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Abstract
Arbuscular mycorrhizae (AM) are thought to improve crop growth by enhancing phosphorus (P) uptake via scavenging 
and enhancing dissolution. However, AM-mediated crop growth responses to P forms of varying solubility are often crop-
species and soil-context dependent. The relative importance of AM associations and P source solubility on crop growth is 
not conclusively understood, and requires controlled factorial experiments to test their relative and interactive effects. We 
conducted a meta-analysis to evaluate how AM impact crop growth responses to rock phosphate relative to soluble phos-
phates across diverse crop species and soil characteristics. A total of 83 observations utilizing a 2 × 2 factorial design of 
relative presence or absence of AM and fertilization with rock phosphate vs. soluble phosphates were identified. We found 
that AM similarly improved crop growth with rock phosphate and soluble phosphates. A distinguishable crop growth benefit 
from AM coupled with rock phosphate was observed for soils with a low degree of weathering, at soil pH < 6.5 and > 7.5, 
and when soils were heat-sterilized prior to inoculation with AM. Shoot biomass of legumes was uniquely greater than 
non-legumes with rock phosphates and AM as compared to soluble phosphates and AM. However, crop growth under rock 
phosphate fertilization relative to soluble phosphates was still lower irrespective of AM. This meta-analysis reveals that 
crop growth is more dependent on P fertilizer solubility than AM. Moreover, AM do not appear to close the solubility gap 
of rock phosphate vs. soluble phosphate fertilizers to support similar crop growth under rock phosphate relative to soluble 
phosphates. Studies assessing crop growth responses to AM-crop associations effect on contrasting solubility P fertilizers 
should expand to the field, and greenhouse experiments should be conducted under realistic field growing conditions, such 
as agronomically appropriate P application rates.
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Highlights  
• AM-driven crop shoot biomass increased similarly under RP 
and SP.
• Crop biomass was lower under RP relative to SP fertilization 
irrespective of AM-enrichment.
• In soil pH < 6.5 and > 7.5, shoot biomass increased with RP but 
not SP under AM.
• Legume shoot biomass increased two-fold more than all crops 
for RP with AM.
• Root colonization when fertilized with SP was not lower than 
RP.
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CI  Confidence interval
CV  Coefficient of variation

Introduction

Arbuscular mycorrhizae (AM) are known to improve phos-
phorus (P) uptake by host crop species in agroecosystems 
(Ferrol et al. 2019; Jansa et al. 2011). At least four major 
mechanisms have been hypothesized: (i) physical explo-
ration of soil through fungal hyphae, which serve as root 
extensions to access distal P and increase the surface area 
of P uptake, (ii) P exchange among plants through com-
mon mycorrhizal networks, (iii) solubilization of insolu-
ble inorganic P forms, and (iv) secretion of extracellular 
phosphatases to mineralize organic P (Bücking et al. 2016; 
Fellbaum et al. 2014; Jansa et al. 2011). Of these, solu-
bilization is often assumed to be the chief means through 
which AM or the AM-hyphosphere-associated microbiome 
(Faghihinia et al. 2022; Zhang et al. 2022) aids in crop 
utilization of insoluble or low solubility P forms such as 
rock phosphates (RP), presumably through AM-mediated 
secretion of organic acids (e.g., maleic, citric, acetic acid) 
(Andrino et al. 2021; Tawaraya et al. 2006; Zhang et al. 
2022). However, reports of P solubilization from insoluble 
inorganic P forms have been largely limited to ectomycor-
rhiza and ericoid mycorrhiza species (Blum et al. 2002; 
Landeweert et al. 2001; Smits et al. 2012; Van Schöll et al. 
2006), rather than for AM that are more common mutual-
ists with crop species (Plassard and Dell 2010). In some 
cases, crop utilization of RP is not improved by AM as 
compared to soluble phosphates (SP) such as superphos-
phate (e.g., Dann et al. 1996). Despite this, many studies 
continue to propose or assume, but do not test, the hypoth-
esized benefit of AM-acquisition of P from low solubility 
sources such as RP over SP (Bolan et al. 1987; Klugh-
Stewart and Cumming 2009; Parfitt 1979; Yao et al. 2001).

In cases where AM may improve crop P uptake from 
low solubility forms such as RP, the greater dissolution 
rate and thus crop availability of SP may outweigh the 
enhanced dissolution of low solubility P forms, leading 
to greater net crop P availability (Barrow et  al. 1977; 
Pairunan et al. 1980; Thirkell et al. 2017). In P-deficient 
soils, crop yields under RP fertilization are generally lower 
compared to SP (Malhi et al. 2014; Mnkeni et al. 1991; 
Wahid et al. 2016). AM-driven dissolution of P from RP 
could close the gap of crop growth under RP fertilization 
compared to SP, conceptualized as the “solubility gap”. 
For example, in acidic soils, crop yields under RP can be 
comparable to those with SP due to abiotic dissolution 
of P from RP acting as an additive benefit to AM-driven 
dissolution (Chien and Menon 1995; Ellis et al. 1955; 
Mutuo et  al. 1999). Nevertheless, AM could improve 

crop growth even under SP fertilization. For example, 
more than 50% of P uptake in wheat (Triticum aestivum) 
can be via AM hyphae, even with SP fertilizers such as 
ammonium polyphosphate and sodium phosphate (Li et al. 
2006). Even if AM-driven chemical dissolution of inor-
ganic P from SP is negligible, AM access to distal P up 
to several centimeters beyond the root (Jansa et al. 2003) 
can increase crop P uptake, especially in the early stages 
of plant growth when nascent root systems access a limited 
portion of bulk soil P (Barber 1995; Grant et al. 2001) and 
in fields with broadcast application of P fertilizers (Bolan 
et al. 1987; Shen et al. 2012). 

Reported benefits of AM for crop growth have been cri-
tiqued for overemphasizing AM effects in pot-scale green-
house studies (Ryan and Graham 2018; Thirkell et al. 2017). 
There is a general lack of field scale evaluations that assess 
the impact of AM-crop associations on crop growth and 
yield with varying P solubility sources in biotically and abi-
otically complex agroecosystems (Lekberg and Helgason 
2018; Thirkell et al. 2017), despite historically recognized 
needs for field scale evaluation of AM function in crop P 
acquisition (Johnson et al. 1997; Read 1991). Field stud-
ies provide evaluation of the impact of AM associations on 
crop growth across management practices such as tillage 
and a range of complex biotic and abiotic interactions not 
replicable at the greenhouse scale (Thirkell et al. 2017). 
On the other hand, the effect of AM on crop growth may 
be confounded in a field experiment with multiple biotic 
interactions and spatiotemporally variable abiotic conditions 
compared to a controlled greenhouse experiment. High root 
densities in pots could negate physical P acquisition ben-
efits of AM, though P dissolution from RP would likely be 
greater at high plant root densities. Additionally, the method 
of inducing AM colonization differences such as soil sterili-
zation by heat or fumigants could adversely affect the com-
plex soil biological community, overemphasizing AM effects 
(Forero et al. 2019; Heinze et al. 2016; Schittko et al. 2016).

