot: width 40 cm, length 40 cm) and soil sampling (each plot: width 60 cm, length 60 cm). Three moisture treatments were maintained throughout the experiment: maximum (S_1) (application of 5 mm rain day⁻¹; approximate suction: 70 cm H_2O); intermediate (S_2) (application of 2.5 mm rain day⁻¹; approximate suction: 130 cm $\overrightarrow{H_2O}$) and minimum (S₃) (no irrigation; approximate suction: >16000 cm H₂O).

Synthetic sheep urine was applied at a rate of 4.073 l m⁻² to all plots according to the recipe given in Fraser et al. (1994). This

Table 1 Particle size analysis, soil bulk density and soil moisture characteristic from Templeton site loam under intensive pasture (0–5 cm) (mean with standard error in parentheses)

Particle size analysis		Soil moisture characteristic	
Size fraction (μm)	$%$ by wt. $(\pm SE)$	Volumetric water content $\rm (cm^3 \ cm^{-3})$	Soil water suction (cm H ₂ O)
>63 $63 - 20$ $20 - 2$ \lt 2.	19.0(1.3) 39.8 (3.8) 20.6(1.3) 19.4(1.0)	0.433 0.425 0.384 0.373 0.277	10 30 50 100 1019
Dry bulk density $(g \text{ cm}^{-3})$ 1.10		0.240 0.200	3058 15290

resulted in applications of N: 500 kg ha^{-1}, K: 400 kg ha $^{-1}$, Cl: 100 kg ha^{-1} and S: 15 kg ha^{-1}, respectively.

The following measurements were carried out on days 1, 5, 12 and 19 after urine application: total N_2O emission with the soil cover technique (F_{day}) ; N₂O emission from nitrification (I_{nit}) and denitrification (I_{den}) with the field C_2H_2 incubation technique; soil $NO₃-N$; soil $NH₄-N$; water soluble C; soil temperature and soil water content. All soil analyses were performed at the 0–5 cm depth.

Gas collection and analysis of N_2O

A modified version of the soil cover technique described by Hutchinson and Mosier (1981) was used to determine N_2O emissions from synthetic urine affected soil. Emission measurements were carried out on each sampling day at 0800, 1200, 1400, 1600 and 2000 hours to give a range of times in order to make a better prediction of the daily N_2O flux. At each sampling time, three samples at 0, 10 and 20 min after coverage were taken from the enclosed head space.

 $N₂O$ was analyzed on a gas chromatography system equipped with ECD similar to the one described in Mosier and Mack (1980). The detector, switching valves and column temperatures were 350 °C, 20 °C and 20 °C, respectively. The carrier gas was oxygen-free nitrogen (NZIG) at a flow rate of 45 ml min⁻ .

 $N₂O$ fluxes were calculated using the nonlinear equation given in Hutchinson and Mosier (1981) and expressed in g N_2O-N ha⁻¹ day^{-1}. For a cover period of 20 min, the method was capable of resolving N₂O fluxes to a precision of ± 0.2 g N₂O-N ha⁻¹ day⁻¹. The F_{day} was calculated according to Eq. (1):

$$
F_{\rm day} = \sum_{t=800}^{2000 \,\mathrm{h}} F_{\rm means} + \sum_{t=2000}^{0800 \,\mathrm{h}} F_{\rm arr} \tag{1}
$$

with,

 $F_{\text{arr}} = A_{\text{arr}} \cdot e^{(-E/RT_t)}$) (Conrad et al. 1983; Müller 1996)

The Arrhenius parameters *A*arr and *E* were determined from the five measurements throughout the day correlated with the average soil temperature from the top 5 cm (T_t) .

