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Abstract
Thinning is an important forest management practice to mitigate the adverse effects of increased drought on tree growth 
and productivity. However, the responses of the soil microbial community and its functions to thinning and drought have 
received little attention in planted forests. In this study, we assessed the combined effects of thinning (30% and 45% of trees 
removed) and precipitation reduction (− 30%) on soil fungal and bacterial communities and the multifunctionality associ-
ated with carbon, nitrogen, and phosphorus cycling during one growing season (from April to September) in a 16-year-old 
larch plantation. We found that 45% thinning, but not 30%, significantly increased soil multifunctionality during the growing 
season (except for April and May) and fungal diversity in June. In contrast, precipitation reduction significantly decreased 
soil multifunctionality during the growing season and fungal diversity in June. Thinning also considerably suppressed the 
relative abundance of ectomycorrhizal (ECM) fungi during the growing season, whereas precipitation reduction significantly 
increased the relative abundance of ECM fungi in June and July. Furthermore, soil multifunctionality was more related to 
ECM and saprotrophic fungal communities than to bacterial communities. Our results suggest that a high thinning level can 
mitigate the negative effect of precipitation reduction on soil multifunctionality and fungal diversity, and this effect depends 
on the sampling month. Therefore, thinning is recommended as a tool to mitigate the impact of precipitation reduction on 
soil multifunctionality and the microbial community in larch plantations.

Keywords Soil multifunctionality · Precipitation reduction · Forest thinning · Fungal diversity · Bacterial diversity · 
Microbial community composition

Introduction

Thinning is a core silvicultural practice that has been tradi-
tionally and widely implemented to promote tree growth 
and plantation productivity by reducing competition for soil 
resources between trees (Gavinet et al. 2019, 2020; Sohn et al. 
2016). Global climate change is predicted to alter precipita-
tion regimes, and drought is expected to become more fre-
quent (Dai 2013; McDowell et al. 2016). Climate change will 
negatively affect forest productivity, soil microbial community 
composition, and ecosystem functions, such as nutrient cycling 
and soil organic matter decomposition (Brödlin et al. 2019; 
Chen et al. 2017; Hedo de Santiago et al. 2016; Peng et al. 
2011). In this context, thinning has gained renewed interest 
as an adaptive approach to improving forest resistance and 
resilience to drought (Mausolf et al. 2018). Previous studies 
on drought mitigation by thinning have mainly focused on the 
response of aboveground communities, such as plant produc-
tivity, and community composition (Gavinet et al. 2019; Sohn 
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et al. 2013). However, belowground responses, particularly 
those of soil microbial communities and their relationship to 
functions, have received much less attention (Bastida et al. 
2019; Beier et al. 2012). Soil microorganisms, such as bac-
teria and fungi, are the primary regulators of C and nutrient 
cycling in forest ecosystems (Delgado-Baquerizo et al. 2020; 
Maaroufi et al. 2019; Treseder and Holden 2013). Therefore, 
understanding the responses of soil microorganisms and their 
functions to thinning and drought is undoubtedly necessary 
for forest management practices to adapt forested plantations 
to future climate change.

Soil microbial communities are sensitive to changes in 
environmental factors such as drought and tree thinning 
(Brockett et al. 2012; Manzoni et al. 2016; Singh et al. 
2010). Previous studies have shown that precipitation 
reduction changes soil microbial communities by directly 
altering soil water availability and indirectly regulating 
plant productivity and litter inputs (Manzoni et al. 2014). 
Soil microbial biomass decreased significantly by 12.9% in 
forests soil under precipitation reduction experiments (Ren 
et al. 2018). A recent meta-analysis showed that precipita-
tion reduction negatively impacts soil microbial diversity 
(Yang et al. 2021a). On the other hand, thinning has been 
found to increase soil water availability resulting from reduc-
ing the loss of soil water through transpiration (Lagergren 
et al. 2008), interception of precipitation and competition 
for water among trees (Gebhardt et al. 2014). In turn, this 
silvicultural practice may lead to a positive effect on soil 
microbial activity, because soil moisture affects the kinet-
ics of microbial enzymes and change the microbial commu-
nity composition by altering diffusion of soluble substrates 
and extracellular enzymes (Hassett and Zak 2005; Zhou 
et al. 2020) However, only a few studies have investigated 
the combined impacts of drought and thinning on the soil 
microbial community in semiarid natural forests, and they 
found that the resistance of the soil microbial community 
to drought was fostered by thinning, but without consider-
ing the relationship between soil microbial community (e.g., 
functional groups) with multiple function, necessitating fur-
ther investigation to improve our mechanistic understanding 
of such relationships (Bastida et al. 2017, 2019).

Forest soils provide multiple ecosystem functions (i.e., mul-
tifunctionality), and these functions occur simultaneously rather 
than individually. Traditionally, researchers have investigated 
the response of a single function or several individual functions 
(e.g., soil organic C decomposition and N mineralization) to 
environmental changes (Xu et al. 2021b; Zhou et al. 2019). For 
instance, precipitation reduction decreases the soil respiration 
rate, phosphorus bioavailability, and organic C stability (Hu 
et al. 2019; Yang et al. 2021b; Zhang et al. 2020). However, a 
single process cannot well represent the complexity of terrestrial 
ecosystems (Byrnes et al. 2014; Delgado-Baquerizo et al. 2020). 
Multifunctionality has recently been widely used as a composite 

indicator of soil quality (Manning et al. 2018; Megyes et al. 
2021), to increase our ability to understand and predict the func-
tions provided by soil microorganisms (Singh et al. 2018; Wagg 
et al. 2019). Recent ecosystem multifunctionality studies have 
primarily focused on exploring the relationship between biodi-
versity and ecosystem multifunctionality (Delgado-Baquerizo 
et al. 2016; Li et al. 2022; Wagg et al. 2019). It is generally 
believed that soil microbial diversity is positively related to 
multifunctionality in terrestrial ecosystems (Delgado-Baquerizo 
et al. 2016, 2020; Jing et al. 2015). In addition, some scholars 
believe that community composition provides more information 
than diversity in predicting multifunctionality because commu-
nity composition can reveal whether a specific species is present 
or plays key roles, but diversity cannot (Maestre et al. 2012; Xu 
et al. 2021a). Furthermore, the importance of fungi and bacteria 
in ecosystem functioning may depend on the ecosystem itself. 
For example, soil bacteria are more important for regulating soil 
multifunctionality in croplands and grasslands (Jing et al. 2015; 
Li et al. 2021), whereas they are predominantly regulated by 
fungi in boreal and subtropical forests (Li et al. 2019; Xu et al. 
2021a). Wagg et al. (2019) also suggested that simultaneously 
considering both bacterial and fungal community characteristics 
is generally a better predictor of multifunctionality related to 
soil C and nutrient cycling. Despite numerous studies on the 
relationship between soil microbes and multifunctionality, we 
are still far from fully understanding the changes in soil micro-
bial communities and their relationship with multifunctional-
ity, especially under the predicted changes in precipitation with 
disturbances such as thinning in forest plantations (Beier et al. 
2012; Giguère-Tremblay et al. 2020; Peco et al. 2017).