Apart from experimental methods, crop species and soil 
conditions can account for conflicting reports of how AM 
impact crop growth under contrasting P fertilizer solubili-
ties. Differences in root densities and rhizosphere acidifica-
tion of legumes vs. non-legumes could potentially impact 
AM-driven crop growth response with different solubility 
P fertilizers (Bekele et al. 1983; Truog 1916). Legumes 
generally have greater rhizosphere acidification than non-
legumes by greater exudation of organic acids and phos-
phatases (Shen et al. 2012) that could enhance dissolution 
of RP. Relative effects of AM on RP versus SP are likely 
to be influenced by pH and soil P fixation (Blal et al. 1990; 
Powell and Daniel 1978), which in part reflects the degree 
of soil weathering, as pH influences fertilizer dissolution and 
P fixation can mitigate greater availability of SP-derived P. 
In highly weathered soils (e.g., Oxisols) and many Andisols 
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that are highly P-fixing, greater rate of orthophosphate 
release from SP will entail a higher rate of P-fixation, hence 
reduced labile P pools relative to gradual AM-driven RP dis-
solution. Another soil property that potentially influences RP 
dissolution is soil organic matter (SOM) content, with higher 
organic matter content driving RP dissolution by serving as 
a sink (via complexation) of  Ca+2 (Chien and Menon 1995). 
Thus, accounting for crop species and soil properties can 
help disentangle agroecosystem-specific effects of AM on 
crop response to RP vs. SP.

To reconcile conflicting arguments about the relative 
importance of P source solubility and AM associations for 
crop growth, controlled factorial experiments that test rela-
tive and interactive effects of P solubility and AM associa-
tions are needed. Given agroecosystem-specific manifestation 
of AM-driven crop growth responses, meta-analysis affords 
quantitative assessment of P solubility and AM associations 
across agroecosystem contexts hypothesized to influence the 
relative importance of these two factors. We conducted a 
systematic literature review and meta-analysis to assess AM 
impact on host crop biomass and root colonization from RP 
and SP. Specific objectives were to assess AM-crop symbio-
sis impact on crop growth response when fertilized with (i) 
RP or (ii) SP, and to evaluate the effect of RP relative to SP 
on crop growth (iii) with or (iv) without relative presence of 
AM (expressed as AM-enrichment vs. AM non-enrichment). 
We hypothesized that AM-enrichment would increase crop 
biomass (total, shoot, root) and root colonization for both 
RP and SP relative to AM non-enrichment. Additionally, 
we expected crop biomass and root colonization would be 
improved with RP fertilization relative to SP only with AM-
enrichment. For each of the response variables, we tested the 
effect of methodological and contextual variables that could 
influence interactions of AM and P solubility on crop growth. 
We hypothesized an increase in crop growth with RP relative 
to SP with AM-enrichment with a (i) greater degree of soil 
weathering, (ii) higher soil pH, (iii) low soil P availability as 
assessed by soil test P values, and (iv) in non-legumes vs. 
leguminous crops. We anticipated these responses to vary 
by study scale, crop type, and method of soil sterilization. 
We also analyzed methodological parameters and contextual 
variables to identify gaps in study design for evaluating AM 
benefits hypothesized for host crops for P sources of varying 
solubility.

Methods

Literature search and review

A comprehensive literature search was conducted on Web of 
Science on September 24, 2020, using the keywords: myc-
orrhiza/mycorrhizae AND phosphate rock within “topic” in 

“all databases” for the years 1864–2020. This resulted in 739 
search results. The full text of initial results was surveyed to 
select peer-review publications evaluating AM by removing 
ecto- and ericoid/orchidaceous mycorrhiza studies. A sub-
sequent search with the keywords mycorrhiza/mycorrhizae, 
arbuscular AND phosphate rock within the original search 
constraints was also performed to identify potential additional 
publications, none of which were found. The resulting 229 
studies were then screened for robustness of experimental 
design. To test the effect of relative presence or absence of 
AM on crop growth responses when fertilized with RP or 
SP, only studies reporting a full 2 × 2 factorial of relative 
presence or absence of AM and fertilization with RP vs. SP 
were retained. Importantly, studies were selected only if a 
non-AM control for both RP and SP was included. The non-
AM control is referred to as AM non-enrichment describ-
ing relative absence of AM. We use this notation because 
AM uninoculated or even genotypically non-AM plants have 
reduced AM presence, as opposed to no AM colonization 
(Bodenhausen et al. 2021; Nair and Bhargava 2012; Shi et al. 
2013). Many agronomic evaluations of AM and RP vs. SP 
had a 2 (± AM) × 1 (RP) factorial design, which are unable to 
test AM-enrichment vs. non-enrichment for SP. Such obser-
vations were excluded from the meta-analysis because these 
observations do not permit a comprehensive comparison of 
AM effects for both RP and SP. Publications were rejected for 
inclusion in the meta-analysis dataset based on confounded 
P rates and/or sources, use of non-soil growth media (e.g., 
tin tailings), and incomplete methods, analysis, or missing 
experimental design details. This resulted in a final set of 19 
peer-reviewed studies yielding n = 83 observations. Two stud-
ies by Lin and Fox (1987; 1992) were counted as one source, 
since they report data separately from the same experimental 
evaluation.

Data extraction

Reference descriptors, descriptive variables, and response 
variables were extracted from tables or from figures using 
DataThief software (Tummers 2006). Descriptive variables 
comprised of study scale (field vs. greenhouse), method of 
inducing AM colonization (sterilization only, inoculation 
only, sterilization + inoculation, genotype), geographical 
region (UN region classification), crop species, crop class 
(legume vs. non-legume), tillage (conventional tillage vs. 
no-tillage) and irrigation (irrigated vs. non-irrigated), soil 
order (USDA Soil Taxonomy), degree of soil weathering 
(low, intermediate, high), soil particle size fractions (sand, 
silt, clay; %), soil textural class, soil organic matter (%), 
soil pH, and available or extractable soil P concentration 
(mg  kg−1 soil), measurement method (Mehlich III, Bray I, 
Bray II, Olsen, Resin) and method of quantification (col-
orimetric vs. ICP).
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Phosphate rock characterization variables extracted were 
ore source, fineness, calcium carbonate equivalent (CCE), 
total P (%), and soluble P (%). Soluble phosphate charac-
terization variables extracted were fertilizer type (e.g., 
ammonium phosphate, superphosphate, potassium dihydro-
gen phosphate), total P (%), and soluble P (%). Fertilizer P 
application rates were extracted as mg  kg−1 for greenhouse 
studies and kg  ha−1 for field studies. Extracted mycorrhizal 
descriptors were type of inoculum (external inoculum vs. 
native), species composition of inoculum (single vs. mixed 
species), AM species, confirmation of colonization by the 
study (yes vs. no), and method to determine colonization 
(root staining, root staining and spore count, root staining 
and PCR).

Extracted response variables were AM root colonization 
counts (%), shoot (aboveground), root (belowground), and 
total biomass (g  plant−1 for greenhouse study and t  ha−1 for 
field study), P concentration in aboveground, belowground, 
and total biomass fractions (%) and P uptake in the three 
biomass fractions (t  ha−1 for field studies and mg  plant−1 for 
greenhouse studies).

Data consolidation

Extracted data were consolidated to be in common units. For 
unreported data which could not be assigned a value even 
after assumptions and conversions, NA (not available) was 
assigned. Crops were classified as legume or non-legume. 
Percent sand as a soil particle size fraction was calculated 
from coarse sand and fine sand fractions (%) if only these 
sub-fractions were reported. Soil textural class was assigned 
according to USDA classification, and if unreported, was 
calculated based on particle size fraction (%). Reported 
SOM values were converted to %, and soil organic car-
bon (%) was converted to SOM (%) assuming that SOM 
is 58.1% organic carbon by mass (Van Bemmelen 1890; 
Wolff 1864). Degree of soil weathering was classified as 

low, intermediate, and high according to Brady and Weil 
(2016); Margalef et al. (2017); and Nakayama et al. (2021). 
Soil pH was classified as acidic, circumneutral, and alkaline 
(< 6.5, 6.5–7.5, and > 7.5) based on USDA NRCS guide-
lines (Burt 2014; Staff 2014). Available soil P was based on 
extractable or “soil test” P (STP) on an Olsen basis, though 
it was originally developed to predict crop yield response 
and was classified based on agronomic recommendations 
(Hertzberger et al. 2020; Mallarino and Atia 2005; Mallarino 
et al. 2013). There were no or low observations for total soil 
P (n = 0 studies), soil organic P (n = 0 studies) or available 
soil inorganic N (n = 4 studies).

