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Abstract Saline environments have a natural bacterial
flora, which may play a significant role in the economy of
these habitats. The natural saline environments (usually
containing salinity equivalent to 4–30% NaCl) are aquatic
(e.g. salt marshes) or terrestrial (e.g. saline lands). Saline
environments include an increasing area of salt-affected
cultivated soils throughout the world. These environments
contain various ions which may interfere with uptake of
water and which may be toxic to a large number of organ-
isms. Saline environments harbour taxonomically diverse
bacterial groups, which exhibit modified physiological and
structural characteristics under the prevailing saline condi-
tions. The majority of these bacteria can osmoregulate by
synthesizing specific compatible organic osmolytes such as
glutamine, proline and glycine betaine and a few of them
accumulate inorganic solutes such as Na+, K+ and Mg2+.
The morphology of the bacteria is usually modified, cells
are usually elongated, swollen and showing shrinkage, in
addition to changes in the cell and cytoplasmic volume.
The chemical composition of membranes may also occa-
sionally be modified, and the synthesis pattern of proteins,
lipids, fatty acids and polysaccharides may change with a
moderate increase in salinity. However, ultrastructural al-
terations in cells of halophilic bacteria have not been re-
ported, and profound changes in cellular properties of
these bacteria only occur at concentrations above
2 M NaCl. Evidence has accumulated that the bacteria are
essential elements in the saline environment because of
their activity such as degradation of plant remains, nitro-
gen fixation and production of active metabolites.
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Introduction

Saline habitats are frequently inhabited by an abundance
of microbial communities adapted to these ecosystems.
Among the microorganisms, the bacteria play a major role
as important and dominant inhabitants of saline and hyper-
saline environments. The bacteria that live in saline envir-
onments may be assigned to two categories: archaebacteria
and eubacteria. Archaebacteria are extremely halophilic
microorganisms which grow optionally at salt saturation
(up to 30% NaCl). It has been proposed, on the basis of
many biochemical studies such as cell wall composition,
ribosomal RNA sequence comparisons, and examination
of the genetic organization and transcription of rRNA op-
erons (Kjems et al. 1990; Dennis 1991; Denner et al.
1994), that the archaebacteria are a phylogenetically dis-
tinct group of microorganisms which are different from the
eubacteria and the eucaryotes. Therefore, the archaebacter-
ial group was suggested to form a separate kingdom, the
Archaea (Woese et al. 1990). The archaebacterial flora will
not be included in this review, although comparisons will
be found elsewhere. The review discusses the characteris-
tics of the bacterial flora inhabiting the saline environ-
ments, their diversity and adaptation and the microbial ac-
tivity of these environments. The bacterial communities in
saline environments may include extreme (halophilic) and
facultative (halotolerant) bacteria. The latter may include
the nonsaline bacteria, which have become adapted to
these extreme environments. However, this review is not
devoted to halophilic bacteria (organisms which are almost
restricted to extreme environments), but aims mainly to
present a comprehensive picture of the whole bacterial
flora of various saline environments and their free-living
or associative activity especially with halophytic plants.

Saline environments and their vegetation

Saline lands and salt-affected soils

Saline lands include salt desert, which cover huge areas of
the world, where evaporation greatly exceeds precipitation



(Fitter and Hay 1987). There may be salination to such a
degree as to eliminate most plants from these habitats. Sa-
line lands represent about 15% of the arid and semiarid
lands of the world, while salt-affected soils represent about
40% of the world’s irrigated lands (Hoffman et al. 1980;
Moore 1984; Shannon 1984; Serrano and Gaxiola 1994).
Reliable estimates suggest that in the Mediterranean region
alone, about 15 million hectares have become seriously af-
fected due to man’s activities (Aronson 1985). In Egypt,
saline lands and sodic soils on regularly irrigated lands
and the waste saline lands to the south of the Nile Delta
have dramatically increased. Recent reports estimated salt-
affected lands (mostly agricultural land) to be about 1.5
million hectares (Zahran et al. 1992). The main reasons
for the salinity problem in the agricultural land of Egypt
are: (a) the use of salt-contaminated irrigated water, (b)
poor drainage management, and (c) the rise of under-
ground water after the Nile flooding stopped because of
the construction of the High Dam (Zahran et al. 1992). In
India, over 6 million hectares of a total of 40 million hec-
tares of irrigated farmland have been made useless by
salinity and waterlogging, in addition to about 40000 ha
which are abandoned every year (Chapman 1975). In the
United States (California) about 0.5 million hectares have
been strongly affected by salinity (Kelley et al. 1979). It
has been reported (Yensen et al. 1981) that the United
States alone loses about 80000–120000 ha crop land
every year due to salt build-up. This is due to the cumula-
tive effects over decades or centuries of adding water with
some dissolved salt to the soil of arid regions (Downton
1984).

Salinity usually exists in soil as the underground water
rises by capillarity or the rain water accumulates in low
places without drainage. High temperature increases the
rate of evaporation of water, leaving crusts of salts above
the soil surface or crystals of salt which may be found in
the upper layers mixed with the soil mineral constituents.
In these soils there is a high concentration of neutral solu-
ble salts (ECe 5 ds cm–1 or more) sufficient to seriously in-
terfere with microbial activity and soil fertility (Sarig et al.
1993) and also the growth of most plants (Zahran 1989).
The salinization of the soil is very dangerous for soil pro-
ductivity, when there is no effective means to deal with
the salinity problem. The Sumerian civilization in Mesopo-
tamia vanished because they failed to respond to this
threat (Jacobson and Adams 1958). Some engineering
technologies, e.g. drainage of salinized water and supply-
ing high-quality water from remote sources, have been
suggested but they are extremely costly (Zahran 1991; Ser-
rano and Gaxiola 1994). The following strategies have
been suggested (Aronson 1985; Zahran 1991) to improve
the productivity of saline lands and plant growth: (a) im-
provement of the rate of drainage so that salt build-up is
slowed, (b) selection or breeding for greater salt tolerance
of conventional crops showing some genetic variability for
salt tolerance, and (c) the use of potentially useful wild ha-
lophytes. Halophytes which are of significant agricultural
or horticultural value have been used for land reclamation
in many countries of the world (Aronson 1985). Nitrogen

fixation, in association with halophytes (Wollenweber and
Zechmeister-Boltenstern 1989) or symbiotically with salt-
tolerant legumes (Zahran 1991), may increase N input in
saline soils and therefore could be a significant solution to
the aridity of saline lands.