Larch (Larix spp.) is a dominant timber species for affores-
tation and reforestation in northeast China. Larch plantations, 
as ectomycorrhizal (ECM)-dominated forests, are influenced 
by the effects of both forest management and climate change, 
such as precipitation reduction. In this study, we established 
a combined thinning (three levels) and precipitation reduc-
tion (two levels) experiment to quantify the changes in soil 
multifunctionality and the microbial community in a 16-year-
old larch plantation for one growing season (from April to 
September). We hypothesize that 1) soil bacterial and fungal 
diversities and multifunctionality are increased by thinning and 
decreased by precipitation reduction; and 2) the change in soil 
multifunctionality under thinning and precipitation reduction 
is mainly regulated by the fungal community.

Materials and methods

Study area

The study was conducted at the Qingyuan Long-term 
Experimental Station, Chinese Academy of Forestry, 
located in the mountainous region of Liaoning Province, 
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northeast China (42°20′ N, 124°49′ E, and 300–1000 m 
above sea level). This region is characterized by a conti-
nental monsoon climate with a mean annual temperature 
of 4.7 °C and a mean annual frost-free period of 130 days 
(Zhu et al. 2007). The growing season is from early May 
to late September (Yang et al. 2013). The soil in the study 
area is a typical brown forest soil classified as Udalfs with 
silt loam textures according to the USDA soil taxonomy 
(Soil Survey Staff 2006). Soil pH ranged from 5.5 to 6.5 
(Wang et al. 2021). According to meteorological station 
data from the study area, the annual average precipita-
tion was approximately 752.1 mm with a maximum of 
1165.1 mm and a minimum of 514.7 mm over the last 
50 years. During the drought years of 1976, 1977, 2001, 
and 2011, precipitation amounts decreased by approxi-
mately 200 mm, which is ~ 30% less than the long-term 
mean annual precipitation of 752.1 mm at the Qingyuan 
Weather Station in the last 50 years.

Larch plantations have been developed within second-
ary forests to meet the demand for timber and other for-
est products since the 1960s, and they represent 65% of 
conifer plantations in northeast China, and are subjected to 
second or later rotations (Yang and Zhu 2015). The usual 
management of larch plantations in the study area involves 
thinning with ~ 30% of trees removed at ~ 16 years. In this 
context, a 16-year-old larch [Larix kaempferi (Lamb.) 
Carr.] plantation was selected on a northwest-facing slope 
of 10°, with an elevation ranging from 352 to 395 m above 
sea level. The plantation was established in 2004 by plant-
ing 2-year-old seedlings at a density of 2500 trees  ha−1 
(2 m × 2 m planting grid) after clear-cutting ~ 45-year-old 
larch plantations. When investigated in 2018, the stock-
ing density was 2000 stems  ha−1 with a mean diameter at 
breast height of 12.1 cm, and an average height of 15.1 m. 
Understory vegetation, consisting mainly of herbs, was 
poorly and inadequately developed, with an average cover-
age of 5%-10%, owing to the high coverage of larch trees 
(90%).

Experimental design and sampling

The experiment was conducted a factorial experiment 
using a split-plot design for thinning and precipitation 
reduction treatments in a larch plantation in 2019. The 
three thinning levels consisted of no thinning (CK), 30% 
of trees removed (T30), and 45% removed (T45), and 
two levels of precipitation treatment included natural 
precipitation (N) and 30% precipitation reduction (R) 
applied to subplots with each thinning treatment. Briefly, 
five replicate blocks were established, each consisting 
of three 28.3 m × 28.3 m plots with the CK, T30, and 

T45 treatments having 10 m buffer zone. Two subplots 
(10 m × 12 m), with a 2–3 m wide buffer zone, were estab-
lished in each plot. One subplot was randomly assigned 
to natural precipitation, whereas the other received the 
precipitation reduction treatment. Thinning was performed 
from March to April 2019 using the traditional thinning-
from-below approach and manual felling with a chainsaw, 
rather than heavy machinery, to lessen the disturbance at 
the soil surface. Thinning involves cutting deformed and 
poorly growing trees and evening up the distribution of 
the remaining trees. After thinning, for the precipitation 
reduction treatment, four 3 m × 10 m interception roofs 
were covered with ten 3 × 0.33–0.37 m (0.33, 0.35, and 
0.37 m in the T45, T30, and CK plots, respectively) plas-
tic sheets mounted to icon wireframes in each precipita-
tion reduction subplot to cover 37%, 35%, and 33% of the 
ground area under the tree canopy in the CK, T30, and T45 
plots, respectively. Based on the measurement of through-
fall (80.1% for CK, 84.9% for T30, and 90.3% for T45 
plots), the net input of precipitation was reduced by ~ 30% 
compared to natural precipitation. The roof was kept at an 
approximately 15° slope by setting the two sides at differ-
ent heights (2.5 m for one side and 1.5 m for the other) to 
ensure quick drainage of ambient rainfall by gravity. To 
eliminate surface water flow and lateral movement of soil 
water into the subplots, we excavated a 0.5 m deep trench. 
The precipitation reduction treatment was conducted from 
May 2019 to October 2020. Finally, in May 2019, 30 sub-
plots (10 m × 12 m) were set up (three levels of thinning 
treatment × two levels of precipitation treatment × five rep-
licates). The abbreviations utilized in this study are as fol-
lows: CKN (no thinning with natural precipitation), CKR 
(no thinning with precipitation reduction), T30N (30% 
thinning with natural precipitation), T30R (30% thinning 
with precipitation reduction), T45N (45% thinning with 
natural precipitation), and T45R (45% thinning with pre-
cipitation reduction).