Field C_2H_2 incubation

Incubations of soil cores under the two C_2H_2 concentrations (0 Pa and 5–10 Pa) were performed in glass jars (Agee; volume approx. 1100 ml) inserted into the ground and covered with a thin wooden plate to track field temperature conditions as closely as possible [modified according to IAEA (1992)] (Fig. 1). The maximum soil temperature difference on a sunny day between soil cores in the

Fig. 1 Positioning of jar during the field incubation

jar and soil outside was 2.5° C. Each jar contained nine soil cores (soil core diameter = 2.5 cm, depth = 5 cm) taken 1 day prior to the measurements from the soil sampling plots. The headspace volume of each jar was determined according to the total jar volume minus the volume of the soil cores (soil atmosphere volume in the cores was added to the headspace). The $5-10$ Pa C_2H_2 concentration in the jar atmosphere was adjusted by exchanging, for each jar, an exact calculated headspace volume (approximately 5 ml) with a 834 Pa C_2H_2 standard (freshly prepared). The C_2H_2 was previously purified by passing it through three gas wash bottles filled with distilled water (Gross and Bremner 1992). Incubations were carried out for 5 h (1130 to 1630 hours); the optimum incubation time was determined in a preliminary experiment (data not presented). After the incubation, gas samples were taken with syringes and analyzed on the gas chromatograph system as described above.

 I_{nit} and I_{den} were expressed as fractions of total N₂O (I_{tot}) (Eqs. 2, 3), using geometrically calculated mean emissions of 0 Pa $C_2\overline{H}_2$ (I_{0Pa}) and 5 Pa C_2H_2 (I_{5Pa}) from jar incubations.

$$
I_{\text{den}}/I_{\text{tot}} = \frac{I_{5\text{Pa}}}{I_{0\text{Pa}}} \tag{2}
$$

$$
I_{\text{nit}}/I_{\text{tot}} = \frac{I_{0\text{Pa}} - I_{5\text{Pa}}}{I_{0\text{Pa}}} \tag{3}
$$

 F_{nit} and F_{den} were calculated by multiplying the two fractions $(I_{\text{den}}/I_{\text{tot}}, I_{\text{nit}}/I_{\text{tot}})$ by F_{day} (Eq. 1) and making the assumption that the fractions determined from the jar incubation were equal to the average daily fractions in the plots where N_2O was measured with the soil cover technique, i.e. Eq. 4.

$$
I_{\text{den}}/I_{\text{tot}} = F_{\text{den}}/F_{\text{day}}, I_{\text{nit}}/I_{\text{tot}} = F_{\text{nit}}/F_{\text{day}}
$$
(4)

Soil NH_4 , soil NO_3

Soil NH_4 and NO_3 were extracted immediately after sampling in 2 M KCl (10 g moist soil in 50 ml KCl) (Maynard and Kalra 1993) and analyzed colorimetrically by flow-injection analysis (Tector Flow Injection Analyzer). Results were adjusted to the water content and the bulk density of the soil (Table 1).

Soil and air temperature

Soil and air temperature were measured with thermistors (Campbell Scientific) and logged half hourly with a datalogger (21X, Campbell Scientific).

Statistical analysis

The analysis of variance and the test for differences between means with Duncan's multiple range test was done in Quattro Pro version 4 (Borland) and Minitab (Minitab Inc. Release 8.2, 1991). For gas fluxes, the analysis was done on lognormal transformed values (geometric mean). All other values were assumed to be normally distributed (arithmetic mean).

Results and discussion

 N_2O emissions from incubation at the two C_2H_2 concentrations followed, for all treatments, the trend $I_{\rm SPa} < I_{\rm OPa}$, allowing the separation into $F_{\rm nit}$ and $F_{\rm den}$ (Fig. 2). This provides a clear indication that nitrification-induced N_2O emissions were inhibited with 5–10 Pa C_2H_2 without blocking the N₂O reductase in the denitrification pathway (Klemedtsson et al. 1988). Simultaneous $N₂O$ emissions via nitrification and denitrification are expected under conditions where both processes are active, such as in a urine patch (Monaghan and Barraclough 1993; Stevens and Laughlin 1996).

Not all results between the two C_2H_2 concentrations were statistically different on all sampling occasions (data not presented), which can be explained by the high spatial variability among cores distributed in the different jars. However, the definite trend in N_2O emission described above was considered to be a more important indicator of the potential application of this

Fig. 2 Results of the C₂H₂ method for N₂O via nitrification (F_{nit}) and N₂O via denitrification (F_{den}) in % of total N₂O (F_{day}) from urine-affected intensive grassland soil at different soil moisture contents $(S_1$ to S_3)

method than the actual statistical differences as influenced by differing C_2H_2 concentrations.