Aquatic saline environments

Concentrated salt solutions (brines) are found in natural
ecosystems such as salt lakes, marine ponds and salt
marshes subject to evaporation because of high tempera-
ture (Trüper and Galinski 1986). The inland lakes of the
world may include some of the most extreme natural en-
vironments, e.g. Dead Sea, Great Salt Lake, Soda Lake
and salt marshes (Batanouny 1979; Zahran 1989; Ollivier
et al. 1994). Salt marshes may be found in inland areas
and coastal (marine) marshes occur in sheltered sites (fre-
quently estuaries) where wave action is slight and deposi-
tion of silt allows higher plant to root. The estuaries and
particularly shoreline rockpods exposed to intensive eva-
poration can also become extremely saline (Ollivier et al.
1994). Human activity also creates highly saline habitats
such as solar salterns, which may have an NaCl concentra-
tion at saturation in some ponds (Tru¨per and Galinski
1986; Ollivier et al. 1994). Inland and marine salt
marshes, as saline habitats, are widely distributed in the
western and eastern deserts of Egypt (Batanouny 1979;
Zahran 1989; Zahran and Willis 1992). The inland salt
marshes which are far from the reach of maritime influ-
ences are present in the oases and depressions of the de-
serts (Zahran and Willis 1992). The marine (littoral or
coastal) salt marshes usually occupy the lands adjacent to
maritime influences (i.e. periodic tidal flooding, seawater
spray and seawater seepage) along the coasts of the Medi-
terranean Sea, Red Sea and also the northern lakes (Zah-
ran and Willis 1992).

Physicochemical characteristics of saline environments

The hypersaline ecosystems such as salt lakes and marshes
show a great variability in total salt concentration, ionic
composition and pH (Ollivier et al. 1994). Several lakes,
e.g. Big Soda Lake, Mono Lake and Soap Lake, in the
Great basin of the western United States, have salinities
ranging from about 9 to 10% (wt/vol) and are highly alka-
line with pH values of 9–10 (Oremland and King 1989).
In contrast, the saline water bodies, e.g. the Great Salt
Lake, the Dead Sea and the Orea basin in the Gulf of
Mexico, which are hypersaline with total salt contents of
over 20%, have pH values of around 7.0 (Oremland and
King 1989). In these saline solutions, the Na+ and Cl–

ions are predominant (Oren 1993).
In the Great Salt Lake, the concentrations of Na+ and Cl–

are about 10.5% and 18.2%, respectively. In the Dead Sea
Cl– ions are dominant, being about 22.5%, with equivalent
concentrations of Na+, Mg2+ and Ca2+ of about 4%, 4.4%
and 1.7%, respectively. The absence of or the low concentra-
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tions of divalent cations such as Mg2+ and Ca2+ from
brackish water or brines is mainly attributed to the high
pH of these hypersaline ecosystems (Ollivier et al. 1994).
The sulphates, which are important electron acceptors and
are involved in the mineralization of organic matter, are pre-
sent at low concentrations in hypersaline waters (about
0.05% in the Dead Sea, 0.27% in Great Salt Lake and
0.21% in the Soap Lake) probably because of its precipita-
tion (Oremland and King 1989; Ollivier et al. 1994).

The salinity of salt-affected soils of Egypt was found
to be about 1–3% (w/v) and the organic matter content
1–4.5% (Zahran et al. 1992; Zahran et al., unpublished).
In saline soils of Egypt, the cations were commonly Na+,
K+, Mg2+ and Ca2+, while the anions were mainly chlor-
ides, with few sulphates, nitrates, carbonates and bicarbo-
nates (Zahran 1989). The pH of saline soils is usually less
than 8.5 because the soluble salts present are mainly neu-
tral and the amount of the exchangeable sodium is small
(less than 15%). In addition, these soils contain variable
amounts of ammonia and nitrate. The hypersaline soil in
India (Chawla 1969) and Spain (Del Moral et al. 1987),
on the other hand, is characterized by a low organic matter
content. Therefore, it has been suggested (El Abyad et al.
1979; Zahran et al. 1992; Ragab 1993) that salinity is not
the only factor which determines the characteristics of sa-
line soils but also the organic matter content. The type and
density of vegetation affect the organic matter content in
saline soils, and higher organic matter content was found
in the rhizosphere of halophytic plants, which are common
in saline habitats (Batanouny 1979; Quesada et al. 1982;
Zahran 1989). The existence of bacteria in saline soils
might therefore be affected by the organic matter content.
Saline soils contain variable amounts of combined N, and
higher nitrate contents are found in salt-affected soils in
Egypt (Zahran et al. 1992; Zahran et al. unpublished),
probably because of the extensive application of N fertiliz-
er. Nitrates may be depleted from saline lands as a conse-
quence of higher rates of denitrification (Kaplan et al.
1979); in addition, the halophytic plants usually act as a
scavenger to nitrates and ammonia accumulates in these
habitats (Lee et al. 1989). Ammonia usually accumulates
in saline lands as a product of the nitrogen fixation pro-
cess (Yoch and Whiting 1986; Wollenweber and Zech-
meister-Boltenstern 1989). Nitrogen-fixing bacteria were
isolated from saline soils of Egypt (Zahran et al. 1995).
The existence of bacterial communities in saline soils may
also be affected by alkalinity. The pH of saline soils was
about 8.5 in Spain (Quesada et al. 1982), 10.5 in India
(Bhardwaj 1974) and 8.8 in Egypt (Ragab 1993; Zahran et
al., unpublished). The wet soils of the marshes or lake
shores have moderate salinity and alkalinity compared to
the marsh or lake solution itself, which is usually extre-
mely saline and alkaline (Imhoff et al. 1979).

Vegetation in saline environments

Halophytes, the vegetation of saline habitats, are a
specialized plant group, characterized by the possession of