Soil samples were collected during the larch growing sea-
son  (23rd April,  30th May,  28th June,  28th July,  29th August, and 
 29th September, 2020). After removing the litter layer, six soil 
cores (10 cm in diameter and 10 cm in depth) were randomly 
collected and mixed into a composite sample per subplot. Soil 
samples were sieved through a 2-mm sieve to remove roots, 
stones and visible soil animals, and then divided into three 
subsamples. One part was air-dried for the measurement of 
soil organic C (SOC), total N (TN), total P (TP) and available 
P (AP). The other part was stored at 4 °C for the measurement 
of exchangeable ammonium N  (NH4

+-N), nitrate N  (NO3
−-N), 

dissolved organic C (DOC), enzymes, and microbial biomass 
within a week. The third part was stored at − 80 °C for high-
throughput sequencing. Finally, 180 soil samples (6 sampling 
months × 30 subplots) were obtained.
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Soil chemical parameter and enzyme activity 
analyses

The soil water content (SWC) was measured by oven drying 
to a constant mass at 105 °C. The soil temperature (ST) was 
measured at a depth of 10 cm using a portable temperature 
probe. SOC was measured using potassium dichromate oxi-
dation (Nelson and Sommers 1996), and TN was determined 
using the Kjeldahl method (Bremner 1996). TP was deter-
mined using a Mo-Sh anti-colorimetric method, and AP was 
measured colorimetrically using sodium bicarbonate extracts 
(Lu 1999). DOC was extracted with distilled water at a soil: 
solution ratio of 1:5 by shaking for 2 h, followed by centrifu-
gation at 1503 × g for 10 min and filtration, and was meas-
ured using a TOC analyzer (Shimadzu, Kyoto, Japan) (Jones 
and Willett 2006). Exchangeable  NH4

+-N and  NO3
–-N were 

determined using a continuous flow analyzer (Scalar SAN-
plus Segmented Flow Analyzer, The Netherlands) following 
extractions of fresh soil with 2 M KCl (Wang et al. 2020). 
Soil microbial biomass C (MBC) and N (MBN) were deter-
mined using the chloroform fumigation extraction method 
(Joergensen and Mueller 1996).

Soil hydrolase activities, β-glucosidase (BG), N-acetyl-glu-
cosamine (NAG), cellobiohydrolase (CBH), and acid phos-
phatase (ACP) were measured using conventional p-nitrophenyl 
(pNP)-ester based assays (Caldwell et al. 1999; Chaer et al. 
2009). Briefly, soil suspensions were prepared by adding fresh 
soil (2 g dry weight equivalent) to 125 mL of 50 mM sodium 
acetate buffer (pH 5.5) and continuously stirring the homogen-
ate. One milliliter of soil slurry was combined with 1 mL of 
substrate (BG: 10 mM pNP-β-glucoside; NAG: 5 mM pNP-N-
acetyl-glucosamide; CBH: 5 mM pNP-β-D-cellobioside; and 
ACP: 25 mM pNP-phosphate) and incubated for 2–4 h at 28 °C. 
At the end of the incubation, 0.1 mL of 1 M NaOH was added 
to terminate the reactions, and the soil solution was filtered and 
analyzed colorimetrically at 410 nm. The soil hydrolase activ-
ity was expressed as µmol pNP  g−1 dry soil  h−1. Soil oxidase 
activities, including polyphenol oxidase (PPO) and peroxidase 
(POD), were determined using L-3,4-dihydroxyphenylalanine 
(L-DOPA) as the substrate (DeForest 2009; Saiya-Cork et al. 
2002). A 1 mL aliquot of soil slurry was mixed with 1 mL of 
10 mM L-DOPA in 50 mM acetate buffer for PPO and 1 mL 
of L-DOPA and 0.2 mL of hydrogen peroxide for POD and 
then incubated in the dark at 20 °C for 2 h. The suspensions 
were centrifuged at 1503 × g for 2 min and activity was quanti-
fied by measuring the absorbance at 450 nm. Oxidase activi-
ties were expressed as µmol  g−1 dry soil  h−1 (DeForest 2009). 
The surface (10 cm depth) volumetric soil moisture content 
was measured once every hour from April to October 2020 
using a soil moisture sensor attached to a FieldScout SMEC 
300 (Spectrum Technology, Plainfield, IL, USA). Precipitation 
was measured using rain gauges on an open site near the study 
site. The information is shown in Fig. S1.

Quantifying soil multifunctionality

We measured 15 soil functional variables related to C 
(SOC, DOC, MBC, BG, and CBH, PPO and POD), N (TN, 
exchangeable  NH4

+-N,  NO3
−-N, MBN and NAG), and P 

(TP, AP and ACP) storage and cycling. These variables rep-
resent a range of soil processes including biogeochemical 
cycling (C, N, and P), and available nutrient supply (Cui 
et al. 2020; Liu et al. 2017). Soil multifunctionality was cal-
culated using an averaging approach, which has been widely 
used in multifunctionality analyses (Qiu et al. 2021). To 
obtain the average multifunctionality index, we tested all 
variables for normal distribution using the Shapiro–Wilk 
test prior to analysis, and logarithm or square root transfor-
mation was performed when necessary (Xu et al. 2021a). 
Subsequently, all variables were standardized by a maxi-
mum observed value on a 0–1 scale, and the average of these 
transformed values was calculated as the final result (Byrnes 
et al. 2014).

Soil DNA extraction, PCR amplification, and Illumina 
MiSeq sequencing

Total DNA was extracted from each soil sample (0.5 g) 
using a DNA Kit (Omega Bio-Tek, Inc., Doraville, GA, 
USA) according to the manufacturer’s instructions. The 
concentration and purification of DNA were checked using 
a NanoDrop2000 spectrophotometer (Thermo Scientific, 
Wilmington, DE, USA), and DNA quality was detected 
by 1% agarose gel electrophoresis. The V3–V4 region of 
the bacterial 16S rRNA gene was amplified using primer 
pairs 338F (5ʹ-ACT CCT ACG GGA GGC AGC AG-3ʹ) and 
806R (5ʹ-GGA CTA CHVGGG TWT CTAAT-3ʹ) (Caporaso 
et al. 2012), and the fungal ITS1 region was amplified 
using primer pairs ITS1F (5′-CTT GGT CAT TTA GAG 
GAA GTAA-3′) and ITS2R (5′-GCT GCG TTC TTC ATC 
GAT GC-3′) (Gardes and Bruns 1993). PCR reactions were 
performed in a reverse cycler PCR system (GeneAmp 9700, 
ABI, USA) with the following program: 3 min of denatura-
tion at 95 °C, 35 cycles (fungi) or 27 cycles (bacteria) of 
95 °C for 30 s, 55 °C for 30 s, 72 °C for 45 s, and a final 
extraction at 72 °C for 10 min. PCR products were extracted 
from 2% agarose gels and purified using an AxyPrep DNA 
Gel Extraction Kit (Axygen Biosciences, USA). Purified 
amplicons were combined at equimolar concentrations and 
paired-end sequenced on the Illumina MiSeq PE 250 plat-
form (Illumina, USA) at Majorbio Bio-Pharm Technology 
Co. Ltd. (Shanghai, China).