Fractions $F_{\text{tot}}/F_{\text{day}}$ and $F_{\text{den}}/F_{\text{day}}$ generally followed the trends of soil NH_4 : $N_{NH4}/N_{NH4}+N_{NO3}$ and soil $NO₃: N_{NO3}/N_{NH4}+N_{NO3}$, respectively (Fig. 3). This observation is expected since NH_4^+ and NO_3^- are the key substrates for nitrification and denitrification, respectively (Granli and Bøckman 1994). The rate of nitrification N_2O seems to be related to the soil water status (Fig. 3). While in the moist treatments $(S_1 \text{ and } S_2)$ NH₄ is present in the water and most likely available at the sites where nitrification occurs, there appears to be a much stronger limitation for the actual $NH₄$ present at the reaction sites in the dry treatment. This behavior is indicated by the much steeper slope of F_{nit} versus N_{NH4} for the dry treatment compared to the wetter treatments. Additional evidence for this observation was provided by the much lower nitrification rate of the dry treatment as indicated by a lower build-up of soil $NO₃$, compared to the nitrification rates in the other two treatments.

 F_{den} is also positively related to the soil $NO₃$ fractions (Fig. 3). This behavior is not surprising since water-soluble C was at no time during the experiment stoichometrically limiting denitrification (data not presented) (Burford and Bremner 1975).

Fig. 3 Relationships between fractions of $F_{\text{nit}}/F_{\text{day}}$ and $N_{\text{NH4}}/F_{\text{day}}$ $(N_{NH4}+N_{NO3})$ and F_{den}/F_{day} vs $N_{NO3}/(N_{NO3}+N_{NH4})$ for intensive grassland at three different soil moisture conditions $(S_1 \text{ to } S_3)$

The in-field incubation method provides a way of distinguishing N_2O emitted by nitrification and denitrification and is in agreement with the laboratory-based observations of Klemedtsson et al. (1988). The N_2O emission via nitrification and denitrification, as calculated here, is one of the first attempts to quantify the mechanisms for N_2O emissions from urine-affected intensive grassland. Therefore, it is difficult to comment on the validity of the relationships found, since no independent figures are available. Other researchers have reported that $N₂O$ emission via nitrification occurs but they were unable to provide accurate figures (Colbourn 1992; Monaghan and Barraclough 1993; de Klein and van Logtestijn 1994).

Many studies have used C_2H_2 inhibition to quantify denitrification losses from soil under field conditions by using a 0.1–10 kPa C_2H_2 concentration to block the reduction step from N_2O to N_2 (IAEA 1992). However, if nitrification is an important mechanism for N_2O production, this approach may seriously underestimate the total $N_2O + N_2$ production from soil since the N₂O from nitrification cannot be accounted for due to the blockage of nitrification under high C_2H_2 concentrations. Large differences in total $N_2O + N_2$ from this error are reported by de Klein and van Logtestijn (1994) who found, depending on whether nitrification or denitrification is the source of N_2O production, that the total $N_2O + N_2$ could change by a factor of as much as 2.

It is difficult to comment on the validity of the approach described in this paper because it seems that no in-field incubations of this kind have been carried out previously. Other methods to distinguish N_2O emissions from the two pathways include mathematical modeling such as the models developed by Mosier and colleagues. These models combine climate data with mineral N data to simulate total N_2O production by nitrification and denitrification (Mosier et al. 1983; Mosier and Parton 1985; Parton et. al. 1988; Parton et al. 1996). However, their approach did not use actual measurements of N_2O via nitrification and denitrification but correlations of total N_2O with soil NH₄ and soil $NO₃$ to develop emission relationships. Validations of their approach as well as improvement of the accuracy of their relationships would certainly be achieved by actually measuring the F_{nit} and F_{den} fractions.

An extension of the method described here for field N_2 emissions and an application of the relationships obtained with soil and environmental factors to a data set where F_{nit} and F_{den} have not been measured are presented in Müller (1996).

Clearly, more work has to be done to validate this in-field approach to distinguish nitrification and denitrification N_2O . The method presented here is being further developed and applied in a long-term field experiment in Giessen, Germany, on an old grassland site under a wide range of soil and environmental conditions.