great osmotic tolerance (Zahran 1989). A comprehensive
survey of the halophytic vascular plants of the world re-
vealed that more than 1250 species of halophytes (in at
least 10 families) occur in saline lands and salt marshes
(Aronson 1985). A halophyte is any plant that can com-
plete its life cycle and reproduce itself under conditions of
soil water-salinity of ECe 8–10 ds cm–1 (about 0.08–
0.1M NaCl). Halophytes are divided into two different
types according to the type of modification or the sort of
adaptation to saline environments: (1) the excretives
(plants capable of excreting excess salts), includingTamar-
ix, Limonium and Limoniastrum, and (2) the succulents
(plants having succulent leaves), includingSuaeda, Sali-
cornia, Zygophyllum, Arthrocnemumand Halocnemum.
The latter two species are dominant in Red Sea coastal
salt marshes (Zahran 1989). The halophytesCyperus, Jun-
cus and Typhaare also dominant in the swamp lands bor-
dering the salt marshes in Egypt (Zahran and Willis 1992).
Halophytes are usually found in mangrove swamps (shal-
low salt marshes) which occur sporadically in many arid
and tropical coastal areas. Mangroves (mangal) commu-
nities occupy a zone of salt marshes of the Red Sea in
Egypt, which is permanently covered with sea water
(Zahran 1989). At least 50 tree and shrub species in 10
families and 14 genera are commonly accepted as man-
groves, the major economic genera of worldwide impor-
tance beingAvicennia, Brugieria, Canocarpus, Heritiera,
Laguncularia and Rhizophora (Aronson 1985; Zahran
1989). Mangrove halophytes are an abundant source of
timber, firewood, charcoal and tannins (Aronson 1985).
The salinity in the mangrove swamps of the Red Sea is
about 4–6.5% and the pH about 7–8 (Shoreit et al. 1994).
The main bacterial flora in these habitats comprises mem-
bers of four genera of purple non-sulphur bacteria(Rho-
dopseudomonas, Rhodospirillum, RhodobacterandRhodo-
cyclus). In addition to the halophytes, there are some leg-
umes which have been observed growing in salt-affected
soils in the Middle and Far East and in other places. Other
woody (tree) legumes are found in arid saline lands. If
these leguminous plants (which are nitrogen-fixing) are
grown in saline lands, they will improve the fertility of
these soils (Zahran 1991). The salt tolerance of legume-
Rhizobium symbioses and their nitrogen-fixing activity
have been studied under saline conditions (Zahran 1991;
El Sheikh and Wood 1995); a salt-tolerant strain ofRhizo-
bium fixed more nitrogen with soybean plants than a salt-
sensitiveBradyrhizobiumin saline soil. Selection of salt-
tolerant and nitrogen-fixing legumes (herb or woody) was
a strategy suggested for cultivation of the saline lands in
arid regions and the salt-affected soils, and for improve-
ment of soil fertility (Zahran 1991).

Diversity, taxonomy and characteristics of bacterial flora
of saline environments

The total count of bacteria is usually negatively correlated
with the total soluble salts of saline soils (Ragab 1993),
but positively correlated with organic carbon contents (El-
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Abyad et al. 1979; Zahran et al. 1992; Ragab 1993). How-
ever, these soils may have their own bacterial communities
which have adapted to saline environments. Viable counts
in plates cannot yield a reliable picture about the bacterial
flora of saline soils, because the number of colonies
yielded represents only a small percentage of the real num-
ber of colonies (Oren 1991). A significantly higher num-
ber of bacteria was found to colonize the hypersaline soils
of Spain (Quesada et al. 1982; Del Moral et al. 1987) and
Egypt (Zahran et al. 1992; Zahran et al., unpublished),
when a medium with high salinity was used. The strict ha-
lophiles only develop in media with higher concentrations
of Na+, whereas the facultative halophiles usually develop
in media containing low concentrations of Na+ (Giambiagi
and Lodeiro 1989). Therefore, Bhardwaj (1974) suggested
using a medium with a high salt concentration and a high
pH in order to obtain an accurate picture of the bacterial
flora of saline soils.

The bacterial flora of saline environments is as diverse as
its fresh-water counterpart (Galinski and Tru¨per 1994).
Nevertheless, the saline soil bacteria do not define a group
of phylogenetically related microbes but represent a group
which has evolved in many different groups of organisms.
The wide spectrum includes the following representatives,
Halomonas, Pseudomonas, Vibrioand Actinopolyspora
and a whole range of Gram-positive rods and cocci, e.g.Ba-
cillus, Micrococcusand Salinicoccus(Trüper et al. 1991).
The Gram-negative bacteria appear to be much more fre-
quent in saline environments (Quesada et al. 1982; Del Mo-
ral et al. 1987). They were isolated from saline water and
saline soils and have received much attention compared to
other bacterial types of saline environments (Vreeland et
al. 1980; Quesada et al. 1983, 1984, 1987; Oren et al.
1984; Rodriguez-Valera et al. 1985; Ventosa et al. 1985;
Rengpipat et al. 1988a,b; Zahran et al. 1992). Members
of the Gram-negative genera,Vibrio, Pseudomonas, Acineto-
bacter and Alteromonas, have been isolated from saline
habitats (Rosenberg 1983; Rodriguez-Valera et al. 1985;
Del Moral et al. 1988; Zahran et al., unpublished). The
root-nodule bacteria are another group of Gram-negative
bacteria which have been reported to colonize the saline soil
of Greece (Douka et al. 1978) and Egypt (Zahran et al. 1992).

The Gram-positive bacteria are also well represented in
saline habitats, and members of the generaBacillus and
Micrococcus are dominant among other Gram-positive
bacteria in saline soils. For example, members of the
spore-formingBacillus were isolated from the hypersaline
habitats of Spain (Quesada et al. 1982) and Egypt (Weis-
ser and Tru¨per 1985; Zahran et al. 1992, 1995). These
spore-forming bacilli are mostly moderate or extreme halo-
alkaliphiles. Gram-positive cocci have been isolated from
various saline ecosystems (Quesada et al. 1982; Claus et
al. 1983; Del Moral et al. 1987; Zahran et al. 1992).
These bacteria were mainly included in five species, they
are: Marinococcus halophiles, M. albus, M. hispanicus,
Micrococcus halophilusand Sporosarcina halophila(Mar-
quez et al. 1990).

The actinomycetes represent only a small fraction of
the bacterial flora of saline soils (Quesada et al. 1982;

Zahran et al. 1992; Zahran et al., unpublished); they may
be less tolerant to salt stress than other bacterial types
(Yokoyama et al. 1992). However, two extremely halophil-
ic actinomycetes(Actinopolyspora halophilaand A. morti-
vallis) were isolated from saline habitats (Johnson et al.
1986; Kates et al. 1987; Gochnauer et al. 1989; Yoshida et
al. 1991). A new actinomycete was isolated from the sa-
line soil of Iraq (Al-Tai and Ruan 1994). This organism
grew best in the presence of 20% NaCl; the nameNocar-
diopsis halophilawas proposed for the bacterium after
physiological, morphological and biochemical studies. An-
other new halophilic actinomycete was isolated from the
same saline soil of Iraq (Ruan et al. 1994) and the name
Actinopolyspora iraqiensiswas proposed for this isolate.
These recent reports indicate that many other new actino-
mycetes may colonize saline soils; nevertheless, the isola-
tion media must be carefully chosen and the cultural con-
ditions should be optimized. Although most studies of sa-
line environments have been limited to aerobic organisms,
these ecosystems are also inhabited by a wide range of
anaerobic microorganisms. The characteristics of a number
of anaerobic bacteria such as the spore-forming bacterium
Clostridium halophilumisolated from saline environments
(Fendrich et al. 1990) have been studied, although to a
much lesser extent than their aerobic counterparts (Lowe
et al. 1993).