Bioinformatics analysis

Raw FASTQ files were demultiplexed, quality filtered by 
Trimmomatic, and merged using FLASH (0.19.6) under 
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the following standards: (a) read segments with an aver-
age quality score < 20 in a 50  bp sliding window were 
truncated; (b) primers were precisely matched, allowing 
mismatches between 2 nucleotides, and read segments con-
taining ambiguous bases were deleted; and (c) sequences 
with overlaps longer than 10 bp were combined according 
to their overlapping portion (Han et al. 2021). The ITS1 
region was extracted from the remaining fungal sequences 
using the fungal ITSx software package (Bengtsson-Palme 
et al. 2013). Dereplication and singletons were performed by 
USEARCH version 8.0 using the command fastx_uniques 
and sortbysize, respectively. The nonchimeric sequences of 
ITS1 and 16S were clustered into operational taxonomic 
units (OTUs) at a 97% sequence similarity level using USE-
ARCH, and then chimeric sequences were identified and 
removed using MOTHUR (version v.1.30.2 https:// www. 
mothur. org/ wiki/ Downl oad_ mothur). After that, the taxo-
nomic assignment of the ITS1 sequences was selected for 
searching against the UNITE database version 18.11.2018 
using the sintax function in USEARCH (Edgar 2016), and 
the taxonomic assignment of the 16S rRNA was performed 
using the Ribosomal Database Project classifier with a con-
fidence cutoff (P) value of 0.65 (Yao et al. 2019). A total of 
8,779,391 fungal and 8,407,255 bacterial sequences were 
obtained using the ITS1F/ITS2R and 338F/806R primer sets 
for 180 soil samples. The number of fungal sequences varied 
from 34,843 to 74,651, with an average length of 242, and 
the number of bacterial sequences varied from 30,505 to 
74,864, with an average length of 417. Based on the method 
of Yao et al. (2019), OTUs with < 10 reads from all sam-
ples were removed, as their sequences could contain PCR 
or sequencing errors. In addition, the number of considered 
sequences in each sample was normalized to the lowest sam-
ple size to ensure an equal sampling depth (20535 for bacte-
ria and 33951 for fungi). Fungal functional guilds have been 
identified based on FUNGuild (Nguyen et al. 2016), and this 
functional prediction method has been widely used to under-
stand soil fungal communities (Averill et al. 2021; Lekberg 
et al. 2021). Some fungi do not fall exclusively into a single 
guild because their presence depends on the life stage and 
environmental conditions (Nguyen et al. 2016). Therefore, 
the three major functional groups of ECM fungi, SAP fungi 
(sum of wood, dung, soil, and undefined saprotrophs), and 
pathogens that completely belonged to a single guild were 
selected for the following analysis (Zhou et al. 2020). After 
removal of nonfungal and < 10 read OTUs, a total of 4967 
fungal OTUs were found across 180 soil samples, and 1943 
OTUs were assigned by FUNGuild. A total of 243 ECM 
fungal OTUs and 853 SAP fungal OTUs were obtained. For 
bacteria, a total of 8408 OTUs remained after the removal 
of nonbacterial and < 10 read OTUs. Finally, raw sequence 
reads were deposited in the SRA (BioProject PRJNA789094 
for fungi and PRJNA849713 for bacteria).

Statistical analysis

All statistical analyses were carried out in R (4.0.2). We 
conducted a three-way analysis of variance (ANOVA) to 
test the effects of thinning, precipitation reduction, sam-
pling month and their interactions on soil multifunctional-
ity, microbial diversity indices, the relative abundance of 
fungi and bacteria at the phylum and class levels (relative 
abundance > 1%), and fungal functional groups. Square root 
of the relative abundance of fungi and bacteria was neces-
sary to meet the normality and homogeneity of variances for 
ANOVA. Significant differences among treatments within 
the same sampling month were compared using Tukey’s 
HSD test at P < 0.05. Nonmetric multidimensional scaling 
(NMDS) plots (using the Bray–Curtis distance matrix with 
the “metaMDS” function in vegan) were used to visualize 
the separation of soil microbial communities between treat-
ments and sampling months. Permutational multivariate 
analysis of variance (PERMANOVA) was performed to test 
the effects of thinning, precipitation reduction, sampling 
month, and their interactions on the soil microbial commu-
nity composition using the “adonis2” function in the vegan 
package. Furthermore, a pairwise multilevel comparison was 
performed using the “pairwiseadonis” function to test for 
significant differences between the natural precipitation and 
precipitation reduction treatments in each thinning treatment 
and growth month. We used Pearson’s correlation analysis 
to determine the relationships between soil properties and 
microbial diversity. Subsequently, based on prior knowledge, 
we applied piecewise structural equation modeling (pSEM) 
to further explore the direct effects of thinning and precipita-
tion reduction, and the indirect effects via changes in micro-
bial diversity (OTU richness) and community composition 
(represented by NMDS1) on soil multifunctionality by using 
the piecewiseSEM package. The thinning and precipitation 
treatment as two categorical exogenous variables with “1 
(CK), 2 (T30), 3 (T45)” and “0 (N), 1 (R)”, respectively, were 
specified fixed effects, while sampling month were termed as 
random intercept effects (Wu et al. 2022). The model fit of 
pSEM was assessed using Fisher’s C statistic, and the model 
was considered to have an adequate fit to the data when it had 
a Fisher’s C statistic with P > 0.05 (Shipley 2009). A random 
forest model was used to identify the main credible predictors 
of soil multifunctionality including microbial taxa (abundant 
ECM and SAP genera based on relative abundance > 0.1%) 
(Banerjee et al. 2019). The percent increment of the mean 
squared error (%IncMSE) and the increase in node purity 
were used to determine the significance of the predictors. 
The significance of the models and cross-validated  R2 val-
ues were assessed with 1000 permutations of the response 
variables using the A3 package. Similarly, the significance of 
each predictor for the response variables was assessed using 
the rfPermute package.
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Results

Soil variables and multifunctionality

Three-way ANOVA showed that thinning, precipitation 
reduction, and sampling month significantly affected SWC, 
DOC, exchangeable  NH4

+-N,  NO3
−-N, and AP concentra-

tions, MBC, and MBN, and the activities of BG, NAG, CBH, 
ACP, and POD, as well as the interaction between thinning 
and precipitation reduction on exchangeable  NH4

+-N and 
MBN and NAG, CBH, and ACP activities (Table S1). Com-
pared to the CK treatment, the T45 treatment, but not the 
T30 treatment, significantly increased SWC, DOC,  NO3

−-N, 
and AP concentrations, MBC, and MBN, and the activi-
ties of BG, NAG, CBH, ACP, and POD, whereas the pre-
cipitation reduction treatment significantly decreased these 
variables (Table S2). In more detail, SWC increased by an 
average of 3.7% under the T30 treatment and an average of 
20.5% under the T45 treatment (Table S2). Notably, SWC 
decreased under the precipitation reduction treatment by an 
average of 17.1% (Table S2). Furthermore, SWC was sig-
nificantly lower in June (16.0 ± 2.0%) and July (15.9 ± 2.1%) 
than in other sampling months (ranging from 25.4 ± 1.6% to 
34.7 ± 1.3%) (Table S2).