Phosphate rock and SP fertilizer characteristics were 
extracted to interpret the effect sizes of P source solubility 
and AM associations on crop growth. Phosphate rock solu-
bility was assessed by 2% citric acid or formic acid soluble P 
and consolidated as solubility (% of total P). Phosphate rock 
fineness and CCE (%) were removed due to large variability 
in method of reporting and absence of data, respectively. 
Unreported total P content (%) for SP was assumed based on 
commercial fertilizer grades and converted from  P2O5 to P, 
as follows: diammonium phosphate (DAP) — 20.1% P; tri-
ple superphosphate (TSP) — 19.2% P;  KH2PO4 — 22.8% P; 
tricalcium phosphate (TCP) — 20.0% P; monocalcium phos-
phate (MCP) — 24.6% P; calcium-superphosphate (same as 
single superphosphate) — 7.9% P; superphosphate — 7.9% 
P. For P application rates (mg  kg−1 soil and kg  ha−1), conver-
sions from reported data were performed assuming 15 cm 
soil depth and 1.3 g  cm−3 bulk density.

Response variables were used to gauge plant responses 
to P source solubility × AM presence. Aboveground bio-
mass was the most abundant response and was used as a 
direct measure of plant response to treatments. Biomass 
values reported as kg  fed−1 were converted to t  ha−1 using 
1 fed = 0.42 ha (Mahmoud et al. 2013). Biomass fraction P 
uptake was calculated as follows:

Equation 1.

P uptake
(

t ha−1or mg plant−1
)

=

[

Biomass fraction
(

t ha−1or mg plant−1
)

∗ Biomasss fraction P concentration(%)
]

100

To facilitate testing effect sizes as response ratios, the final 
dataset was organized into factorial sets each comprised of the 
2 × 2 factorial of relative presence or absence of AM and P source 
solubility. This allows testing crop response to RP relative to SP 
in the relative presence or absence of AM, which we refer to as 
AM-enrichment vs. AM non-enrichment. At the end of data 
consolidation, only factorial sets were retained which were field 
and greenhouse studies with at least above ground biomass as a 
response, for a final dataset of n = 83 factorial sets from 19 studies.

Calculation of response ratios (RRs) and statistical 
analysis

The response ratio (RR), referring to effect sizes, is the ratio 
of mean outcome in the treatment group to that in the control 
group (Hedges et al. 1999). It indicates treatment response 
relative to the control. In this case, RR refers to the ratio of 
mean crop response with RP vs. SP under AM-enrichment 
or not. Response ratios were calculated as:
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The four RRs in this evaluation were (i) AM effect 
on RP, (ii) AM effect on SP, (iii) RP vs. SP (+ AM), and 
(iv) RP vs. SP (− AM). 95% confidence intervals (CIs) 
were used to determine significance and directionality 
of treatment effects. A positive treatment effect was 
inferred if RR was greater than 1 and CI did not overlap 
with the 1:1 line on  the x-axis. A negative treatment 
effect was inferred if RR was less than 1. An absence of 
treatment effect was inferred if CI overlapped with the 
1:1 line on the x-axis (Akobeng 2005; Egger et al. 1997). 
RRs with overlapping 95% CIs were considered statisti-
cally similar (Zlowodzki et al. 2007). Summary statis-
tics, analyses, and data visualization were conducted in 
Microsoft Excel, SigmaPlot, and RStudio (Team 2015) 
using psych (Revelle 2020), FSA (Ogle et  al. 2023), 
ggplot2 (Wickham 2016), and ggpubr (Kassambara 
2020) packages using summary, summarize, ggscatter, 
and ggplot functions.

(1)Response ratio =
Treatment response

Control response

Results

Approaches to assessing arbuscular mycorrhizal × P 
source solubility

Most observations of AM and P source solubility effects on 
plant growth response were inoculation-based greenhouse 
studies for non-legume species in acidic, P-responsive soils, 
but with very high field-equivalent P application rates. Geo-
graphical distribution of the observations was not uniform 
across regions, with more than half of the observations 
from Oceania (n = 42, 50.6%). Africa (n = 11, 13.3%), Latin 
America and the Caribbean (n = 10, 12.0%), Asia (n = 8, 
9.6%), Europe (n = 6, 7.2%), and North America (n = 6, 
7.2%) each contributed less than 15% of total observations. 
Greenhouse studies were more common (n = 78, 94%) than 
field studies (n = 5, 6%), the majority of which were tilled 
(n = 4, 80%) and irrigated (n = 5, 100%). The predominance 
of greenhouse studies in the metadataset, which is comprised 
of experiments that use a full 2 × 2 factorial design to test 
AM-enrichment or non-enrichment and fertilization with RP 

Table 1  Distribution of 
soil order and degree of 
weathering in a metadataset, 
comprising of a 2 × 2 factorial 
of relative presence or absence 
of arbuscular mycorrhizae 
(AM) and fertilization with 
rock phosphate vs. soluble 
phosphates, used to evaluate 
AM effect on crop growth

Degree of weathering Observations (n) Observa-
tions (%)

Soil order (USDA) Observations (n) Observa-
tions (%)

High 6 10.2 Spodosols 2 3.4
Oxisols 3 5.1
Ultisols 1 1.7

Intermediate 50 84.7 Andisols 40 67.8
Vertisols 6 10.2
Mollisols 4 6.8

Low 3 5.1 Inceptisols 3 5.1
Total reported 59 (71.1%) 59 (71.1%)

Table 2  Properties of soils in a metadataset, comprising of a 2 × 2 factorial of relative presence or absence of arbuscular mycorrhizae (AM) and 
fertilization with rock phosphate vs. soluble phosphates, used to evaluate AM effect on crop growth

Sand (%) Silt (%) Clay (%) SOM (%) pH

Min 18.2 Min 4.7 Min 4.8 Min 0.07 Min 4.1

1st quartile 26.0 1st quartile 15.2 1st quartile 5.8 1st quartile 0.7 1st quartile 5.4
Median 33.8 Median 30.0 Median 42.0 Median 1.3 Median 5.7
Mean 41.7 Mean 26.5 Mean 32.8 Mean 4.2 Mean 6.1
3rd quartile 58.8 3rd quartile 36.5 3rd quartile 44.0 3rd quartile 6.3 3rd quartile 7.0
Max 90.5 Max 39.8 Max 52.8 Max 18.0 Max 8.2
Not reported (n = 74; 

89.2%)
Not reported (n = 74; 

89.2%)
Not reported (n = 74; 

89.2%)
Not reported (n = 60; 

72.3%)
Not reported (n = 4; 4.8%)
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vs. SP, represents a critical literature gap of a lack of full 
factorial field scale evaluations needed to test the AM effect 
on P sources of varying solubility.