The interest in searching for new strains of anaerobic
bacteria in the saline environments has increased, in order
to understand the mechanisms involved in osmotic regula-
tion and enzymatic activity at high salt concentrations
(Cayol et al. 1994). The following strictly anaerobic
Gram-negative bacteria, inhabiting various saline environ-
ments, have been recently described in more detail (Cayol
et al. 1994; Ollivier et al. 1994); they includeHaloanaero-
bium prevalens, Halobacteroides halobius, Halothermo-
thrix orenii, Sporohalobacter lortetiiand S. marismortui,
from sediments, andHalobacteroides acetoethylicus, Halo-
anaerobacter chitinovorans, Halobacteroides lacunaris,
Haloincola saccharolytica, Acetohalobium arabaticumand
Halocella cellulolytica, from brine waters and lakes. A
new anaerobic Gram-negative bacterium(Haloanaerobium
salsugo)has been isolated from a highly saline oil field
(Bhupathiraju et al. 1994). The bacterium had a specific
requirement for NaCl and grew at NaCl concentrations be-
tween 6% and 24%, with optimal growth at 9% NaCl. The
anaerobic bacteria of saline environments are differentiated
on the basis of salt tolerance range, catabolism habit,
DNA base composition and spore formation (Lowe et al.
1993) and also by 16S rRNA oligonucleotide-cataloging
analysis (Cayol et al. 1994).

Mode of life and tolerance to saline environments

The determination of saline spectrum is very important for
the characterization of the type of bacteria to be regarded
as halotolerant or extreme, moderate and slight halophiles.
According to the salt concentration required for optimum
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growth, the bacteria were classified (Imhoff 1986) as non-
halophilic (grow below 0.2M NaCl), slightly halophilic
(grow at 0.2 to about 1.0–1.2M NaCl), moderately halo-
philic (grow at about 1.0–1.2 to 2.0–2.5M NaCl) and ex-
tremely halophilic bacteria (grow at 2.0–2.5M NaCl or
more). Halophily is demonstrated by the requirement of a
high salt concentration for optimum growth; however, ha-
lotolerance, qualitatively and quantitatively, describes the
ability to grow at a salt concentration higher than optimum
(Imhoff et al. 1991; Ollivier et al. 1994). However, the de-
gree of tolerance of bacteria depends on the composition
of the growth medium (Larsen 1986; Rodriguez-Valera
1988; Ramos-Cormenzana 1991). The halophilic eubacter-
ia are usually found in numerous saline habitats with dif-
ferent salinities, e.g. hypersaline soils (Quesada et al.
1982, 1983), inland marshes (Del Moral et al. 1988), bot-
tom sediments (Oren et al. 1984) or other different habi-
tats (Vreeland et al. 1980; Quesada et al. 1985). They are
present in non-saline habitats, in the same manner that
non-halophilic bacteria are present in hypersaline environ-
ments (Marquez et al. 1987; Ramos-Cormenzana 1991).
Therefore, two questions have been of great interest: do
halophilic organisms survive in environments where there
is a low salt concentration and, secondly, do the bacteria
come from non-halophilic organisms by an adaptation pro-
cess or did bacteria evolve from halophiles by an adapta-
tion mechanisms to non-saline conditions (Ramos-Cormen-
zana 1991)? A salt-sensitive mutant of the moderately ha-
lophilic bacterium(Vibrio costicola) was isolated (Kogut
et al. 1992); the mutant was not able to grow at high (i.e.
2.5–3.0M ) concentrations of NaCl in contrast to the wild-
type strain, which normally grows at 3.4M NaCl.

In general, the bacteria have evolved two different stra-
tegies for growth in an environment of concentrated NaCl
(Lowe et al. 1993). The internal salt concentration can be
maintained at a level comparable to that of the environ-
ment, or the organism can actively exclude NaCl and pro-
duce an organic compatible osmoregulant such as betaine
(Trüper and Galinski 1986). The eubacteria may have a
low internal salt concentration (Kushner 1989); however,
the archaebacteria usually have an internal salt concentra-
tion which is approximately equal to the outside concen-
tration. The aerobic halophilic archaebacteriumHalobacter-
ium salinarium, growing in 4M NaCl plus 0.032M KCl,
contains about 1.4M Na+, 4.6M K+ and 3.6M Cl–,
whereas the moderate halophilic eubacteriaVibrio costico-
la, growing in 1M NaCl and 0.006M KCl, contains about
0.6M Na+ and K+, but only about 0.1–0.2M Cl– in its
cells (Kushner 1989). The moderate halophilic eubacteria
concentrate K inside the cell but exclude Cl–, so that their
internal ion concentration may be only about one-tenth
that of the external concentration. However, the anaerobic
halophilic eubacteria,Haloanaerobium prevalens, Halo-
bacteroides halobiusand H. acetoethylicus(Oren 1986;
Rengpipat et al. 1988a,b), maintain high intracellular con-
centrations of salt and accumulate Cl– inside the cell,
which is compatible to the activity of a number of en-
zymes in the cell, but osmoregulants are not produced.
These bacteria demonstrate a marked difference from ha-

loaerobic eubacteria, which exclude Cl– from the cell. The
cellular processes in bacteria from saline environments
presumably have adapted to functioning in such an envi-
ronment (Lowe et al. 1993). Comparison of the effect of
salt on the in vitro activity of a number of enzymes from
the anaerobic bacteriumHalobacteroides acetoethylicus
has revealed some striking similarities with enzymes from
archaebacteria. However, studies on the effect of salt on
enzymes from haloaerobic eubacteria have shown that
most of the enzymes were active at salt concentrations be-
low those found inside the cell.