Three-way ANOVA showed that soil multifunctionality 
was significantly influenced by thinning, precipitation reduc-
tion, sampling month and their interactions (Table S1). Com-
pared to the CK treatment, the T45 treatment significantly 
increased soil multifunctionality in all growing months 
under both precipitation conditions, except in April and 
May under the precipitation reduction treatment (Fig. 1). In 
addition, compared to the CK treatment, the T30 treatment 
significantly decreased soil multifunctionality in April and 
June under the natural precipitation treatment (Fig. 1). Fur-
thermore, compared to the natural precipitation treatment, 
the precipitation reduction treatment significantly decreased 
soil multifunctionality under the thinning treatments in all 
growing months, except for the T30 treatment in April, May, 

June, August, and September. These results suggest that a 
high thinning level positively affects soil multifunctionality 
and that this effect depends on the sampling month under the 
precipitation reduction treatment.

Taxonomic composition of fungi and bacteria

The fungal community was dominated by the phyla Asco-
mycota (39.5%), Basidiomycota (36.7%) and Mortierello-
mycota (13.2%), which accounted for > 89.4% of the total 
fungal sequences (Fig. 2a). The bacterial community was 
dominated by the phyla Actinobacteria (28.3%), Proteobac-
teria (25.7%), and Acidobacteria (21.2%), which accounted 
for > 75.3% of the total bacterial sequences (Fig. 2b). Fur-
thermore, thinning, precipitation reduction and sampling 
month significantly affected the relative abundance of the 
dominant fungal phyla, but not the dominant bacterial 
phyla (Table S3). The relative abundance of Ascomycota 
and Basidiomycota significantly decreased by the thinning 
treatments and increased by the precipitation reduction treat-
ment. In contrast, the relative abundance of Mortierellomy-
cota and Rozellomycota significantly increased by the thin-
ning treatments and decreased by the precipitation reduction 
treatment (Table S4).

Three-way ANOVA showed that the relative abundances 
of ECM and SAP fungi were significantly influenced by 
thinning, precipitation reduction, sampling month and their 
interactions. However, the relative abundance of SAP fungi 
was unaffected by thinning, whereas the relative abundance 
of pathogens was significantly affected by sampling month 
(Fig. 2c; Table S3). Compared to the CK treatment, the T45 
treatment but not the T30 treatment significantly decreased 
the relative abundance of ECM fungi in all sampling months 
under the natural precipitation condition and in June under 
the precipitation reduction condition (Fig. S2a). In addition, 
the precipitation reduction treatment significantly increased 
the relative abundance of ECM fungi in June and July under 
the CK, T30, and T45 treatments, and in August under the 
T30 treatment (Fig. S2a). In contrast, the precipitation 

Fig. 1  Soil multifunctionality in thinning and precipitation reduc-
tion treatments during the growing season. Data are means ± SE 
(n = 5). Different letters indicate significant differences among treat-

ments within the same sampling month based on Tukey’s HSD test 
at P < 0.05 level. CK: no thinning; T30: 30% of trees removed; T45: 
45% trees removed
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reduction significantly decreased the relative abundance of 
SAP fungi in June under the CK treatment and July under 
the T30 treatment (Fig. S2b). These results suggest that the 
relative abundance of ECM fungi was negatively affected by 
thinning and positively affected by precipitation reduction, 
but this effect was dependent on the sampling month.

Soil microbial diversity and community composition

Three-way ANOVA indicated that thinning, precipitation 
reduction and sampling month significantly influenced 
soil bacterial, total, ECM, and SAP fungal OTU richness, 
with one exception: SAP fungal OTU richness was not sig-
nificantly influenced by thinning (Table S3). Compared to 
the CK treatment, the T45 treatment did not significantly 
change bacterial OTU richness in all growing months under 
both precipitation conditions, except that the T30 treatment 

significantly decreased bacterial OTU richness in April, 
May, and August under natural or reduced precipitation con-
ditions (Fig. 3a). In contrast, compared to the CK treatment, 
the T45 treatment (but not the T30 treatment) significantly 
increased the total fungal OTU richness in June, July, and 
August under natural or reduced precipitation conditions 
(Fig. 3b). Furthermore, compared to the CK treatment, 
ECM fungal OTU richness was significantly decreased by 
the T45 treatment in April, June, July, and August, and by 
the T30 treatment in April, July, and September under natu-
ral or reduced precipitation conditions (Fig. 3c). In addi-
tion, the T45 and T30 treatments did not significantly affect 
SAP fungal OTU richness (Fig. 3d). These results suggest 
that a high thinning level positively affects total fungal OTU 
richness and negatively affects ECM fungal OTU richness. 
This effect depends on the sampling month under both pre-
cipitation conditions. Furthermore, precipitation reduction 

Fig. 2  Relative abundance of bacteria and fungi in thinning and pre-
cipitation reduction treatments during the growing season. (a) Bac-
teria at the phylum level, (b) Fungi at the phylum level, (c) Three of 
the major fungal guilds, including ectomycorrhizal (ECM) fungi, sap-
rotrophic (SAP) fungi, and pathogen. Three-way ANOVA showing 
the effects of thinning, precipitation reduction, sampling month and 
their interactions on bacteria and fungi. Asterisks indicate the statisti-

cal significance (ns P > 0.05, * P < 0.05, ** P < 0.01, ***P < 0.001). 
Others include the rare taxa (relative abundance < 1%) and the unclas-
sified groups. CKN: no thinning with natural precipitation; CKR: no 
thinning with precipitation reduction; T30N: 30% thinning with natu-
ral precipitation; T30R: 30% thinning with precipitation reduction; 
T45N: 45% thinning with natural precipitation; T45R: 45% thinning 
with precipitation reduction
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significantly decreased bacterial OTU richness under the 
T30 and T45 treatments in August, total fungal OTU rich-
ness under the CK and T45 treatments in April, and under 
the CK and T30 treatments in June. These results suggest 
that the effects of thinning and precipitation reduction on 
microbial OTU richness were more pronounced in June, and 
July than in other sampling months.