Soils with an intermediate degree of weathering consti-
tuted the majority (85%) of observations, with 10% and 5% 
of observations derived using soils with high and low degrees 
of weathering (Table 1). Approximately two-thirds of inter-
mediately weathered soils (68%) were from a single soil type 
(Andisol) from one study in New Zealand. The majority of 
the studies did not report soil particle size fractions (89%) 
nor SOM content (72%). Soil particle size fractions varied 
widely, with a mean of approximately 41% sand, 26% silt, 
and 33% clay, and textural class of clay loam (Table 2). The 
sand, silt, and clay content (%) varied by a factor of ≈ 5, 8.5, 
and 11, respectively. Soil organic matter varied by 257-fold 
from 0.07 to 18%, with a mean of 4.2%. Soil pH, reported 
for 95% of observations, varied from acidic (4.1) to alkaline 
pH (8.2) with a mean of 6.1 (Table 2). The majority (75%) of 
the observations from studies reporting initial soil pH values 
were from acidic soils (n = 59), and circumneutral (n = 12) 
and alkaline soils (n = 8) accounted for approximately 15% 
and 10% of observations, respectively. Available soil P 
(Olsen) varied by 20-fold from 0.9 to 18.2 mg  kg−1 (mean 
8.1 mg  kg−1), and three-fourths of observations were from 
soils below the threshold of 10–13 mg  kg−1 considered to 
merit P fertilization for most crops (Mallarino and Atia 2005; 
Mallarino et al. 2013) (Table 3). Of the available soil P values 
reported (87% of observations), most indicated low (40%) 
or very low (approximately 35%) STP soils that would be 
expected to have a crop response to P fertilization. Soil pH and 
STP were positively related (R = 0.31; p = 1.2e − 07), and low 
and very low STP soils largely (83%) occurred in acidic soils 
(pH < 6.5). High STP soils (n = 13) were associated with low 
(pH < 6.5) to circumneutral pH (6.5–7.5) soils. Optimal STP 
soils were found in low pH (< 6.5) (n = 4) and circumneutral 
(pH 6.5–7.5) (n = 1) soils. Acidic soils occurred for all STP 
classifications (low to high), but alkaline soils (pH > 7.5) only 
had very low STP soils.

Soil P application rates varied by a factor of 1170-fold 
from 0.4 to 480 mg  kg−1 soil. Only 29% of the observa-
tions used P applications at a field-equivalent realistic rate of 
0–30 mg  kg−1 (Table 4). In most soils (71%), P was applied 
at a rate exceeding harvest removal and thus recommended P 
application rates for grain crops such as maize (Zea mays), 
soybean (Glycine max), and wheat in low STP soils (Fernán-
dez and Hoeft 2009; Kaiser et al. 2011; Mallarino and Atia 
2005). Soil P application rate was unrelated to STP of the 
soil used for the study (R =  − 0.13, p = 0.025) (Fig. S1). In 
already high STP soils, P was applied at rates exceeding 
120 mg P  kg−1 (Table 5). In contrast, P was applied at less 
than 30 mg P  kg−1 in most soils with optimal STP (80%). 
Distribution of soil P application rates was more varied in 
low and very low STP soils, but in at least half of the very 
low (60%) and low (70%) soils, P rate was still greater than 
120 mg  kg−1. Field-equivalent realistic P rates were only 
observed in 21% of low and 32% of very low STP soils.

Approximately one-fifth of crop species were legumes, 
comprised of lentil (Lens culinaris), fava bean (Vicia faba), 
soybean, alfalfa (Medicago sativa), and subterranean clo-
ver (Trifolium subterraneum) (Table 6). The 82% of obser-
vations that were non-legumes were largely grasses (66%) 
such as wheat, tall fescue (Festuca arundinacea), maize, 

Table 3  Soil test phosphorus (STP) and STP classification of soils in a metadataset comprising of a 2 × 2 factorial of relative presence or absence 
of arbuscular mycorrhizae (AM) and fertilization with rock phosphate vs. soluble phosphates, used to evaluate AM effect on crop growth

a Obs (n) refers to the number of observations and Obs (%) refers to the percent of observations

STP (mg/kg) Quantification method Obsa (n) Obsa (%) STP classification Obsa (n) Obsa (%)

Min 0.9 Colorimetric 71 98.6 High 13 18.1

1st quartile 4.0 ICP 1 1.4 Optimal 5 6.9
Median 6.9 Total reported 72 (86.7%) Low 29 40.3
Mean 8.1 Very low 25 34.7
3rd quartile 9.2 Total reported 72 (86.7%)
Max 18.2
Not reported 11 (13.3%) Not reported (n = 11; 13.3%) Not reported (n = 11; 13.3%)

Table 4  Classification of rate of applied phosphorus (P) (mg P  kg−1) 
in soils of a metadataset, comprising of a 2 × 2 factorial of relative 
presence or absence of arbuscular mycorrhizae (AM) and fertiliza-
tion with rock phosphate vs. soluble phosphates, used to evaluate AM 
effect on crop growth

P application rate (mg/
kg soil)

Observations (n) Observa-
tions (%)

0–30 24 28.9
30–120 6 7.2
120–150 40 48.2
150–480 13 15.7
Total reported 83 (100%)
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sugarcane (Saccharum officinarum), and perennial ryegrass 
(Lolium perenne); vegetable crops (7%) such as Tabasco 
peppers (Capsicum frutescens); fruits (≈ 5%) such as 
tomato (Solanum lycopersicum); and herbs (2%) such as 
fennel (Foeniculum vulgare). Nearly half of the total obser-
vations (47%) were from perennial ryegrass.

All studies used AM inoculum to induce AM but 
approximately one-fourth of observations first steri-
lized soils before inoculation (Table S1). Use of external 
inoculum was more common (75%) than relying on soil 
native AM species. No study used sterilization alone or 
genotypic models to induce AM. Most (87%) inoculations 
were performed with a single AM species (Table S2), 
most commonly Gigaspora margarita (24%), Funneli-
formis mosseae (17%), and Planticonsortium tenue (22%). 
The majority of studies and thus observations (95%) con-
firmed colonization, largely by root staining. Less than 
10% observations were from studies that confirmed colo-
nization by either spore count (n = 5, 6.0%) or PCR (n = 2, 
2.4%) in addition to root staining.

Overall effects of AM‑crop symbiosis and P solubility 
sources on crop biomass

Shoot biomass increased with AM-enrichment and when 
fertilized with either RP or SP but did not increase with RP 
relative to SP irrespective of AM colonization (Fig. 1a). The 
increase in shoot biomass response was similar by P source 
(AM effect on RP and SP).

Greenhouse studies (94% of observations) reflected the 
trends in overall shoot biomass responses (Fig. 1b). No dif-
ferences in shoot biomass by P solubility (AM effect on RP 
and SP) or AM (RP vs. SP [± AM]) were observed for field 
studies (6% of observations). Biomass responses for n = 11 
observations that measured total biomass as shoot (above-
ground) and root (belowground) fractions showed distinct 
responses to AM and P solubility compared to shoot-only 
biomass observations (n = 83) (Fig. 2a–c). Total, shoot, 
and root biomass increased with RP but not SP fertiliza-
tion under AM-enrichment. However, shoot biomass but 
not root biomass, as a proportion of total biomass, did 

Table 5  Distribution of soil test phosphorus (STP) and rate of P 
applied (from n = 72 observations (87% of total) which contained val-
ues for both STP and soil P application rates) in a metadataset com-

prising of a 2 × 2 factorial of relative presence or absence of arbus-
cular mycorrhizae (AM) and fertilization with rock phosphate vs. 
soluble phosphates, used to evaluate AM effect on crop growth

P application rate classification (mg 
 kg−1 soil)

Very low STP Low STP Optimal STP High STP
(n, %)

0–30 8 (11.1%) 6 (8.3%) 4 (5.6%)
30–120 2 (2.7%) 3 (4.2%)
120–150 10 (13.9%) 20 (2.8%) 1 (1.4%) 10 (13.8)
150–480 5 (6.9%) - - 3 (4.2%)
Total reported = 72

