
Vol.:(0123456789)1 3

https://doi.org/10.1007/s00374-022-01643-y

ORIGINAL PAPER

Biochar accelerates soil organic carbon mineralization 
via rhizodeposit‑activated Actinobacteria

Yingyi Fu1 · Yu Luo1   · Muhammad Auwal1 · Bhupinder Pal Singh2 · Lukas Van Zwieten3 · Jianming Xu1

Received: 2 December 2021 / Revised: 14 April 2022 / Accepted: 18 April 2022 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Biochar affects soil carbon (C) dynamics via shifting microbial community, but the active bacteria that regulate the rhizos-
phere-based C cycling remain to be identified. Here, a continuous 13CO2 labeling pot (Zea mays L.) experiment over 14 days, 
combined with RNA-based stable isotope probing (RNA-SIP), were used to characterize the active bacterial communities 
involved in the mineralization of rhizodeposits and soil organic C (SOC) in biochar-amended soil. Compared with the non-
amended soil, biochar shifted the rhizosphere communities towards having lower richness and evenness, and particularly 
stimulated the growth of Actinobacteria (e.g., genus affiliated to Micrococcaceae) and other oligotrophs, most likely due to 
neutralizing soil acidity (from 4.53 to 6.17) and increasing content of recalcitrant organic C (from 10.69 to 25.77 g·kg−1). 
These enriched genera were associated with mineralization of both rhizodeposits and SOC, giving 35.09% and 87.28% 
increased mineralization of rhizodeposits and SOC. This led to much less (by 58.50% decrease) incorporation of 13C into 
biochar-amended soil. This study deciphered the active microorganisms in the biochar-soil–plant system that likely increased 
SOC and rhizodeposit mineralization (fewer rhizodeposits remaining), and thus diminished C sequestration by biochar per se.
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Abbreviations
SOC	� Soil organic carbon
LOC	� Labile organic carbon
IOC	� Intermediate organic carbon
ROC	� Recalcitrant organic carbon
RNA-SIP	� RNA-based stable isotope probing

Introduction

Soil organic matter (SOC) plays an important role in main-
taining soil quality and it stores the majority of terrestrial 
carbon (C) (Lal 2004). Atmospheric input of C into soils via 
rhizodeposition is an essential pathway for building SOC 
(Pausch and Kuzyakov 2017). Plant roots release about 
20–30% of total photosynthetic C into the soil (Calvo et al. 
2017), which can be subsequently utilized by the rhizosphere 
microbiome (Sasse et al. 2018). The structural dynamics 
of the rhizosphere bacterial community that assimilates 
rhizodeposited C can control (i) the quantity of C incor-
porated into soil pools in the form of metabolites or nec-
romass, which are subsequently stabilized by minerals and 
aggregates (Liang et al. 2017; Jeewani et al. 2020; Luo et al. 
2021), and (ii) the mineralization of both the rhizodeposits 
and SOC (Pausch and Kuzyakov 2017). Both stabilization 
and mineralization via rhizosphere microbiome are the keys 
to plant-derived C sequestration in soil, which are deter-
mined by climate, edaphic properties, and agriculture prac-
tices (Cotrufo et al. 2013; Keiluweit et al. 2015).

There has been a surge of interest over the last 15 years in 
the utilization of biochar for increasing soil C content due to 
its recalcitrance (Lehmann et al. 2008). While biochar can 
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supply a stable C component to the soil, biochar and non-
biochar interactions are essential while determining biochar 
half-life (Kuzyakov et al. 2009) and the decomposition of 
plant-derived C and native SOC (Liang et al. 2010). Bio-
char can either promote stabilization of plant-derived C, i.e., 
rhizodeposits (Weng et al. 2017), or result in faster rhizode-
posit mineralization and larger SOC mineralization (Luo 
et al. 2017), which are mainly driven by biochar-induced 
changes to both soil abiotic and biotic properties (Yu et al. 
2020).