The PEMANOVA and NMDS showed that the commu-
nity compositions of bacteria, total, ECM and SAP fungi 
were significantly affected by sampling month  (R2 = 0.280, 
P < 0.001;  R2 = 0.216, P < 0.001;  R2 = 0.108, P < 0.001; 
 R2 = 0.222, P < 0.001), thinning  (R2 = 0.051, P < 0.001; 

 R2 = 0.145, P < 0.001;  R2 = 0.201, P < 0.001;  R2 = 0.137, 
P < 0.001), precipitation reduction  (R2 = 0.011, P < 0.01; 
 R2 = 0.030, P < 0.001;  R2 = 0.041, P < 0.001;  R2 = 0.023, 
P < 0.001), and the interaction between thinning and precipi-
tation reduction  (R2 = 0.019, P < 0.01;  R2 = 0.037, P < 0.001; 
 R2 = 0.023, P < 0.001;  R2 = 0.048, P < 0.001) (Fig. 4a-d). 
Furthermore, precipitation reduction did not significantly 
affect the bacterial community composition under each 
thinning treatment and growth month (except in July and 
August under the CK and T45 treatments) (Fig. 4e). In con-
trast, precipitation reduction significantly affected the total, 
ECM, and SAP community compositions in each thinning 

Fig. 3  Operational taxonomic unit (OTU) richness of bacteria and 
fungi in thinning and precipitation reduction treatments during the 
growing season. (a) Bacteria, (b) Total fungi, (c) Ectomycorrhizal 
(ECM) fungi, (d) Saprotrophic (SAP) fungi. Data are means ± SE 

(n = 5). Different letters indicate significant differences among treat-
ments within the same sampling month based on Tukey’s HSD test 
at P < 0.05 level. CK: no thinning; T30: 30% of trees removed; T45: 
45% trees removed
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treatment and growth month (except for ECM fungi in May 
under the CK and T30 treatments and SAP fungi in July 
under the CK treatment) (Fig. 4f–h). These results suggest 
that the fungal community composition was more sensitive 
to thinning and precipitation reduction than the bacterial 
community composition. Furthermore, the total and ECM 
fungal community compositions under the CK and T30 
treatments responded more strongly to precipitation reduc-
tion than those under the T45 treatment in June and July.

Linking soil properties, microbial community 
and multifunctionality

Pearson correlations revealed that SWC, exchangeable 
 NH4

+-N, MBN, CBH, ACP, and soil multifunctionality 
were positively and significantly correlated with fun-
gal diversity (i.e., OTU richness and Shannon index), 
but negatively correlated with bacterial OTU richness 
and the relative abundance of ECM fungi (Fig. 5a). The 
Mantel test showed that soil exchangeable  NH4

+-N was 

significantly correlated with bacterial, total, ECM, and 
SAP fungal microbial compositions, and SWC had sig-
nificant influences on bacterial, total, and ECM fungal 
compositions. Importantly, total and ECM fungal com-
positions, rather than bacterial and SAP fungal composi-
tions, showed a significant relationship with soil mul-
tifunctionality (Fig. 5b). Piecewise structural equation 
modeling showed that soil multifunctionality was affected 
by thinning and precipitation reduction, directly and indi-
rectly through the ECM fungal richness and composition, 
and SAP fungal composition (Fig. 6). Among ECM and 
SAP fungi, Piloderma, Aspergillus, and Tomentella were 
the three most important predictors of soil multifunction-
ality (Fig. 7a). Furthermore, soil multifunctionality was 
significantly and negatively correlated with the relative 
abundance of Piloderma from June to September, and the 
relative abundance of Tomentella in June, July and Sep-
tember, whereas it was significantly and positively cor-
related with the relative abundance of Aspergillus from 
June to August (Fig. 7b).

Fig. 4  Non-metric multidimensional scaling (NMDS) analysis based 
on Bray–Curtis distance matrix of soil bacterial and fungal commu-
nity compositions. Effects of thinning, precipitation reduction, sam-
pling month and their interactions on the bacterial (a), total fungal 
(b), ectomycorrhizal (ECM) fungal (c) and saprotrophic (SAP) fungal 
(d) community compositions. Effects of precipitation reduction on 

the bacterial (e), total fungal (f), (ECM) fungal (g) and SAP fungal 
(h) community compositions in each thinning treatment and growth 
month. For each point, n = 5. Error bars indicate standard deviation. 
Different colors and shapes represent different treatments and sam-
pling months. CK: no thinning; T30: 30% of trees removed; T45: 45% 
trees removed. N: natural precipitation; R: precipitation reduction
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Discussion

Thinning increased soil multifunctionality 
and fungal diversity but precipitation reduction had 
the opposite effects

The first hypothesis was partially supported by our find-
ings that the T45 treatment rather than T30 treatment had 
a positive effect on soil multifunctionality and fungal OTU 
richness, and this effect depended on the sampling month. 
This may partly be explained by thinning intensity, which 
is one of the main factors controlling the magnitude of 
thinning effects (Kim et al. 2018; Weng et al. 2007; Zhang 
et al. 2018). Thinning alters the microclimate and provides 
favorable conditions for understory vegetation and litter 
decomposition by opening the forest canopy, stimulating 

microbial activities, and improving nutrient availability 
(Dang et al. 2018). A recent meta-analysis concluded that 
soil moisture content was significantly increased at moder-
ate and heavy intensities, but light thinning did not affect 
soil moisture content (Zhang et al. 2018). A heavy thinning 
intensity can leave a larger amount of thinning residue, 
such as slashes, stumps, and dead roots, than a compara-
tively light thinning intensity (Adamczyk et al. 2015; Smo-
lander et al. 2015), and it likely provides a more moderate 
environment for microbial growth by opening the forest 
canopy. These differences in thinning intensity can result 
in differential effects on SWC, available nutrients, and 
enzyme activity (Calev et al. 2016; Chen et al. 2015; Dang 
et al. 2018; Kim et al. 2019; Ma et al. 2018). In this study, 
although 30% of the trees were removed in T30 treatment, 
only ~ 13% of the basal area was removed because of the 

Fig. 5  Correlations between soil properties and microbial diversity 
(a) and microbial community compositions (b). soil microbial com-
munity composition based on Bray–Curtis distance is related to each 
soil properties by Mantel test. Line width corresponds to the partial 
Mantel’s P statistic, and line color denotes the statistical significance 
based on 999 permutations. Pairwise comparisons of soil properties 
are also shown, with a color gradient denoting Pearson’s correlation 
coefficient. Asterisks indicate the statistical significance (* P < 0.05, 