Table 6  Distribution of crop class and species classification in a metadataset comprising of a 2 × 2 factorial of relative presence or absence of 
arbuscular mycorrhizae (AM) and fertilization with rock phosphate vs. soluble phosphates, used to evaluate AM effect on crop growth

Crop Obs (n) Obs (%) Crop species Latin name Obs (n) Obs (%) Obs (%)

Legume 15 18.1 Lentil Lens culinaris 3 17.6 3.5
Faba bean Vicia faba 4 23.5 4.7
Soybean Glycine max 2 11.8 2.4
Alfalfa Medicago sativa 4 23.5 4.7
Subterranean clover Trifolium subterraneum 2 13.3 2.4

Non-legume 68 81.9 Wheat Triticum aestivum 7 10.3 8.3
Tall fescue Festuca arundinacea 2 2.9 2.4
Banana Musa spp. 3 4.4 3.5
Maize Zea mays 5 7.4 5.9
Tabasco pepper Capsicum frutescens 6 8.8 7.1
Tomato Solanum lycopersicum 1 1.5 1.2
Sugarcane Saccharum officinarum 2 2.9 2.4
Perennial ryegrass Lolium perenne 40 58.8 47.1
Sweet fennel Foeniculum vulgare 2 2.9 2.4
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not follow the same trend as the absolute biomass values 
(Fig. 3a, b). No differences in shoot biomass as a propor-
tion of total biomass by P solubility or AM were observed. 
Root biomass increased most (54%) under AM-enrich-
ment and RP fertilization, followed by total (30%), and 
shoot (27%) biomass. Root but not shoot or total biomass 
increased with RP fertilization relative to SP fertilization 
under AM-enrichment (45%).

Influence of soil properties and P application rates

The overall crop shoot biomass responses varied by soil 
classification and properties of degree of weathering, pH, 
and STP (Fig. 4a–c) and by P application rates (Fig. 4d). 
Only in low weathered soils did AM-enrichment entail 32% 
greater shoot biomass for RP relative to SP (Fig. 4a). In 
highly weathered soils, shoot biomass decreased compared 

Fig. 1  (a) Effect of arbuscular 
mycorrhizae (AM)-crop sym-
biosis and P solubility sources 
on shoot biomass response 
in the complete metadataset 
(n = 83) comprising of a 2 × 2 
factorial of relative presence or 
absence of AM and fertilization 
with rock phosphate vs. soluble 
phosphates. (b) Impact of study 
scale on AM-crop symbiosis 
and P solubility sources on 
shoot biomass response in the 
complete metadataset (nfield = 5; 
nGH = 78) comprising of a 2 × 2 
factorial of relative presence or 
absence of AM and fertilization 
with rock phosphate vs. soluble 
phosphates



851Biology and Fertility of Soils (2023) 59:843–862 

1 3

to low and intermediately weathered soils, regardless of P 
source solubility or AM-enrichment, and decreases in shoot 
biomass with RP relative to SP (45%) were nearly double in 
magnitude compared to shoot biomass responses across soils 
(≈20%). In intermediately weathered soils, which accounted 
for over 80% of observations, shoot biomass was lower with 
RP than SP irrespective of AM-enrichment but the decrease 
was similar to the mean response across soils. However, in 
contrast to highly weathered soils, shoot biomass increased 
with AM-enrichment regardless of P source solubility. In 
low weathered soils, shoot biomass increased under AM-
enrichment with RP but not with SP, and the increase was 
33% in contrast to a 14% increase in intermediately weath-
ered soils.

Related to but separate from degree of weathering, soil 
pH also modulated shoot biomass response to P source sol-
ubility and AM (Fig. 4b). Shoot biomass increased under 
AM-enrichment and RP fertilization in tandem with soil 
pH, albeit inconsistently. Shoot biomass increase was ≈ 
1.8- or 1.5-fold higher for RP or SP in circumneutral soils 
as compared to mean responses across soils (1.3- and 1.1-
fold increase). In acidic and alkaline soils, shoot biomass 

increased with RP but not with SP under AM-enrichment. 
In contrast, shoot biomass increased regardless of P source 
solubility under AM-enrichment in circumneutral soils 
by + 77%, which was greater than acidic soils (+ 15%) and 
similar to alkaline soils (+ 29%). Similar to mean responses 
across soils, shoot biomass did not increase with RP rela-
tive to SP irrespective of AM-enrichment. In contrast 
to highly variable shoot biomass responses with soil pH, 
shoot biomass increases under AM-enrichment was similar 
across STP classes, but only for RP (Fig. 4c). Shoot biomass 
responses with SP fluctuated across STP classes with an 
increased shoot biomass only observed in low STP soils. 
Similar to mean responses across soils, across STP classes, 
shoot biomass did not increase with RP relative to SP irre-
spective of AM-enrichment.

At P application rates that are agronomically typical 
(< 30 mg  kg−1 or < 60 kg  ha−1), shoot biomass responses 
were similar between P solubility sources under AM-
enrichment (Fig. 4d). At P application rates greater than 
30 mg   kg−1, shoot biomass varied inconsistently by P 
source solubility and was not necessarily proportionate to 
the application rate. At 30–120 mg  kg−1 P application rate, 
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Fig. 2  Effect of arbuscular mycorrhizae (AM)-crop symbiosis and P 
solubility sources on (a) total (aboveground and belowground) shoot 
biomass response, (b) shoot (aboveground) biomass response, and (c) 

root (belowground) biomass response in a subset of (n = 11) contain-
ing observations for total, shoot, and root biomass response
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shoot biomass increased with RP but not SP fertilization 
under AM-enrichment. In contrast, at 120–150 mg  kg−1 
application rate, shoot biomass did not increase with either 
P solubility source regardless of AM-enrichment. At P 
application rates exceeding 150 mg  kg−1, shoot biomass 
increased with both RP and SP only under AM-enrich-
ment. Across P application rates, shoot biomass was simi-
lar regardless of P source solubility and AM-enrichment. 
However, at the highest P application rates (> 150 mg P 
 kg−1), shoot biomass was lower with RP relative to SP 
under AM-enrichment compared to the lowest applica-
tion rates (< 30 mg P  kg−1). Even without AM-enrich-
ment, shoot biomass with RP relative to SP fertilization 
was greater at the lowest P application rate (< 30 mg  kg−1) 

than at the highest P rates (> 150 mg  kg−1), but an increase 
with RP compared to SP was not observed.

Influence of crops and method of AM‑enrichment

Crop shoot biomass responses varied across P solubility sources 
depending on the crop species and how AM-enrichment was 
induced (Figs. 5 and 6). Legume shoot biomass increased 
under AM-enrichment for RP but not SP (Fig. 5). Legume 
shoot biomass increased by approximately 50% for RP under 
AM-enrichment compared to approximately 25% across all 
crop classes. In contrast, non-legume shoot biomass increased 
under AM-enrichment regardless of P solubility sources, and 
the increase was similar to the mean response across crops. 

Fig. 3  Effect of arbuscular myc-
orrhizae (AM)-crop symbiosis 
and P solubility sources on (a) 
shoot biomass as a proportion 
of total biomass and (b) root 
biomass as a proportion of total 
biomass in a subset of (n = 11) 
containing observations for 
total, shoot, and root biomass 
responses
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Shoot biomass of legumes and non-legumes did not increase 
with RP relative to SP, irrespective of AM-enrichment.