The physicochemical properties of biochar can influence 
soil pH, nutrient availability, and C chemical composition 
(Dai et al. 2014; Blanco-Canqui 2017; Razzaghi et al. 2020), 
which in turn shape soil microbial communities and their 
functions (Chen et al. 2021; Wang et al. 2021). For example, 
biochar reduced the effect of protists on the bacterial com-
munities by changing physicochemical properties (e.g., size 
of the micro-pores and nutrient content), thus altering the 
microbially mediated transformation of N in soil (Asiloglu 
et al. 2021). Zhang et al. (2017) found biochar increased 
pH and thus shifted AOA/AOB ratio and following N2O 
potential. Several studies highlight that the response of 
certain soil microbial communities to biochar is linked to 
altered soil C dynamics (Luo et al. 2013; Whitman et al. 
2016, 2021; Campos et al. 2020). Previous studies reported 
that biochar amendment can decrease soil microbial activi-
ties, thus mitigating C loss and promoting soil C storage and 
fertility (Duan et al. 2020; Wu et al. 2021).

Quite recently, those biochar studies, including plants, 
have mainly emphasized either (i) biochar and rhizodeposit 
interactions and their impacts on soil effluxes and C seques-
tration (Whitman et al. 2014; Weng et al. 2015, 2017; Pei 
et al. 2020), but ignoring the role of microbial community 
underpinning C processes, or (ii) biochar-induced changes 
on rhizosphere microbiome and consequential effects on 
plant nutrient uptake and growth (Efthymiou et al. 2018; 
Fu et al. 2021), but omitting soil C processes. For exam-
ple, greater microbial diversity and potential metabolism 
observed in the rhizosphere by biochar amendment enhanced 
plant performance (Kolton et al. 2017), but the microbial 
mechanisms (taxonomic guild and active microorganisms) 
underlying rhizosphere-C dynamics remain elusive (Liao 
et al. 2019; Joseph et al. 2021).

To predict the ecosystem function of the soil microbi-
ome, it is vital to specifically target active members of the 
soil microbial community (Couradeau et al. 2019). Stable 
isotope probing (SIP) is a powerful tool for investigating 
specific active microorganisms by incorporating isotopi-
cally labeled substrates (e.g., 13C or 15 N) in situ, and thus 
link community and function. By using SIP of phospho-
lipid fatty acids (PLFA-SIP), actinomycetes were shown 
to utilize rhizodeposits in a biochar-amended soil (Chen 
et al. 2021). To have detailed resolution, DNA-SIP is used 

to identify microorganisms that assimilate labeled organic 
substances and their functions in C cycling (Dumont and 
Murrell 2005). To target RNA as the biomarker, RNA-
SIP has the advantage of greater sensitivity compared to 
DNA-SIP, and can reflect the active bacteria involved in C 
cycling (Lu and Conrad 2005). Some studies have applied 
the RNA-SIP technique to identify the active microor-
ganisms in various ecosystems, including phenanthrene 
degraders in sandy soils (Schwarz et al. 2018), methylo-
trophs, and sulfate-reducing bacteria in paddy soils (Lued-
ers et al. 2004; Liu et al. 2018). Combination of CO2 labe-
ling and RNA-SIP can provide an approach to identify the 
microorganisms that are stimulated by plant rhizodeposits 
(Drigo et al. 2010; Hernández et al. 2015). This there-
fore may assist in unraveling the microbial mechanisms 
whereby biochar amendment controls or alters C dynamics 
in a plant-soil system.

The aims of this study were (i) to investigate the influ-
ence of biochar on active bacteria utilizing plant-derived 
C in the maize rhizosphere and (ii) to assess roles of active 
bacteria that may potentially regulate the mineralization of 
rhizodeposits and SOC. We conducted continuous labe-
ling of maize (13CO2, 99% atom 13C) experiment coupled 
with RNA-SIP. We designed a two-compartment chamber 
to separate aboveground plant shoot respired CO2 from 
belowground root and SOC-derived CO2. CO2 from the 
belowground pools can be then separated by an isotopic 
signature using a mixed model (Fig. S1). This technique 
allowed us to understand changes to the mineralization 
of both maize rhizodeposits and SOC and active micro-
bial community by rhizodeposits. We hypothesized that 
(i) biochar amendment will change rhizosphere bacterial 
communities that assimilate rhizodeposits due to altered 
soil properties such as pH and C recalcitrance, and (ii) the 
activated microorganisms, i.e., upregulated genera, will in 
turn enhance rhizodeposit loss and contribute to subse-
quent SOC mineralization via co-metabolism.