** P < 0.01, *** P < 0.001). ST: soil temperature; SWC: soil water 
content; SOC: soil organic carbon; TN: total nitrogen; TP: total phos-
phorus; DOC: dissolved organic carbon; Exchangeable  NH4

+-N: 
ammonium N;  NO3

−-N: nitrate N; AP: available phosphorus; MBC: 
microbial biomass C; MBN: microbial biomass N; βG: β-glucosidase; 
CBH: cellobiohydrolase; NAG: N-acetyl-glucosaminidase; ACP: acid 
phosphatase; PPO: polyphenol oxidase; POD: peroxidase; SMF: soil 
multifunctionality
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thinning-from-below approach, and the canopy openings 
created by the T30 treatment were thus all relatively small. 
Consequently, the T45 treatment produced larger shoots, 
dying and dead roots as nutritive substrates and fostered 
a more favorable microclimate for microbial growth and 
activity than the T30 treatment. Furthermore, available 
soil nutrients have been observed to increase under thin-
ning treatments by increasing soil moisture content and 
thus microbial biomass and activities. Tan et al. (2008) 

found that soil moisture content and net N mineralization 
rates and available N were higher in the thinned than in 
the control plots. These results indicate that thinning sig-
nificantly increased soil multifunctionality, and this effect 
depended on thinning intensity. On the other hand, high 
thinning level likely provides a moderate environment for 
microbial growth by opening the forest canopy as a result 
of increased soil fungal diversity after thinning (Wang 
et al. 2019). Previous studies have suggested that thinning 

Fig. 6  The piecewise structural equation model (pSEM) showing the 
direct and indirect effects of the thinning, precipitation reduction, and 
microbes on soil multifunctionality (a) and standardized total effects 
(direct plus indirect effects) derived from SEM depicted above (b). 
Red lines indicate positive effects, while blue lines indicate negative 

effects. Grey lines indicate nonsignificant relationships (P > 0.05). 
The width of arrows is proportional to the strength of significant 
standardized path coefficients.  R2 represents the total variance in the 
soil multifunctionality index explained by the model

Fig. 7  The main microbial drivers of soil multifunctionality. (a) Ran-
dom forest analysis showing the relative contribution of the ectomy-
corrhizal (ECM) fungal and saprotrophic (SAP) fungal genus in pre-
dicting the soil multifunctionality. The accuracy importance measure 

was computed for each tree and averaged over the forest (1000 trees). 
Asterisks indicate the statistical significance (* P < 0.05, ** P < 0.01). 
MSE: mean square error. (b) Relationships between soil multifunc-
tionality and the top three important drivers of soil multifunctionality
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increases soil fungal abundance during the first 21 months 
postthinning (Lin et al. 2016) and increases the diversity 
of fungal species (Overby et al. 2015).

Consistent with our first hypothesis, precipitation reduc-
tion significantly decreased soil fungal diversity and mul-
tifunctionality, and these effects were dependent on the 
sampling month. Our results showed that the precipitation 
reduction significantly and directly decreased the soil water 
content (by an average of 17.1%) and available nutrients, 
which led to a decline in soil multifunctionality. Many 
drought experiments have reported decreases in microbial 
biomass, enzyme activity, and C and N mineralization, 
which in turn reduce available nutrients by decreasing soil 
moisture content (Brockett et al. 2012; Yang et al. 2021b; 
Yu et al. 2012). The impacts of the precipitation reduction 
on soil microbial biomass and enzyme activities can be 
explained through direct effects mediated by lower SWC, 
which may limit microbial growth and substrate diffusion 
(Brockett et al. 2012; Su et al. 2020). Moreover, drought 
induced by precipitation exclusion may reduce pore con-
nectivity, thereby decreasing substrate diffusion and restrain-
ing the formation of organo-mineral complexes and thus, 
affecting both microbial biomass and extracellular pro-
cesses (Bastida et al. 2017; Canarini et al. 2016; Schimel 
and Schaeffer 2012). In the study area, there was > 1 dry-
ness index in the larch plantation, indicating that the study 
area was a water-limited region (Yu et al. 2019), and the 
16-year-old larch plantation was in the rapid growth stage 
and was experiencing intense intertree competition due to 
the high coverage of overstory larch trees (Schaedel et al. 
2017). Therefore, we conclude that precipitation reduction 
can cause strong competition for soil water and nutrients 
between larch trees and soil microbes during the grow-
ing season, especially in June and July (Bastida et  al. 
2019; Baum et al. 2013). Another important reason for the 
decrease in soil fungal diversity may be the contribution of 
the lower DOC, exchangeable  NH4

+-N, and  NO3
−-N levels, 

which provide nutrition substrates for the microorganisms 
under precipitation reduction. Similarly, a recent meta-anal-
ysis showed that reduced precipitation decreases soil water 
availability and substrate supply to microorganisms and con-
sequently decreases microbial diversity (Yang et al. 2021a).

Fungi as good indicators of soil multifunctionality

Our results showed that fungi rather than bacteria are impor-
tant soil multifunctionality predictors (Figs. 5 and 6). There 
are several possible explanations for this finding. The fun-
gal and bacterial communities have different characteristics. 
Fungi are indispensable for the breakdown of recalcitrant C 
compounds (e.g., lignin) and ultimately regulate the rates 
of soil processes, especially in coniferous forests (Treseder 
and Holden 2013; Treseder et al. 2016; Zhang et al. 2017). 

However, bacteria are related to the turnover of easily degra-
dable substrates such as dead fungal biomass (Lladó et al. 
2017).

Second, fungi can produce various hydrolytic enzymes 
that can liberate organic C and N and form associations with 
roots of trees, providing nutrients and water in the forest soil 
(Baldrian et al. 2013; De Boer et al. 2005; Kyaschenko et al. 
2017; Mohan et al. 2014). In incubation experiments, activ-
ity of endocellulase, β-galactosidase, β-mannosidase, and 
β-glucosidase was significantly related to the fungal to bac-
terial biomass ratio indicating the important role of fungi in 
their production (Algora Gallardo et al. 2021). In this study, 
exchangeable  NH4

+-N was the most significant contribution 
to changes in the fungal community (diversity and composi-
tion), providing evidence that there may be a strong N limi-
tation in the studied larch plantation (Fig. 5). Our results are 
consistent with previous studies that show that soil nutrient 
content can strongly affect fungal communities, especially 
when soil nutrient content is limited (Almeida et al. 2019; 
Odriozola et al. 2021). The availability of N is most com-
monly the dominant limiting nutrient in northern forested 
ecosystems (Almeida et al. 2019; Jiang et al. 2021; Teste 
et al. 2012). Furthermore, when considering single edaphic 
factors, most soil properties (e.g., SWC, available nutrients, 
and enzyme activities, but not SOC, TN, and TP) showed a 
stronger effect on fungal community composition and diver-
sity than on those of bacteria (Fig. 5), indicating that thin-
ning and precipitation reduction regulated soil fungi, rather 
than bacteria, primarily by changing the availability of soil 
resources. Thus, soil fungi are more sensitive to thinning 
and precipitation reduction than bacteria, which are widely 
found in forest ecosystems (He et al. 2017; Urbanová et al. 
2015; Zhou et al. 2020).