Adaptation of bacteria to saline environments

Osmoregulation

Bacteria existing in saline environments have to cope with
a number of stresses such as the ionic stress (Galinski and
Trüper 1994). Increases or decreases in the extracellular
osmolarity where bacteria are growing commonly elicit
corresponding changes in the intracellular concentrations
of compatible solutes (Csonka 1989). The nature and com-
position of the medium affects the intracellular ion content
and the osmoregulating ability of these bacteria. The bac-
teria of the genusBrevibacteriumaccumulate higher Na+

(ca. 10 times) when grown in defined medium compared
to the complex medium (Nagata et al. 1991). Cells tend to
keep their volume fairly constant over a large range of ex-
ternal salinity (Csonka and Hanson 1991). Therefore, the
cell membrane of the bacteria living in saline environ-
ments forms the primary barrier displaying adaptive
changes in the face of altering salinity (Imhoff and Thie-
mann 1991; Thiemann and Imhoff 1991). The adaptation
to osmotic stress requires an osmotic equilibrium across
the membrane and a cytoplasm of similar osmotic strength
to the surrounding medium (Larsen 1986; Tru¨per and Ga-
linski 1986).

The bacteria living in saline environments have adopted
two strategies for osmoadaptation (Galinski and Tru¨per
1994), the KCl type and the compatible solute type. In the
first mechanism, the bacteria maintain a cytoplasmic KCl
concentration similar to that of the surrounding medium in
order to attain an osmotic equilibrium. This mechanism is
accompanied by certain physiological modifications which
are required to protect all the metabolic and regulatory
functions (e.g. enzymatic activity, synthesis of cellular
components, and structure and function of some organ-
elles) at high salinity (Eisenberg and Wachtel 1987). The
KCl type of osmoregulation is adopted by members from
archaebacteria and also eubacteria. The latter include the
fermenting and/or acetogenic anaerobesHaloanaerobium
and Acetohalobium (Zhilina and Zavarzin 1990; Oren
1991) and the sulphate reducersDesulfovibrio halophilus
and Desulfohalobium retbaense(Gaumette et al. 1991;
Ollivier et al. 1994). The compatible solute strategy of os-
moadaptation, on the other hand, is also adopted by eubac-
teria and a few members of the archaebacteria (Nicolaus et
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al. 1989). The compatible solutes were described as organ-
ic osmolytes which are responsible for osmotic balance
and compatible with the cell metabolism, and usually ac-
cumulate in the cytoplasm at concentrations well above
1 M (Galinski and Tru¨per 1994). The accumulation and
complement of organic solutes was found to require genet-
ic induction (Smith et al. 1994a) and to depend on the
level of osmotic stress, growth phase of the culture, car-
bon source, and the presence of osmolytes in the growth
medium (Smith et al. 1994b). It has been proposed
(Csonka and Hanson 1991; Lippert and Galinski 1992)
that these organic solutes have two mechanisms for their
mode of action under saline conditions: first to increase
the intracellular osmotic strength, and second to stabilize
cellular macromolecules. The compounds which have this
ability are sometimes called osmoprotectants.

Compatible solutes can be accumulated in bacteria by
de novo synthesis (Csonka 1989; Csonka and Hanson
1991) or by transport from the culture medium (Wohlfarth
et al. 1990; Severin et al. 1992) to conserve energy (Ga-
linski and Trüper 1994). When these solutes are added to
the bacterial cultures, they may elicit a dramatic stimula-
tion in growth rate of the cells in media of high osmolar-
ity. Solutes which would alleviate osmotic inhibition
should be accumulated to higher internal concentration.
On the other hand, salt-sensitive bacteria (e.g. entric bacte-
ria) have effective transport mechanisms for some osmo-
lytes (e.g. betaine and ectoine); therefore, they can acquire
a certain degree of halotolerance by uptaking compatible
solutes which are sometimes present in marine sediments,
or released from other bacteria into the environment and
when these solutes are supplied into the medium (Koo et
al. 1991; Cayley et al. 1992; Jebbar et al. 1992).

By using new analytical methods and modern techni-
ques (e.g. high-performance liquid chromatography and
nuclear magnetic resonance), the following classes of or-
ganic solutes were detected: glycine betaine, amino acids
(e.g. proline and glutamine), N-acetylated amino acids, N-
derivatized carboxamides of glutamine, sugars and sugar
polyol derivatives (Tru¨per and Galinski 1986; Smith and
Smith 1989; Wohlfarth et al. 1990; Severin et al. 1992;
Galinski and Tru¨per 1994; Smith et al. 1994a,b), in addi-
tion to the newly discovered ectoines (Talibart et al.
1994). Several observations suggest that glycine betaine
(N,N,N-trimethyl glycine) is preferred over all other com-
patible solutes for a large number of bacteria under condi-
tions of hyperosmolarity (Imhoff and Rodriguez-Valera
1984). However, only few phototrophic (CO2-fixing) spe-
cies (Trüper and Galinski 1990) and cyanobacteria (Reed
and Stewart 1985; Imhoff 1986) were able to synthesize
glycine betaine. Bacteria such as some members of the En-
terobacteriaceae (Le Rudulier and Bouillard 1983; Csonka
1989) andRhizobiumspp. (Le Rudulier and Bernard 1986;
Fougere and Le Rudulier 1990) accumulate glycine be-
taine by transport from the external medium. Glycine be-
taine was found to stimulate recovery of a lost volume of
Brevibacterium lactofermentumand Corynebacterium glu-
tamicumwhen subjected to hyperosmotic stress (Skjerdal
et al. 1995). The cytoplasmic level of glutamate usually

increases in most procaryotes after exposure to media of
high osmolarity (Hua et al. 1982; Yap and Lim 1983;
Botsford 1984; Botsford and Lewis 1990; Fujihara and
Yoneyama 1993); osmotic stress can elicit over tenfold in-
creases in the levels of glutamate in Gram-negative bacte-
ria. The relative increases in glutamate in Gram-positive
bacteria are much less than that of Gram-negative bacteria
(Killham and Firestone 1984).

Proline is an important osmoprotectant for several bac-
teria. Some of the Gram-positive bacteria are able to in-
crease the proline pool size by synthesis upon exposure to
osmotic stress in the absence of exogenous proline or by
transport from the external medium (Koujima et al. 1978).
Gram-negative bacteria (e.g.E. coli, Klebsiella pneumo-
niae and Salmonella typhimurium) are entirely dependent
on the presence of the exogenous proline for osmotic ad-
justment; they usually accumulate high concentrations of
proline under osmotic stress (Le Rudulier and Bouillard
1983; Csonka 1989). The occurrence of sugars such as su-
crose and trehalose appear to be common in some micro-
organisms when they grow under osmotic stress. These su-
gars rarely exceed a cytoplasmic concentration of about
0.5M (Galinski and Tru¨per 1994). However, the available
sugars affect the relative proportions of solutes, e.g. pro-
line, in some bacteria, e.g.Deleya and Flavobacterium
spp. (Wohlfarth et al. 1990) andRhizobium(Ghittoni and
Bueno 1995, 1996), at high salt concentration. Sugars are
less compatible solutes and are usually used for osmotic
adaptation in limited salt-tolerant organisms, since it has
been found that addition of sugars (e.g. sucrose) to the
normally growing bacteria resulted in physiological and
structural alterations (Knowles and Smith 1971; Parente
and Silva 1984).