Materials and methods

Soil and biochar materials

Soil was collected from the 0–20-cm layer by using the five 
diagonal point sampling method from Wenling (28°170′ 
N, 121°126′ E), Zhejiang, China. The plant residues 
and stones were removed by hand. The soil was sieved 
(< 5 mm) and stored at 4 °C before use. The soil texture 
was loamy clay. Soil properties were total C (3.08 ± 0.21%), 
total N (0.32 ± 0.03%), pH of soil–water slurry (1:5, w/v) 
(4.86 ± 0.06), and δ13C (− 28.42 ± 0.03‰). Biochar was pro-
duced using swine manure and straw (manure:straw = 1:3) 
feedstock with the method described by Luo et al. (2011). 

566 Biology and Fertility of Soils (2022) 58:565–577



1 3

In brief, materials were pyrolyzed with a heating rate of 
26 °C per min, and the highest treatment temperature of 
700 °C. This biochar contained 56.7 ± 0.67 total C (%), 
0.67 ± 0.03 total N (%), pH of 9.60 ± 0.05, and the δ13C 
was − 29.8 ± 0.14 (‰). The biochar was sieved (2 mm) and 
stored at 25 °C before use.

Experimental setup

The experiment investigated one treatment (with biochar) 
and the control (non-biochar). Sixteen pots (four replicates 
each treatment) were set up, including (1) unlabeled plant 
in soil without biochar addition; (2) 13CO2 labeled plant in 
soil without biochar addition; (3) unlabeled plant in soil with 
biochar addition; and (4) 13CO2 labeled plant in soil with 
biochar addition.

The glasshouse experiment used a total of 16 polyvinyl 
chloride (PVC) pots (height 10.5 cm, diameter 11.3 cm) each 
filled with 400 g soil (dry weight basis). Biochar was applied 
at 5% (w/w all dry weight basis) (Wang et al. 2019) to 8 pots 
homogeneously. The soil in this study was adjusted to about 
50% of water holding capacity (WHC) and pre-incubated in 
the greenhouse at 20 °C (night time) and 28 °C (day time) 
temperatures, and 70% relative humidity for 7 days before 
sowing.

Maize (Zea mays L.) seeds were sterilized with 30% 
H2O2 for 30 min, washed thoroughly with distilled water, 
and then sown in agar media. At 5 days after sowing the 
seeds, 1 maize seedling was selected and transplanted into 
each experimental pot. The pots were then placed in a cli-
mate-controlled greenhouse; 10-h dark (night) and 14-h light 
(day), at 20 °C night and 28 °C daytime temperatures, and 
70% relative humidity (Chen et al. 2016). Four replicates of 
each treatment had 14 days of continuous labeling starting 
at day 18 (ripening stage) (Lu and Conrad 2005). Before 
the labeling, 100 mL of 1 M NaOH solution was put inside 
the chamber to exclude the 12CO2. For 13C labeling, maize 
was exposed to a 13CO2 enriched atmosphere at 400 ppm 
for 8 h by using the following procedure. A closed Perspex 
chamber (width 0.8 m, height 1.0 m, and length 1.5 m) hous-
ing 8 pots was used, and a glass beaker containing 100 mL 
H2SO4 (3 M) was put inside the chamber. At each labeling 
event, 25 mL of 13C labeled Na2CO3 (≥ 99% atom 13C, Cam-
bridge Isotope Laboratories Inc, USA) solution (1 M) was 
then injected into a glass beaker containing H2SO4 solution 
through a tube to release 13CO2. The opening for injection of 
the 13C labeled Na2CO3 was sealed using Vaseline glue after 
each injection. The injection was repeated four times every 
day (every 1.5 h). An electric fan was placed in the chamber 
to deliver the homogenous distribution of CO2. The CO2 
concentration was monitored by using a portable infrared 
sensor (PGD3-C-CO2, Shenzhen, China).