Though all soils generated AM contrasts though AM 
inoculation, soils that were first sterilized had a mean + 54% 
greater shoot biomass with RP than the mean response 
(26%) across soils, and + 76% if heat sterilized or + 19% if 
chemically sterilized (Fig. 6a). In contrast, inoculating with-
out sterilization led to largely similar shoot biomass with 
AM-enrichment for both RP and SP. In chemically sterilized 
soils, shoot biomass responses under AM-enrichment across 
P solubility sources were similar to the mean responses in 
inoculated soils as well as across soils (Fig. 6b). However, 
in heat-sterilized soils, shoot biomass increased under AM-
enrichment only for RP but not SP. Regardless of how AM-
enrichment differences were induced, shoot biomass was 
consistently lower with RP relative to SP. When reported, 
root colonization rates were elevated by approximately 

3-fold for RP and SP fertilization under AM-enrichment 
(Fig. 7). Under AM-enrichment, root colonization rates 
for plants fertilized with RP varied from 16% lower to 69% 
higher than those fertilized with SP. Without AM enrich-
ment, root colonization rates varied from 49% lower to 
3-fold higher for RP relative to SP.

Discussion

AM improve crop growth with both RP and SP, 
but not for RP relative to SP

Similar increases in shoot biomass with AM regardless 
of P solubility indicate enhanced crop P acquisition from 
RP and SP, though potentially by different mechanisms. 
Whereas AM can increase crop P acquisition from RP by P 
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Fig. 4  Impact of soil properties and P application rates on arbuscular 
mycorrhizae (AM)-crop symbiosis and P solubility sources on shoot 
biomass response in the complete metadataset comprising of a 2 × 2 
factorial of relative presence or absence of AM and fertilization with 
rock phosphate vs. soluble phosphates. (a) Impact of degree of soil 
weathering which were high (n = 6), intermediate (n = 50), and low 

(n = 3); (b) Impact of soil pH (acidic (n = 59), circumneutral (n = 12), 
and alkaline (n = 8)); (c) Impact of soil test phosphorus (STP) (high 
(n = 13), optimal (n = 5), low (n = 29), and very low (n = 25); (d) 
Impact of P application rate, expressed as mg P kg.±1 (n[0–30] = 24; 
n(30–120] = 6; n(120–150] = 40; n(150–480] = 13)
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dissolution and/or P scavenging, the high water solubility of 
SP means that AM could improve crop growth with SP fer-
tilizers primarily via scavenging. However, lower shoot bio-
mass with RP relative to SP irrespective of AM-enrichment 
was opposite to our hypothesis. These results demonstrate 
that AM-enrichment impacts on P availability — proxied by 
crop growth in these largely P-limited soils — when ferti-
lized with RP are secondary in importance to inherent dif-
ferences in fertilizer solubility. More broadly, this suggests 
that AM alone cannot fully close the gap in P availability 
between RP and conventional soluble fertilizers as has been 
often proposed (e.g., Covacevich et al. 2006; Murdoch et al. 
1967). Though AM-enrichment may increase P availability 
from low solubility P sources such as RP, the often-asserted 
AM dissolution mechanism of P access from RP may not 
operate at sufficient magnitude to compensate for lower 
solubility, which is 5.6 ×  105 to 1.4 ×  109 fold lower than 
superphosphates (66% of observations) (Wei et al. 2013). 
The absence of studies reporting RP fineness, which affects 
RP dissolution rates, is a critical research gap in evaluating 
AM impact on RP dissolution.

For limited studies that reported belowground biomass, 
we identified differential responses to AM than aboveground 
biomass that are consistent with previous evaluations of 
impacts of this mutualism on biomass allocation of the host 
plant. The distinct increase in absolute biomass of roots but 
not shoots with RP relative to SP as well as the root biomass 
as a proportion of total biomass suggests greater root growth 
to increase P acquisition with AM associations. An increase 
in plant root biomass with RP fertilization in conjunction 
with AM species such as Rhizophagus fasciculatus and 
Rhizophagus irregularis and P solubilizing microorganisms 

such as Bacillus cereus, Bacillus subtilis, and Pseudomonas 
striata has been observed in sesame (Sesamum indicum L.), 
mung bean (Vigna radiata), and maize (Duponnois et al. 
2005; Gaind and Gaur 1991; Sabannavar and Lakshman 
2009; Singh and Reddy 2011; Yasmeen et al. 2022). We can 
hypothesize that under potential P starvation induced by RP 
fertilization, an increase in plant root: shoot ratio could have 
led to an increase in the root biomass (Hetrick 1991; Powell 
1974). However, the limited number (12%) of total observa-
tions reporting available soil P at the end of the experiment 
(12%) and the very few studies reporting root biomass (13%) 
prevents evaluation of this potential mechanism that could 
mediate in part effect of AM on crop growth.

That P source did not affect root colonization ensured that 
comparisons of AM effects on crop growth and P uptake 
between RP and SP were not confounded. The lack of root 
colonization suppression by SP compared to RP also indi-
cates that AM colonization of plant roots is unaffected by 
the relatively solubility and consequent P availability of P 
sources. Though reduction in AM root colonization with 
increasing  KH2PO4 application has been reported (Thom-
son et al. 1986; 1991), this occurred at very high applica-
tion rates (up to 280 mg P  kg−1). Moreover, plant P status 
(Menge et al. 1978; Sanders 1975) and specifically the root 
P concentration in the colonized root tissues (Lu et al. 1994) 
regulate AM colonization, rather than soil P availability and 
thus application rate or P fertilizer solubility necessarily (Lu 
et al. 1994; Sobat and Whalen 2022). Thus, differing solu-
bilities of SP and RP would not affect AM root colonization 
rates if P concentration in colonized root tissues was simi-
lar. Though the absence of reported data on root coloniza-
tion and colonized root tissue P concentration differences 
between P sources precludes testing this mechanism, Lin and 
Fox (1992) found a 43% increase in root P concentration in 
AM vs. non-AM roots in unfertilized soil, but similar root 
P % between RP and TSP. Greater variability in root colo-
nization rates with and without AM enrichment than by P 
source could suggest that P source solubility does not affect 
AM root colonization.

Influence of experimental scale

Crop shoot biomass response to AM and P source varied 
by whether experiments were conduct at the greenhouse 
or field scale. The minority of field studies (6% of total 
observations) — a key limitation of current evaluations 
— means that crop responses largely reflected green-
house studies. Shoot biomass was unresponsive to RP 
or SP under AM-enrichment in the field scale evalua-
tions, but this could be partly attributable to the limited 
number of field scale observations with subsequent high 
variability (CV of shoot biomass in field scale observa-
tions = 33%). Higher crop biomass response to AM in 

Fig. 5  Impact of crop class on arbuscular mycorrhizae (AM)-crop 
symbiosis and P solubility sources on shoot biomass response in the 
complete metadataset (nlegume = 15; nnon-legume = 68) comprising of a 
2 × 2 factorial of relative presence or absence of AM and fertilization 
with rock phosphate vs. soluble phosphates
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greenhouse studies could be due to reduced biotic and 
abiotic interactions expected at the field-scale, such as 
native AM species and variable weather (Ryan and Gra-
ham 2018). A possible reason for limited number of field 
studies comparing AM effects on crops growth could be 
the difficulty in furnishing AM treatment differences 
by sterilization. However, the results of this meta-anal-
ysis indicate that inoculation alone appears to be suffi-
cient to generate AM treatment differences for crop shoot 
biomass response to P solubility sources — based on 

largely greenhouse studies. Soil sterilization can elimi-
nate non-AM microbiota and have considerable micro-
bial necromass for heterotrophic survival (Kästner et al. 
2021), which can confound observed plant responses. 
Moreover, sterilizing soil is not necessary for generat-
ing AM presence or absence contrasts in field studies 
if these can be achieved by genotypic models (Ruzicka 
et al. 2012). For example, plant genotypic models such 
as the mycorrhiza-defective tomato mutant (rmc) and its 
mycorrhizal wild-type progenitor (76R MYC +) (Barker 