Modifications in cell morphology and structure

The bacteria which usually grow in non-saline conditions
may exhibit a great modification in cell morphology when
subject to high salt stress. The swelling, elongation and
shrinkage (reduction in cell volume) are characteristic fea-
tures of sensitive bacteria under salt stress. However, it
has been recently found (Skjerdal et al. 1995) that the cell
and the cytoplasmic volume ofBrevibacterium lactofer-
mentumand Corynebacterium glutamicum(a salt-tolerant
bacteria) spontaneously decrease upon hyperosmotic
shock. The modification in cell morphology under salt
stress is a familiar response of some Gram-negative bacte-
ria such asAzotobacter vinelandii(Knowles and Smith
1971),E. coli (Baldwin et al. 1988),Pseudomonas fluores-
cens (Parente and Silva 1984) andRhizobium(Zahran et
al. 1993). The root-nodule bacteria of the genusRhizo-
bium, isolated from salt-affected soils, have shown some
salt-induced alterations (Zahran 1991b, 1992a,b). The cell
shape, the synthesis pattern of protein and lipopolysacchar-
ide as well as the genomic structure of these bacteria were
modified. These alterations may affect the symbiosis be-
tween rhizobia and their legume hosts. The morphology of
some Gram-negative bacteria of saline soil has been re-
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ported to be modified (Zahran et al., unpublished); cells
were elongated several times when subjected to 10–20%
NaCl. The Gram-positive bacteria (e.g.Bacillus andStaph-
ylococcusmodified their cell structure under salt stress
conditions. Cells ofBacillus were elongated and thick-
ened, and the formation of more chains (streptobacilli) was
stimulated at 10% NaCl, and the cell volume ofStaphylo-
cuccuswas reduced at 10–20% NaCl (Zahran et al., un-
published). Heat stress brings about similar effects; cells
of Bacillus were elongated about 5–6 times more than the
normal size and became filamentous at 45°C (Kudo and
Horikoshi 1979). The formation of endospores in cells of
Bacillus, which are usually controlled by nutrient availabil-
ity and cultural conditions (Stock et al. 1989), was also af-
fected by alkalinity and salt stress (Kudo and Horikoshi
1979; Weisser and Tru¨per 1985; Zahran et al. 1992). The
bacilli isolated from saline soils, however, formed endo-
spores at 5–20% NaCl (Zahran et al., unpublished); these
endospores were formed at salt concentrations which are
optimal for the growth of these bacteria (Horikoshi and
Akiba 1982).

Salt-tolerant bacteria usually exhibit structural modifica-
tions to cope with salt stress. One important aspect of
structural adaptations is the change in composition of the
cell envelope and membranes. The stretched state of the
wall and the internal osmotic pressure of bacteria are
usually affected by the biophysical properties of the stress-
bearing peptidoglycan (Koch 1984). Changes in composi-
tion of bacterial membranes which might be caused by en-
vironmental factors are thought to act as an adaptive re-
sponse to maintain membrane stability and function (Im-
hoff and Thiemann 1991). In fact, structural adaptations of
membranes mainly involve alterations in the composition
and synthesis of proteins, lipids and fatty acids (Kates
1986; Russell 1989; Thiemann and Imhoff 1991). Some
bacteria may occasionally show slight cell modifications,
but more profound changes in cellular properties of bacte-
ria only occur at concentrations above 2M NaCl as an
adaptation to salt stress (Kogut 1991). Electron micro-
graphs of thin sections, however, have not revealed any ul-
trastructural differences in membranes of the anaerobic
bacteria(Halobacteroides halobiusand H. acetoethylicus)
that could account for the ability of these bacteria to inha-
bit ecological niches high in salt (Lowe et al. 1993).
Those two species ofHalobacteroideshad a typical cell
envelope with characteristic layering of Gram-negative bac-
teria, but the latter species contained unusual crystal-like
forms with unknown function (Rengpipat et al. 1988a,b;
Lowe et al. 1993).

The properties of bacterial membranes, to a great ex-
tent, depend on their lipid composition. The polar lipids
approximate about 75–93% of the total lipid carbon in cell
of the halophilic bacteriumEctothiorhodospira(Thiemann
and Imhoff 1991); the negatively charged phospholipids of
Ectothiorhodospirausually increase upon increasing medi-
um salinity. The increase in the proportion of the nega-
tively charged lipids in cell membranes of bacteria is a
common feature of the adaptive responses to elevated
external salinity (Russell and Adams 1991; Thiemann and

Imhoff 1991). Halomonas elongatais able to live in a
wide variety of salt concentrations (0.05–3.4M ) because it
alters the cell physiology in ways which increase the struc-
tural integrity of walls and increase amounts of negatively
charged lipids (Vreeland et al. 1984, 1991). The halophilic
bacteria, e.g.Haloanaerobium prevalense, however, show
different responses and the lipid content of the cell is not
changed under salt stress (Zeikus et al. 1983). The fatty
acid composition of the individual phospholipids, normally
regulated by culture-medium salinity, is important in main-
taining a stable bilayer structure within the membrane of
bacteria grown under salt stress (Imhoff and Thiemann
1991; Sutton et al. 1991). The stability of the bilayer is of
crucial importance for cell viability. There are other
molecules with low molecular weight, which have been
identified, e.g. inE. coli (Kennedy 1982), as membrane-
derived oligosaccharides. They accumulate in the peri-
plasmic space of Gram-negative bacteria, and play an ef-
fective role in cell modification under salt stress (Imhoff
1986).

Activities of bacterial flora in saline environments

Nitrogen cycle

Bacteria may alter some of their biochemical pathways
and biochemical activities under conditions of higher sali-
nity. One of these activities is the nitrogen cycle, which is
mediated by bacteria and might be affected by drastic ex-
treme saline conditions. The mineralization and immobili-
zation of nitrogen (Bandyopadhyay and Bandyopadhyay
1983), nitrification and ammonification (Wollenweber and
Zechmeister-Boltenstern 1989) were decreased in saline
soils. The nitrification process was inhibited in soil after
addition of sodium chlorate (Azhar et al. 1989) or as a re-
sult of soil salinity and drying (Stark and Firestone 1985),
which brings about cell dehydration. However, marine or
estuarine nitrifying bacteria (e.g.Nitrosomonasspp.) were
found to be adapted to a wide range (0–30%) of salinity
(Macfarlane and Herbert 1984); these bacteria seem to be
acclimatized to the fluctuations in salinity in the estuarine
environments. However, high rates of denitrification were
found in salt marsh ecosystems (Kaplan et al. 1979). The
magnitude of effects of soil salinity on the denitrification
process is dependent on the type of nitrogen compound
(NO3

–-N, NH4
+-N or organic nitrogen) that is present in

the soil (El-Shinnawi et al. 1982). Conditions which dis-
turb the nitrogen cycle or that lead to the disappearance of
nitrate (NO3

–) from saline soil through the denitrification
process might affect soil fertility and the existence of
plants and microorganisms in these habitats.