Chemical analyses

Soil pH was measured in suspension (1:5, soil: Millipore 
water) by using an ISFET electrode. TC content and TN con-
tent (air-dried, milled < 200 µm) were determined by using 
the PerkinElmer EA2400 (Shelton, CT, USA). The stable 
isotope was determined using an Elementar vario MICRO 
cube elemental analyzer coupled to a GV Isoprime 100 iso-
tope ratio mass spectrometer (IRMS; GV Instruments, UK).

Chemical fractionations of SOC were measured accord-
ing to Rovira and Vallejo (2002). Briefly, 500 mg of ground 
soil sample was hydrolyzed with 20 mL 2.5 mol L−1 H2SO4 
for 30 min at the temperature of 105 °C. Then, the solu-
tion was centrifuged at 2795 × g min−1 for 10 min, and the 
supernatant hydrolysate was transferred to a 50-mL tube. 
The carbon content of the hydrolysate in the 50-mL tube 
was measured by using a Multi 3100 N/C TOC analyzer. 
This carbon content was considered labile organic C (LOC). 
The remaining soil residues were hydrolyzed and shacked 
overnight with 2 mL 13 mol L−1 H2SO4 at 25 °C, and then 
the H2SO4 concentration was diluted to 1 mol L−1 by add-
ing deionized water. The diluted hydrolysate was kept at a 
temperature of 105 °C for 3 h, and centrifuged for 10 min. 
The C content of this supernatant hydrolysate was regarded 
as intermediate organic C (IOC). Finally, the C content of 
remaining soil residues was measured by using a Vario 
EL III Elemental Analyzer, which is treated as recalcitrant 
organic C (ROC).

Soil respiration and 13C‑CO2

Total soil respiration was measured using a CO2 trap con-
sisting of 10 mL 1.5 M NaOH solution. The amount of 
CO2 trapped was determined using a TIM840 auto titra-
tor (Radiometer Analytical, Villeurbanne Cedex, France) 
with standard HCl (0.0501 M L−1). To determine the δ13C 
(‰) of the trapped CO2, 5 mL aliquots of each sample 
were added to 10 mL 1 M BaCl2 in a centrifuge tube. The 
precipitated BaCO3 was carefully rinsed 3 times with dis-
tilled water and dried overnight at 60 ℃ in the centrifuge 
tube. Finally, 1 mg BaCO3 was accurately weighed into tin 
caps and the δ13C was analyzed using an elemental ana-
lyzer-coupled-isotope ratio mass spectrometer (EA-IRMS) 
(Sercon Ltd, Crewe, UK). SOC-derived CO2 was separated 
from root-derived CO2 in planted treatments according to 
Lu et al. (2019):
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where, CSoil, CRoot, and CTotal are the CO2-C derived from 
soil, CO2-C derived from roots, and total CO2-C derived 
from belowground in planted treatments, respectively. 
δ13CSoil, δ13CRoot, and δ13CTotal are defined as the δ13C val-
ues of CSoil, CRoot, and CTotal in planted treatments. The mean 
δ13C value of soil respiration in unplanted soil was used as 
δ13CSoil.