Third, the present study found that the relative abundance 
of ECM fungi and ECM fungal community composition 
were significantly correlated with soil multifunctionality 
(Fig. 5). In particular, the relative abundance of ECM fungi 
responded significantly to precipitation reduction and pre-
sented a markedly negative relationship with soil available 
resources (e.g., SWC, exchangeable  NH4

+-N, DOC, and 
 NO3

−-N), fungal OTU richness, and soil multifunctionality 
(Fig. 5). Therefore, we inferred that the limitation of avail-
able soil resources due to precipitation reduction strongly 
stimulated ECM fungi, which were mainly responsible for 
soil water and nutrient uptake for their host. This is consist-
ent with previous studies, which showed that high nutri-
ent availability might inhibit the growth and functions of 
mycorrhizal microbes (Nilsson et al. 2005; Truong et al. 
2019). Meanwhile, the higher relative abundance of ECM 
fungi may result in the loss of other fungal species, result-
ing in a shift in fungal composition. For instance, the higher 
relative abundance of ECM fungi is associated with a lower 
relative abundance of SAP fungi, which together may slow 
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soil organic matter decomposition and decrease soil nutri-
ent availability (Männistö et al. 2018; Vasco-Palacios et al. 
2018). In addition, thinning suppressed the relative abun-
dance of ECM fungi in a Korean larch planation (Zhou et al. 
2020), and timber harvesting negatively affected the relative 
abundance of ECM fungi in six forest sites in British Colum-
bia (Hartmann et al. 2012). Changes in fine root biomass 
after thinning may be the main reason for the responses of 
fungal community composition (Mushinski et al. 2018). 
Thinning reduces the tree root biomass and consequently 
decreases the fine root hosts for ECM fungi, which is a 
potential explanation for the substantial decrease in the rela-
tive abundance of ECM fungi after thinning (Castaño et al. 
2018; Lin et al. 2016). For instance, Piloderma (belong-
ing to ECM fungi) was the most important predictor of soil 
multifunctionality (Fig. 7), and its relative abundance was 
significantly reduced by thinning and increased by precipita-
tion reduction (Fig. S3). As discussed above, changes in the 
relative abundance of ECM fungi may play a critical role in 
microbial-mediated soil multifunctionality owing to shifts in 
soil SWC and available nutrients under thinning and precipi-
tation reduction. Recently-developed molecular technology, 
such as RNA sequencing, metaproteomics, should be used to 
evaluate active microbial community, which is related more 
closely to soil functions than the total community (analyzed 
by DNA) (Bastida et al. 2017; Nannipieri et al. 2020; Yang 
et al. 2022).

The negative effect of precipitation reduction 
on soil fungal diversity and multifunctionality 
is alleviated by thinning

Our results suggest that the negative effect of precipitation 
reduction on soil fungal diversity and multifunctionality is 
alleviated by the high thinning level (T45) treatment, and 
the effect was dependent on the sampling month. First, 
we observed that the 45% thinning treatment significantly 
increased soil multifunctionality from June to September, 
while precipitation reduction produced counteractive effects. 
Increased thinning intensity led to reduced interception and 
total stand transpiration due to reducing stand density and 
thus increased the soil water content (Gebhardt et al. 2014), 
which led to higher available nutrients, and enzyme activi-
ties and thus soil multifunctionality. Meanwhile, fungal 
OTU richness was significantly decreased by precipitation 
reduction in June, July, and August. During this period 
(peak-growing season), more water and nutrients for larch 
tree growth may induce strong competition for soil water and 
nutrients between larch trees and soil microbes, especially in 
June and July, which had lower soil water content (~ 16%). 
Similarly, the precipitation reduction stimulated the relative 
abundance of ECM fungi coupled with low soil water con-
tent and available nutrients in June and July, but not in other 

growth months. These results indicate that the counterac-
tive effects of high thinning level treatment and precipitation 
reduction on soil multifunctionality were found throughout 
the growing season, but on fungal OTU richness and the 
relative abundance of ECM fungi in June and July when soil 
water and nutrients became limited. Previous studies have 
shown that thinning can effectively mitigate the effects of 
drought on tree growth by increasing soil water and nutrient 
availability (Gebhardt et al. 2014; Sohn et al. 2013). Overall, 
the counteractive effects of the precipitation reduction and 
high thinning level treatments suggest that the combination 
of these two treatments may be helpful for the maintenance 
of soil multifunctionality and fungal OTU richness, particu-
larly when resource availability remains low. The canopy 
coverage of larch stands should be maintained at ~ 0.7 to 
maintain soil quality, which allows enough light to maintain 
many understory species and reduces competition for soil 
water and nutrients between larch trees and soil microbes. 
Only the moderate and heavy thinning (> 33% of thinning 
intensity) treatments, but not the light thinning treatment, 
significantly increased soil moisture content (Zhang et al. 
2018), consistent with our results that the 45% thinning 
treatment increased significantly soil moisture content and 
multifunctionality (Table S2).

Conclusions

This study revealed that the responses of soil fungal and bacte-
rial communities and multifunctionality associated with C, N, 
and P cycling to thinning and precipitation reduction differed 
in a larch plantation. A high thinning level positively affects 
soil fungal diversity and multifunctionality, whereas precipita-
tion reduction showed the opposite effect, depending on the 
sampling month. Furthermore, fungi, rather than bacteria, show 
a significant relationship with soil multifunctionality, which 
is indirectly affected by thinning and precipitation reduction 
through the ECM and SAP fungal composition. Overall, the 
counteractive effects of the high thinning level and precipitation 
reduction suggest that the combination of these two treatments 
may be helpful for the maintenance of soil multifunctional-
ity and fungal OTU richness, especially in June and July. We 
recommend thinning as a tool to mitigate the impacts of pre-
cipitation reduction on soil multifunctionality and the microbial 
community in larch plantations.
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