Fig. 6  (a) Impact of method 
of arbuscular mycorrhizae 
(AM) colonization induction 
on AM-crop symbiosis and P 
solubility sources on shoot bio-
mass response in the complete 
metadataset (nsterilization+inoculation 
= 18; ninoculation only = 65) com-
prising of a 2 × 2 factorial of 
relative presence or absence of 
AM and fertilization with rock 
phosphate vs. soluble phos-
phates; (b) Impact of method 
of AM colonization induction 
on AM-crop symbiosis and P 
solubility sources on shoot bio-
mass response in the complete 
metadataset (nheat sterilization = 11; 
nchemical sterilization = 7; 
ninoculation only = 65) comprising 
of a 2 × 2 factorial of relative 
presence or absence of AM and 
fertilization with rock phosphate 
vs. soluble phosphates
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et al. 1998) avoid the confounding factors due to soil ster-
ilization. The tomato AM genotypes have similar growth 
under various environmental conditions including non-
AM conditions (Cavagnaro et al. 2008) and have been 
used both in field and greenhouse studies to study AM 
effect on plant P uptake and growth (e.g., Di Tomassi 
et al. 2021; Poulsen et al. 2005).

Influence of soil properties

Soil pH and P availability as determined by soil tests 
largely impacted AM-driven crop response under dif-
ferent solubility P fertilizers. Lower shoot biomass with 
a greater degree of soil weathering regardless of AM-
enrichment under RP fertilization is inconsistent with 
P limitation effects in highly weathered soils. Though 
highly weathered and acidic soils (median soil pH = 6.3) 
in our metadataset were severely P limited with Olsen P 
equivalent ≤ 2.5 mg  kg−1 (median 1 mg  kg−1) well below 
critical values of 12–15 mg  kg−1 (Mallarino et al. 2013), 
shoot biomass was not responsive to RP under AM. The 
absence of an AM effect for RP in these highly weathered 
and P-deficient soils could be due to the high P application 
rates (all > 30 mg  kg−1 and ~ 80% > 150 mg  kg−1) leading 
to high soil P availability. Even under AM non-enrich-
ment, crop shoot biomasses were statistically similar to 
AM-driven biomass response under RP, suggesting that 
the crop response was determined by fertilizer P addition 
and not AM in these highly P limited soils. In long-term 
experiments in severely P limited (1.2 mg  kg−1 Bray P 
equivalent) Oxisols in Western Kenya, application of P 
as either Minjingu RP or TSP at 50 kg P  ha−1 similarly 

increased maize and soybean yield and biomass, which 
were both significantly higher compared to the P-unferti-
lized control (Savini et al. 2016).

In the acidic soils that dominated this metadataset, 
higher shoot biomass for RP but not SP under AM-enrich-
ment signifies abiotic dissolution via soil acidity, which 
could occur independently of hyphal-driven dissolution. 
Bolan and Hedley (1990) observed an increase in North 
Carolina RP dissolution from 30 to 83% and Nauru RP dis-
solution from 12 to 60% as soil pH decreased from 6.5 to 
3.9. However, it is not possible to assess the magnitude of 
AM and abiotic dissolution mechanism without quantifying 
dissolution or derivation of P from P sources. This would 
require mass-based dissolution data (e.g., Di Tomassi et al. 
2021) or direct dissolution measured by radiolabeling (e.g., 
Cruz-Paredes and Gavito 2020). The distinct shoot biomass 
increase with RP but not with SP also in alkaline soils sup-
ports hypothesized AM-driven RP dissolution. Since abiotic 
dissolution of RP is low to negligible in alkaline soils, our 
finding that AM support relatively higher crop biomass with 
RP in alkaline soils points to a soil-specific benefit of AM 
for low solubility P forms. Finally, we note that this meta-
dataset had a geographical skewness towards observations 
from Oceania, which were primarily Andisols, and a com-
paratively lower representation of observations from primary 
global consumers of P and RP (i.e., North America, Asia). 
This reflects the reality of where research on comparing AM 
effects on RP and SP are being performed, presenting a gap 
in full factorial evaluation of AM effect on P solubility in 
regions of major consumption of P and RP.

Influence of P application rate

That the large proportion of soils in our meta-dataset were 
fertilized at agronomically unrealistic P rates challenges 
evaluation of crop growth response to AM and P source sol-
ubility. As argued by Thirkell et al. (2017), under high nutri-
ent availability due to high rates of chemical fertilizer addi-
tion in intensive agriculture systems, AM may act as neutral 
mutualists or even parasites. AM benefits to crop P uptake 
tend to be reduced under high soil P availability because 
host plants tend to reduce carbon allocation to roots and 
AM (Johnson 2010; Johnson et al. 2003). However, within 
this metadataset, soil P application rate was not correlated 
(r =  − 0.1) with AM colonization of crop roots, contradict-
ing the hypothesized reduction in host carbon allocation to 
AM under high P application rate. Several studies in the 
metadataset published before 1990 (e.g., Badr El-Din and 
Moawad 1988) used the root slide technique (Phillips and 
Hayman 1970) to estimate colonization counts, and more 
recent studies in the 2000s (e.g., Rubio et al. 2003; Zarei 
et al. 2006) used the gridline intersect method (Giovannetti 
and Mosse 1980). The absolute colonization counts from 

Fig. 7  Effect of arbuscular mycorrhizae (AM) enrichment and P sol-
ubility sources on crop root colonization rate response (from n = 18 
observations that reported root colonization %) from a metadataset 
comprising of a 2 × 2 factorial of relative presence or absence of AM 
and fertilization with rock phosphate vs. soluble phosphates
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both these methods are not comparable given the potential 
overestimation or underestimation of AM colonization by 
the root slide technique (McGonigle et al. 1990). However, 
the observations used in the correlation that report the use 
of specific methods are limited: n = 8 observations report 
root slide technique and n = 16 observations report gridline 
intersect method, with n = 48 observations that do not report 
the method of colonization count estimation. Additionally, 
due to the weak correlation (r =  − 0.1) between P application 
rate and AM root colonization, the differences in absolute 
colonization counts of the two methods are expected to not 
have impacted the correlation. At high P application rates, 
the same proportion but a greater net amount of RP would 
dissolve to generate a crop growth response similar to SP. 
However, shoot biomass was lower with RP relative to SP 
irrespective of AM enrichment. Contrary to the plant bio-
mass responses with AM and P source solubility across P 
rates, the reduced plant biomasses with both RP and SP at 
the 120–150 mg P  kg−1 rate is unexpected, and not fully 
explained.

The absence of studies reporting RP CCE, which can be 
of significant magnitude (59–63%) (Sikora 2002), under-
scores liming effects of RP, particularly at high P applica-
tion rates as observed for many studies. The absence of 
CCE data being reported is critical since the appreciable 
CCE of RP makes it a liming source along with a P fer-
tilizer, potentially confounding comparisons between RP 
and SP. For example, a P application rate of 150 mg P  kg−1 
is equivalent to adding ~ 750 mg RP  [Ca3(PO4)2]  kg−1 soil, 
which assuming a conservative CCE of 50% entails the addi-
tion of 375 mg  CaCO3  kg−1 soil or approximately 0.75 Mg 
 CaCO3  ha−1 soil assuming incorporation into the 0–15 cm 
depth. The liming effect of addition of high quantities of 
RP will increase soil pH and potentially influence the AM 
effect on RP. Hence, any direct comparisons of RP and SP 
as P fertilizers would require a reporting of CCE values of 
the corresponding RP.