RNA extraction and isolation of 13C‑labeled RNA

Soil RNA extraction of rhizosphere soil of each sample was 
completed using the RNeasy Power-Soil Total RNA kit (Qia-
gen) (Ding et al. 2015). The extracted RNA was added with 
DNase I (Ambion) and purified by using the RNA Clean and 
Concentrator kit (ZymoResearch). The integrity of the puri-
fied RNA was measured by Bio-Rad Experion™ and RNA 
HighSens Chips (Bio-Rad). Density gradient centrifugation 
was carried out to separate the 13C-labeled RNA from total 
RNA (Dumont et al. 2011; Li et al. 2019). Briefly, approxi-
mately 500 ng of extracted RNA was mixed with cesium 
trifluoroacetate (CsTFA) gradients to achieve an original 
buoyant density (1.790 g mL−1). The above mixtures were 
centrifuged at 130 000 g for 65 h at 20 °C. RNA fractiona-
tion was performed by displacing the gradient medium with 
sterile water from the top of the ultracentrifuge tube using 
a NE-1000 single syringe pump (New Era Pump Systems 
Inc. Farmingdale, NY, USA), with the controlled flow rate 
of 0.34 mL min−1. A total of 14 RNA gradient fractions 
with equal volumes of about 340 mL were generated, and 
the refractive index of these fractions was measured using 
an AR200 digital hand-held refractometer (Reichert, Inc., 
Buffalo, NY, USA). Each RNA fraction was converted to 
the complementary DNA (cDNA) according to the protocol 
provided by PrimeScript™ II 1st Strand cDNA Synthesis Kit 
(Takara, Dalian, China). The copy numbers of bacterial 16S 
rRNA in each cDNA fraction were determined on an iCy-
cleriQ 5 thermocycler (Roche Diagnostics, Meylan, France) 
using primer pairs 515F (5′-GTG​YCA​GCMGCC​GCG​
GTAA) and 907R (5′-CCG​YCA​ATTYMTTT​RAG​TTT) 
(Biddle et al. 2008). Each reaction was performed in a 20-μL 
volume containing 10 μL SYBR Premix Ex Taq (TaKaRa 
Biotechnology, Otsu, Shiga, Japan), 0.4 μM of each primer, 
and 1 μL cDNA template (1–10 ng). The thermocycling con-
ditions were denaturation at 95 °C for 30 s, then 40 cycles 
of denaturation at 94 °C for 5 s, annealing at 58 °C for 15 s, 
and extension at 72 °C for 10 s. The bacterial 16S rRNA 
copy numbers of each cDNA fraction are shown in Fig. S3.

16S rRNA Illumina sequencing

cDNA from the “heavy” gradient fractions of each sample 
was subjected to 16S rRNA amplicon sequencing. Briefly, 
16S rRNA fragments were amplified with barcoded and 

indexed universal prokaryotic V4-V5 primers 515f/907r, and 
the products were pooled and sequenced on the Illumina 
Miseq platform (Illumina, San Diego, USA), run by Major-
bio, Inc. (Shanghai, China). PCR amplicons pooled from 
the triplicate reactions were purified using a QIAquick PCR 
purification kit (Qiagen, Shenzhen, China) and quantified 
using a NanoDrop ND-1000 spectrophotometer (Thermo 
Scientific, Waltham, MA, USA). The amplicons from all 
samples were combined in equal mass. According to the 
Illumina MiSeq reagent kit preparation guide (Illumina, 
San Diego, CA, USA), the purified mixture was diluted 
and denatured to obtain the 8 pmol l−1 amplicon library and 
mixed with an equal volume of 8 pmol l−1 PhiX (Illumina). 
Finally, 600 μL of the mixture amplicons was loaded with 
read-1 and read-2, and the index sequencing primers and 
paired-end sequencing (each 250 bp) were completed on the 
Illumina MiSeq platform.