Saline habitats are N-poor (Sprent and Sprent 1990);
therefore the N input is very important in these environ-
ments. An increasing supply of N dramatically increases
production and the standing crop of saline habitats (Valiela
et al. 1976). One of the sources of N input in saline habi-
tats is N2 fixation (Teal et al. 1979; Dicker and Smith
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1980; Casselman et al. 1981; Whiting and Morris 1986).
Higher rates of N2 fixation in saline soils, compared to
non-saline soils and agricultural soils, were reported
(Wollenweber and Zechmeister-Boltenstern 1989). The low
oxygen tension in saline soils may favour the process of
N2 fixation, but the diffusion of gases may be impaired at
a higher density and water regime in saline soil, an effect
which might reduce N2 fixation (Rice and Paul 1971).

In saline environments, e.g. salt marsh sediments, high-
er levels of ammonia and nitrate were found, which are
usually utilized by plants growing in these habitats (Dicker
and Smith 1980; Lee et al. 1986); however, when ammo-
nia and nitrate were present at relatively high levels in sa-
line environments, N2 fixation was found to be partly in-
hibited (Dicker and Smith 1980; Yoch and Whiting 1986).
The occurrence of ammonia or nitrates in saline soils,
however, is of vital importance to the saline soil bacteria,
since ammonia and nitrates are assimilated to form amino
acids (e.g. proline, glutamine) and their derivatives. Some
amino acids were found to be essential osmolytes for
adaptation of bacteria to the saline environments (Galinski
and Trüper 1982; Imhoff and Rodriguez-Valera 1984;
Weisser and Tru¨per 1985; Imhoff 1986). Other saline soil
bacteria changed the synthesis pattern of protein under salt
stress, and protein synthesis ofVibrio costicolawas inhib-
ited when the intracellular salinity exceeded 0.5M NaCl
(Wydro et al. 1977; Kamekura and Kushner 1984). The to-
tal protein content of some bacteria from saline soil was
reduced by about 10% when the medium salinity was
about 10–15% NaCl (Zahran et al., unpublished). The bac-
teria, which live under extreme salt conditions, tempera-
ture and pH, exhibit extensive modification in the content
and structure of protein and lipid composition (Vreeland et
al. 1983, 1984).

Several N2-fixing bacterial species, which were isolated
from saline environments, have been characterized (Ned-
well and Abdul-Aziz 1980; McClung et al. 1983). Nitro-
gen fixation and N2-ase activity were detected and esti-
mated in salt marsh sediments (Wollenweber and Zechmei-
ster-Boltenstern 1989); which are often attributed to sul-
phate-reducing and -fermenting bacteria (Gandy and Yoch
1988). Nitrogen fixation in association with the salt marsh
grassSpartina alterniflorahas been reported (Whiting et
al. 1986). Although a large number of strains which be-
long to N2-fixing species of bacteria and cyanobacteria
have been identified in salt marshes (Paerl et al. 1981),
few of them have been shown to fix nitrogen in pure cul-
ture (Sprent and Sprent 1990). Strains of N2-fixing Gram-
negative bacteria and nitrogen-fixingBacillus were iso-
lated from saline lands of Egypt (Zahran et al. 1995), and
about 75% of these bacteria have shown acetylene reduc-
tion in pure culture at 5% NaCl. The diazotrophic and
salt-tolerant bacteriumAzotobacterhas been isolated from
non-saline habitats (Ibrahim 1974; Mahmoud et al. 1978;
El-Shinnawai and Frankenberger 1988), which showed
either decreasing N2 fixation rates with increasing salinity
(>10% NaCl) or optimum fixation at low salinity (5–10%
NaCl). Salt-tolerantAzotobacterwas also isolated from sa-
line soils (Dicker and Smith 1981; Wollenweber and Zech-

meister-Boltenstern 1989). These bacteria were able to fix
N2 at higher levels of salt (15–25% NaCl) and at pH 9.

Mineralization (breakdown) of macromolecules

The saline environments are colonized by a variety of bac-
terial populations which might have a role in the chemical
breakdown of certain macromolecules. The bacteria may
have a role in the chemical breakdown of remains from
halophytic plants such as mangroves, which might exist in
saline environments. Several species, e.g.Juncas acutus
and Cyperus lavigatus, usually colonize the soil adjacent
to salt marshes (Zahran and Willis 1992). Degradation of
organic matter in the sediments was attributed to bacterial
action (Lowe et al. 1993); a bacterium involved in the de-
gradation of the salt marsh grassSpartina alterniflorawas
isolated from a saline soil (Andrykovitch and Marx 1988).
Microorganisms are the primary degraders of lignocellu-
lose (a macromolecular complex of the aromatic heteropo-
lymer lignin and the polysaccharides cellulose and hemi-
cellulose), which is a constituent of detritus of halophytic
plants such asSpartina alterniflora in salt marsh sedi-
ments (Benner et al. 1984a,b; Bolobova et al. 1992).
Some bacteria of the genusBacillus, isolated from salt-af-
fected soils and salt marsh soils of Egypt (Zahran et al.
1992; Zahran et al., unpublished), andHalocella celluloly-
tica (Bolobova et al. 1992) have shown cellulolytic or
amylolytic activity under saline conditions. Members of
the generaStaphylococcusand Micrococcus, and other
non-identified Gram-positive and Gram-negative bacteria
from saline soils of Egypt, have also shown cellulolytic
and amylolytic activity under salt stress. In contrast, the
pectinolytic bacteria are rare inhabitants in the saline soils,
representing only a very small fraction (>1%) of the total
bacterial isolates from saline soil of Egypt (Zahran et al.,
unpublished). The bacteria indigenous in the saline soils
usually produce degrading enzymes at higher levels of
salinity (up to 10% NaCl), but this level is lower than the
salt level necessary for growth. For example, the optimal
salt level for growth ofHalocella cellulolyticawas about
2.6M NaCl, whereas the optimal salinity for cellulase ac-
tivity was about 0.5M NaCl (Bolobova et al. 1992). The
production and activity of enzymes (e.g. degrading en-
zymes) from the saline soil bacteria have salt requirements
greater than those of corresponding enzymes from non-sa-
line bacteria (Rengpipat et al. 1988b). Nevertheless, the
production of these enzymes is not only determined by
salt level, but is also affected by the growth phase (Stock
et al. 1989).