Influence of crop species

The distinct increase in legume shoot biomass with RP but 
not SP under AM-enrichment could reflect generally greater 
rhizosphere acidification due to proton release during nitro-
gen fixation of legumes (Hinsinger et al. 2003). However, if 
RP dissolution limited P availability and thus legume shoot 
biomass, legume rhizosphere acidification would mute 
the beneficial effect of AM for legumes fertilized with RP 
– yet, the opposite was observed. Legumes generally have 
higher root acid phosphomonoesterase activity relative to 
non-legumes (Lambers et al. 1998; Richardson 2001) par-
ticularly under conditions of low P availability (Olde Ven-
terink 2011). Such low soil P availability conditions could 
occur under fertilization with low solubility fertilizers such 

as RP, which could favor production of extracellular phos-
phomonoesterases by legume roots to acquire P from organic 
matter via mineralization. In the case of potential P limita-
tion with RP fertilization, legume root phosphatases would 
be expected to mineralize more organic P than without P 
limitation, as with SP fertilization. Increased P availability 
from organic P mineralization may have resulted in greater 
shoot biomass under RP fertilization compared to SP. How-
ever, shoot biomass with RP relative to SP under AM non-
enrichment was not greater in legumes compared to non-
legumes. This suggests that increased legume shoot biomass 
with RP but not SP under AM was not due to increased 
organic P mineralization caused by root phosphatases pro-
duction under P limitation.

A possible confounding effect on crop response to P 
source solubility and AM could be soil P availability. Since 
majority of the non-legumes (78%, Fig. S2) as well as leg-
umes (63%, Fig. S2) in the metadataset were grown in P-lim-
ited soils, non-legumes benefitted from AM for both RP and 
SP. Legume shoot biomass did not increase with SP due 
to possibly a competition effect for photosynthate between 
rhizobia and AM (Kiers and Denison 2008). Competition for 
photosynthate between rhizobia and AM in legumes could 
explain the legume-specific reduction in biomass with SP. 
With SP fertilization, a flush of readily available orthophos-
phates is available soon after application, potentially negat-
ing the AM dependance for P dissolution, unlike RP. Since 
colonization was similar between legumes and non-legumes 
and across P sources, the photosynthate sink to AM in leg-
umes could have led to reduced shoot biomass compared to 
non-legumes. Finally, while other possible comparisons of 
AM effect across crop classifications such as annuals vs. per-
ennials, monocots vs. dicots could be performed, we focused 
on the legume vs. non-legume comparison because of known 
rhizobia-AM interactions and their effects on crop growth.

How AM contrasts are established influence crop 
response to P source

Increased shoot biomass with RP alone when soils were heat 
sterilized before inoculation could reflect increases in soil N 
and P availability due to pyromineralization of organic N and 
P (Giardina et al. 2000; Nye and Greenland 1961; Raison 
1979). Higher relative plant response to AM inoculation in 
sterilized soils has been observed under low P or P-deficient 
soils than when soil P is high or under high P application 
rates (Ortas 2003). For example, Ortas (2003) observed AM 
dependency values up to 81% with Funneliformis mosseae 
and Claroideoglomus etunicatum with zero P addition to 
sterile soil and 38% and 21% with 125 mg P  kg−1 soil appli-
cation. Arbuscular mycorrhizal dependence is defined as a 
plant’s dependency on AM to generate its maximum yield 
or growth at a given soil fertility level (Gerdemann 1975) 
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and more recently has been modified as inoculation effec-
tiveness, the ratio of yield (or another plant growth metric) 
differences between inoculated and non-inoculated plants to 
the yield of inoculated plants (Ortas 2012). Plant P limita-
tion under RP fertilization, especially in early crop growth 
stages and in P limited soils, would be expected to induce 
a higher mycorrhizal colonization in response to RP. Since 
available soil P pools were not reported, we were unable to 
test how P solubility and AM enrichment may have affected 
soil P availability.

Reduced shoot biomass in soils fertilized with SP that 
were heat sterilized compared to chemically sterilized or 
non-sterilized is unexpected but could be due to increased 
soil P availability. Extreme sterilization treatments like auto-
claving may release large amount of P that mask benefits of 
AM (Jakobsen and Andersen 1982), though often studies 
are incubated for a sufficient period of time for re-fixation or 
immobilization of nutrients before use. Since the majority 
studies in this metadataset (65%) were steam sterilized, at a 
temperature of at least 100 °C (40%), with most studies not 
reporting if the heat-sterilized soils were incubated before 
use, AM benefits may have been muted in the heat-sterilized 
soils. In non-sterilized soils, inoculated AM could be acting 
synergistically with native AM and other microorganisms 
(Requena et al. 1997). However, both AM inoculation and 
sterilization produced similar AM root colonization differ-
ences between the AM-enrichment and non-enrichment in 
the metadataset. Nonetheless, similar crop responses to AM 
treatments after chemical sterilization and non-sterilization 
suggest that the reduced shoot biomass with SP in heat-
sterilized soils is not due a biotic effect of soil sterilization. 
None of the studies in the metadataset, including the stud-
ies employing mixed AM inoculum, confirmed which spe-
cies of AM colonized plant roots despite AM species being 
functionally diverse. Additionally, due to limited number of 
observations using mixed inoculum (n = 4), the comparison 
of crop growth responses to single vs. mixed AM inoculum 
was not possible. Thus, future evaluations of AM impacts 
on P acquisition by host crop species should consider resolv-
ing colonizing AM species, particularly with multi species 
inoculum.

Conclusion

This meta-analysis assessed the relative importance of P 
source solubility and AM associations for crop growth and 
the agroecosystem context dependency of this relation-
ship under factorial experiments that tested both relative 
and interactive effects of P solubility and AM-crop asso-
ciations. In the largely P-limited soils in the metadataset, 

AM-driven crop shoot biomass increased similarly under 
RP and SP, but crop biomass was lower under RP relative 
to SP fertilization irrespective of AM-enrichment. Thus, 
though AM-enrichment appears to increase P availabil-
ity from low solubility P sources such as RP, this appears 
insufficient in magnitude to compensate for lower solubil-
ity relative to SP. In the largely acidic soils that dominated 
this metadataset, shoot biomass increased for RP but not 
SP under AM-enrichment suggestive of a strong effect of 
abiotic dissolution via soil acidity that reduces AM benefits 
for RP in acidic soils. The distinct shoot biomass increase 
with RP but not with SP in alkaline soils could point to 
AM-driven RP dissolution, but studies are needed to quan-
tify dissolution. Crop biomass did not increase for RP rela-
tive to SP in highly weathered soils, rejecting the hypothe-
sized benefit of RP over rapidly solubilizing P fertilizers in 
strongly P-fixing soils. Moreover, that SP did not suppress 
root colonization compared to RP indicates that AM colo-
nization of plant roots is unaffected by the relative solu-
bility and subsequent P availability of the RP and soluble 
P fertilizers evaluated for the largely P-deficient, slightly 
acidic soils used in extracted studies. Arbuscular mycor-
rhizae therefore appear to improve crop growth response 
to RP and SP alike under these edaphic conditions. To elu-
cidate the realistic potential of AM-crop associations to 
improve crop P use efficiency, future evaluations should be 
conducted under field or greenhouse conditions that reflect 
realistic field-growing conditions and agronomically sound 
P application rates. 
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