Statistical analysis

The quality control and OTU assignment from Quantita-
tive Insights Into Microb Ecol (QIIME) might be outdated, 
but still reliable and valid, while some studies found that 
different bioinformatics pipelines (for example, QIIME 
vs QIIME2) compared in the microbiome were capable 
of discriminating samples by treatment, leading to similar 
biological conclusions (Allal et al. 2017; Moossavi et al. 
2020). In our study, QIIME 1.9.0-dev pipeline was used to 
process the gene sequencing data (Caporaso et al. 2010a, 
b). In brief, reads which were less than length 200 bp and 
ambiguous bases were discarded. The sequences were then 
binned into operational taxonomic units (OTUs) based 
on 97% similarity by using UCLUST (Edgar 2010). Then 
chimeric sequences were identified and removed by using 
UCHIME (Edgar et al. 2011). The most highly connected 
sequence (i.e., the sequence with the highest similarity to 
all other sequences in the cluster) was chosen to represent 
each OTU. The representative OTU sequences were aligned 
by the PyNAST tool (Caporaso et al. 2010a, b). Taxonomy 
was assigned to bacterial phylotypes against the SILVA 
database (https://​www.​arb-​silva.​de/). Volcano plots were 
generated using two-sided t-tests to follow genera changes 
in response to the biochar amendment. Principal coordinate 
analysis (PCoA) was conducted using the “capscale” func-
tion. Shannon diversity was calculated using the “diversity” 
function from the Vegan package (Dixon 2003). Partial Man-
tel tests were also conducted to explore the effects of soil 
properties on the active bacterial community composition 
in R (vegan package). Phylogenetic trees were displayed 
using the “plot_tree” function from the PhyloSeq package 
(McMurdie and Holmes 2013). A heatmap was drawn by 
using the function “heatmap.2” in the R package “gplots.” 
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All analyses were performed by using SPSS19.0 (SPSS Inc. 
Chicago, IL, USA).

Results

Soil physicochemical properties and CO2 efflux

At the completion of the experiment (37 days after sowing), 
we found that biochar amendment significantly increased 
soil pH soil–water slurry (1:5, w/v) from 4.53 to 6.17, 
ROC from 10.69 to 25.77 g·kg−1, and TOC from 14.32 to 
29.94 mg·kg−1; in contrast, other properties (e.g., DOC, 
DON, LOC, IOC, and root biomass) had no significant dif-
ferences between the soils with or without biochar amend-
ment (Table S1).

Biochar amendment significantly decreased the incorpo-
ration of 13C into the soil (by 58.50%), compared to the non-
amended treatment (Fig. 1a) (p < 0.05). However, there were 
no statistical differences in the root/rhizodeposit-derived 
CO2 efflux or SOC-derived CO2 efflux (Fig. 1c).

Biochar amendment shifts the rhizodeposit‑utilizing 
bacterial community

The diversity indices (richness and Shannon) of bacteria 
that utilize 13C-rhizodeposits remained unchanged between 
biochar-amended soil and the control (Fig. 2a). We observed 
a wide range of bacteria actively utilizing 13C-rhizodepos-
its (Fig. 2b). Biochar amendment had effect on the active 
bacterial communities utilizing rhizodeposits (p < 0.05) 
(Table S3). Actinobacteria abundance was enhanced by 
biochar (p < 0.05) (Fig. S4b). Proteobacteria dominated 

the microbial communities that utilize maize rhizodeposits 
with 39.64% of the communities accounted for in biochar-
amended soils and 46.51% in the control (Fig. 2b; Fig. S4a). 
Firmicutes, Acidobacteria, Planctomycetes, and Bacteroi-
detes also participated in rhizodeposit utilization, but with 
a lesser abundance.

The most common genera utilizing 13C-rhizodeposits 
were the genus affiliated to Burkholderiaceae, Massilia, and 
Bacillus (Fig. 2c). Biochar amendment resulted in the upreg-
ulation of 45 genera that utilized 13C-rhizodeposits com-
pared to the control (Fig. 3a). The genera with the greatest 
alteration (log2 FC ≥ 1, p < 0.05) were classified into Actino-
bacteria and Proteobacteria. Among these upregulated gen-
era, members of Actinobacteria had high relative abundance 
in the biochar-amended soil, and included genera affiliated 
to Micrococcaceae, Oryzihumus, Nocardioides, and Methy-
lophilus (Fig. 3b).

Correlation between soil properties, the bacterial 
community, and SOC mineralization

Bacterial communities in soil with biochar amendment were 
distinguished from the non-amended soil (Table S2). The 
largest source of variation (PCoA1) explained 61.96% of the 
variation in the soil’s active bacterial community, and the 
Mantel test showed a positive correlation between soil pH 
(r = 0.89, p < 0.05), TOC (r = 0.54, p < 0.05), ROC (r = 0.58, 
p < 0.05), and the active bacterial communities (Fig. S5a). 
Most of the upregulated genera were strongly and positively 
correlated with soil pH, TOC, and ROC (Fig. 3c).