Acknowledgements This work was funded by the New Zealand Institute for Crop & Food Research/Lincoln. It is a pleasure to acknowledge the helpful assistance of Regina Eisert and Oliver Rasink.

References

- Burford JR, Bremner JM (1975) Relationships between the denitrification capacities of soils and total, water soluble and readily decomposable soil organic matter. Soil Biol Biochem 7:389–394
- Colbourn P (1992) Denitrification and N_2O production in pasture soil: the influence of nitrogen supply and moisture. Agric Ecosyst Environ 39 :267–278
- Conrad R, Seiler W, Bunse G (1983) Factors influencing the loss of fertilizer nitrogen into the atmosphere as nitrous oxide. J Geophys Res 88 :6709–6718
- Davidson EA (1991) Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems. In: Rogers JE, Whitman WB (eds) Microbial production and consumption of greenhous gases: methane, nitrogen oxides and halomethanes. Am Soc Microbiol Washington, DC, pp 219–235
- Fraser PM, Cameron KC, Sherlock RR (1994) Lysimeter study of the fate of nitrogen in animal urine returns to irrigated pasture. Eur J Soil Sci 45:439–447
- Granli T, Bøckman OC (1994) Nitrous oxide from agriculture. Norw J Agric Sci [Suppl 12]:128
- Gross PJ, Bremner JM (1992) Acetone problem in use of the $C₂H₂$ blockage method for assessment of denitrifying activity in soil. Commun Soil Sci Plant Anal 23 :1345–1358
- Hutchinson GL, Mosier AR (1981) Improved soil cover method for field measurement of nitrous oxide fluxes. Soil Sci Soc Am J 45: 311–316
- IAEA (1992) Manual on measurements of methane and nitrous oxide emissions from agriculture. International Atomic Energy Agency, Vienna, p 90
- Klein CAM de, Logtestijn RSP van (1994) Denitrification and N2O emission from urine-affected grassland. Plant Soil 163:235–242
- Klemedtsson L, Svensson SH, Rosswall T (1988) A method of selective inhibition to distinguish between nitrification and denitrification as sources of nitrous oxide in soil. Biol Fertil Soils 6:112–119
- Maynard DG, Kalra YP (1993) Nitrate and exchangeable ammonium nitrogen. In: Carter MR (ed) Soil sampling and methods of analysis. Lewis, Boca Raton, pp 25–38
- Monaghan RM, Barraclough D (1993) Nitroux oxide and dinitrogen emissions from urine-affected soil under controlled conditions. Plant Soil 151: 127–138
- Mosier AR, Mack L (1980) Gas chromatographic system for precise, rapid analysis of nitrous oxide. Soil Sci Soc Am J 44:1121–1123
- Mosier AR, Parton WJ (1985) Denitrification in a short grass prairie: a modelling approach. In: Caldwell DE, Brierley JA, Briefley CL (eds) Planetary ecology. Van Nostrand Reinhold, New York, pp 441–451
- Mosier AR, Parton WJ, Hutchinson GL (1983) Modelling nitrous oxide evolution from cropped and native soils. In: Hallberg R (ed) Environmental biogeochemistry. Ecol Bull (Stockh) 35:229–241
- Müller C (1996) Nitrous oxide emission from intensive grassland in Canterbury, New Zealand. Edition Wissenschaft Reihe Biologie vol. 65. Tectum, Marburg, p 253
- Parton WJ, Mosier AR, Schimel DS (1988) Rates and pathways of nitrous oxide production in a short grass steppe. Biogeochemistry 6:45–48
- Parton WJ, Mosier AR, Ojima DS, Valentine DW, Schimel DS, Weier K, Kumala AE (1996) Generalized model for N_2 and N₂O production from nitrification and denitrification. Global Biochem Cycles 10 :401–412
- Stevens RJ, Laughlin RJ (1996) Measuring the contributions of nitrification and denitrification to the flux of nitrous oxide from soil. In: Diekkrüger B, Heinemeyer O, Nieder R (eds) 9th nitrogen workshop. Technische Universität Braunschweig, Forschungsanstalt für Landwirtschaft (FAL), Braunschweig, Germany, pp 161–164