Activities against microorganisms

Microorganisms are highly efficient in their ability to pro-
duce many kinds of bioactive compounds. A large number
of bioactive metabolites (e.g. antibiotics) have been shown
to be produced by various types of bacteria and actinomy-
cetes (Omura and Tanaka 1986). Screening of bacteria
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from saline habitats or those grown under extreme cultural
conditions is one possible way to discover new antibiotics.
Some new antibiotics were produced by certain bacteria
when a medium with high alkalinity was used (Sato et al.
1983). The marine bacteriumStreptomyces tenjimariensis,
a producer of an aminoglycoside istamycin, successfully
grew at about 5–7% NaCl in culture medium (Hotta et al.
1980) and the production of the antibiotic aplasmomycin
was best in the presence of 1–3% NaCl (Okami et al.
1976). In addition, inorganic salts (trace or essential ele-
ments) are usually added to synthetic media and to natural
(beef-extract-containing) media for the production of anti-
biotics (Iwai and Omura 1981). In a recent research study
(Zahran et al., unpublished), bacteria from saline soils of
Egypt were screened for their activity (ability to limit or
inhibit growth) against other microorganisms. The prelim-
inary results indicated that about 50% of the saline-soil
isolates exhibited antimicrobial activity againstStaphylo-
coccus aureus, E. coliand Serratia sp., the activity being
detected under non-saline conditions and at moderate sali-
nity (5% NaCl). These preliminary results have encour-
aged further research work to identify the metabolites pro-
duced by saline-soil bacteria.

Practical significance of the bacterial flora in saline environments

The description of bacteria in saline habitats suggests an
important role of these organisms in nature (Ramos-Cor-
menzana 1991). Nevertheless, an understanding of the
ecology of the saline soil bacteria remains extremely lim-
ited and data on bacterial community sizes in saline and
hypersaline environments are scarce (Oren 1991). The bac-
teria that prefer unusual extreme conditions to normal con-
ditions might offer an important research tool for investi-
gating the relationships and interactions between environ-
mental factors and microbial life (Gould and Corry 1980).
The bacteria of saline environments may be considered
models for biological salt tolerance (Lanyi 1979). These
organisms have evolved in saline environments and are
able to overcome the deleterious effects of salts up to sa-
turating concentrations. Their intracellular components, en-
zymes, ribosomes, membranes, etc., have been modified in
a variety of ways which provide the physical-chemical
basis of the salt tolerance. Further, these bacteria which in-
habit the extreme saline habitats have been considered use-
ful objects for ecological and evolutionary studies, and the
mechanisms which allow the organisms to adapt to ex-
treme saline environments are one of the most interesting
subjects for microbiologists (Horikoshi and Akiba 1982).
The protective mechanisms evolved in bacteria in saline
environments may have commercial significance (Galinski
and Tindall 1982). Scientific interest in the extremophilic
microorganisms, especially halophilic bacteria, has recently
increased (Lowe et al. 1993). One reason for this interest
is the need to understand the biochemical mechanisms in-
volved under these extreme conditions because of possible
biotechnological use of enzymes and molecules from such

organisms (Ollivier et al. 1994). It has been suggested that
the bacteria of saline habitats might be able to benefit
from the agricultural wastes and produce other useful mi-
crobial products, e.g. biopolymers (Ramos-Cormenzana
1991), which are economically important (Gessey 1982).
The ability of halophilic bacteria (Fernandez-Castillo et al.
1986) and a salt-tolerantRhizobiumsp. (Natarajan et al.
1995) to produce considerable amounts of poly-B-hydroxy
butyrate and extracellular polysaccharides (Anton et al.
1988) was also reported. The production of organic acids
(e.g. acetic, lactic and propionic) from organic industrial
wastes by anaerobic salt-tolerant bacteria would have bio-
technological significance (Lowe et al. 1993). Organic in-
dustrial wastes are naturally high in salts; these salt condi-
tions may favour the growth of salt-tolerant bacteria and
stimulate production of these acids. Further, it has been
suggested (Denariaz et al. 1989) that the halophilic nitrify-
ing bacteria be used for removal of salinity and nitrate
from waste water for recycling. The purified water could
be used for irrigation of plants grown in arid soils. One of
the problems with saline and hypersaline lands such as
salt-affected soils is the relatively low microbial activity in
these soils, which affects vegetal and crop productivity.
Therefore, the isolation of active bacteria from saline soil
will allow the use of these bacteria in the reclamation of
saline soils. The N2-fixing bacteria isolated from saline
soil (Zahran et al. 1995) could be good candidates for use
to improve the fertility of reclaimed arid and saline soils.

Conclusions

Saline environments have been largely ignored. Saline
lands, for example, are usually considered as abandoned
lands, which are no longer producing and will never be
explored. However, the accumulated results of recent mi-
crobiological research have revealed the economic impor-
tance of these saline habitats, which are colonized by se-
lected species from various recognized bacterial groups
contributing to the economy of these habitats. The bacteria
which flourish in these environments may retain the poten-
tial to express various types of activity under extreme con-
ditions. The identification and the taxonomic study of bac-
teria in saline environments usually takes priority and has
received much attention, while research work concerning
the activity of these bacteria is, to a large extent, rare.
Therefore further research work on the enzymatic activity
of bacteria (aerobic and anaerobic) of saline environments
and their activity against microorganisms is needed. Nitro-
gen fixation activity is very important for saline habitats,
and until now research on this process has received little
attention. Few bacteria isolated from saline soils have
proved to be nitrogen fixers. It is expected that these nitro-
gen fixers colonize the rhizosphere of halophilic and salt-
tolerant plants because of the presence of plant exudates,
and they may be associated with the roots of these plants
or live intracellularly in symbiosis with the host plant.
What is the role of bacterial genes in controlling the osmo-
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tic adjustment and tolerance of nitrogen-fixing bacteria un-
der saline conditions? This is a new research field which
needs to be develop since it has been recently reported
(Smith and Smith 1994a) that the accumulation of organic
solutes in cells ofRhizobium melilotiunder osmotic stress
may require genetic induction.
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