In addition, we found that most upregulated genera 
showed a positive correlation with the mineralization of 

Fig. 1   13C content remaining in the loamy clay soil (a), rhizodeposit-derived CO2 (b), and SOC-derived CO2 (c). Error bars represent standard 
errors for four replicates
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SOC, indicating the potential role of these genera in SOC 
mineralization (Fig. 3d).

Discussion

Changes in the rhizosphere bacterial community 
following biochar amendment

We investigated the bacterial community changes in biochar-
amended soil using RNA-SIP, which revealed the micro-
organisms that were activated by rhizodeposits (Fig. 2). 
Although numerous studies have investigated the changes 
in the relative abundance of individual phylum using high-
throughput sequencing in biochar-treated soils, the gener-
alizations and consistent conclusions are far from being 
reached as the responses are a result of a wide range of fac-
tors, including the alteration of soil properties following bio-
char amendment, application rates, experimental conditions, 
and study duration (Lehmann et al. 2011; Luo et al. 2013; 

Whitman et al. 2016, 2021; Blanco-Canqui 2017; Campos 
et al. 2020). Considering (i) the large variation of biochar 
properties and (ii) overwhelmed effect by pre-biochar soil 
properties over biochar itself, the responders to biochar 
addition at either the phylum level or the genus level are 
not consistent across studies (Woolet and Whitman 2020). 
However, most studies found a positive response of the phy-
lum Actinobacteria to biochar addition (Dai et al. 2017; Yu 
et al. 2018). Here, we found phylum Actinobacteria were the 
dominant taxa that utilized maize rhizodeposits in biochar-
amended soil (Fig. 2; Fig. S4b). Previous studies that used 
PLFA found that biochar promotes the abundance of Act-
inobacteria relative to fungi and other bacteria (Chen et al. 
2021), while sequencing analysis also revealed an increase in 
the abundance of phylum Actinobacteria in biochar-treated 
soils (Khodadad et al. 2011).

By adopting RNA-SIP and differential expression analy-
sis, this study provided a much higher resolution to reveal 
the detailed taxonomic information of responders (genera 
utilizing rhizodeposits) to biochar (Fig. 3a). However, the 

Fig. 2   The diversity (a), composition (b), and top 30 genera (c) of bacterial communities utilizing rhizodeposits in the biochar-amended and 
non-amended in the loamy clay soils
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14-day continuous labeling and RNA-SIP have the potential 
to show cross-feeding of label from primary consumers to 
other soil microbes, resulting in the overestimation of label 
incorporation in RNA. Therefore, we discuss the more sali-
ent results below and compare the results with the previous 
literatures. As shown by the upregulated genera in biochar-
amended soil, Actinobacteria (e.g., genus affiliated to family 
Micrococcaceae, Nocardioides, Janibacter, Corynebacte-
riaceae, Terrabacter) and Alphaproteobacteria (e.g., genus 
Caulobacter, Qipengyuania) were the main active microor-
ganisms that utilized the rhizodeposits (Fig. 3a). The most 
heavily labeled genus was affiliated with Micrococcaceae, 
which was reported to be distributed in the rhizosphere 
of biochar-amended soil (Kolton et al. 2017). These two 
phyla (i.e., Actinobacteria and Proteobacteria) have also 
been previously identified in the post-fire soils (Cobo-Díaz 
et al. 2015; Mikita-Barbato et al. 2015). The changes in soil 
physical structure and increased abundance of recalcitrant 
components in pyrolyzed organic matter controlled the bac-
terial community assemblage of post-fire soils (Luo et al. 
2016). Previous studies have widely reported changes in soil 
physicochemical properties (e.g., labile C and mineral nutri-
ents, soil pH) following biochar amendment that influenced 
the growth, activity, distribution, and composition of the 
microbial community (Lehmann et al. 2011; Dai et al. 2021). 
By correlation analysis, the shift in the microbiome can be 
attributed to the difference in microbial adaptation ability to 
biochar itself (e.g., pore size and surface area) and changes 
in soil properties such as soil pH and chemical structure, 
e.g., aromatic components (Fig. 3c).

Drivers that shape the rhizosphere bacterial 
community

Biochar can have a vast range of properties that can alter a 
range of chemical and physical conditions (e.g., soil bulk 
density, porosity, pH, C and N availability) in soil (Bolan 
et al. 2021). These changed physicochemical properties may 
influence a range of biological interactions. We provide data 
on changes to available N and C substrates, as well as pro-
viding physical niches for colonization (Fig. S2; Table S1). 
The physical structure (e.g., surface area and porosity) of 
biochar was reported to be a determinant in shaping soil 
microbial community (Jaafar et al. 2015). Actinobacteria 
are particularly adapted to biochar structures, as they have 
a mycelium-like network. A previous study provides direct 
evidence that biochar was surrounded by a hyphal network 
of Actinobacteria (Luo et al. 2013), which are further identi-
fied (using PLFA-SIP) as the main microorganism in bio-
char-amended soil (Luo et al. 2018b).

The biochar-mediated increase of pH in soil from 4.53 
to 6.17 (Table S1) may improve the viability of Actino-
bacteria and enhance their ability to compete with fungi. 

The optimal pH for Actinobacteria growth has been shown 
to range between 6.0 and 9.0 (Gohain et al. 2020), and 
increased pH enhances the bacteria to fungi ratio (Bååth 
and Anderson 2003). We found a significant positive cor-
relation between upregulated genera of Actinobacteria and 
soil pH (Fig. 3c). For instance, new species of Nocardia 
pseudosphaeroides (phylum Actinobacteria) from highly 
saline and alkaline habitats account for more than 30% of 
the total number of published new species of Nocardia (He 
et al. 2007; Ding et al. 2010; Tian et al. 2013). This makes 
the natural environs a hotspot for the discovery of Nocar-
dia pseudonose. As a response to increasing pH, we found 
a concomitant decrease in Acidobacteria which is consist-
ent with other studies (Jenkins et al. 2017). Acidobacteria 
are usually acidophilic (Mao et al. 2012) and therefore less 
likely to compete in the more neutral soil pH environment 
following biochar addition. Biochar was found to adjust the 
competition and interactions between microbial groups via 
shifting soil pH (Luo et al. 2018a; Chen et al. 2019).

The upregulated genera following biochar amendment 
might be due to their affinity towards recalcitrant organic 
C (e.g., aromatic components) (Fabbri et al. 2010; Kolton 
et al. 2017). We found that the significantly upregulated 
genera show a positive correlation with ROC (Fig. 3c). 
Biochar favored the growth of some oligotrophs (e.g., 
genera belonging to Actinobacteria and Alphaproteobac-
teria) in the rhizosphere (Fig. 2). The genera affiliated 
with Micrococcaceae have been previously identified as 
fire-responders (Woolet and Whitman 2020; You et al. 
2021). The post-fire soil contained increased quantities 
of phenolic compounds, which shaped the oligotrophs 
(Ling et al. 2021). These upregulated members of Act-
inobacteria (e.g., genus affiliated to family Micrococ-
caceae, Nocardioides, Janibacter, Corynebacteriaceae, 
Terrabacter) and Alphaproteobacteria (e.g., Caulobac-
ter, Qipengyuania) were known to be oligotrophs (Mal-
lory et al. 1977; Entcheva-Dimitrov and Spormann 2004; 
Khessairi et al. 2014; Huang and Shen 2016; Gao et al. 
2019), which are better adapted to conditions where C 
and nutrient resources are limited, with a role therefore 
in the degradation of recalcitrant compounds. Biochar is 
considered to increase C and nutrients due to a small frac-
tion of easily mineralizable C and nutrients. However, the 
labile C component of biochar is likely to be small when 
compared to inputs of rhizodeposits (Weng et al. 2020). 
Instead, the availability of DOC and nutrients might be 
lowered due to the absorption of these resources onto 
biochar (Bolan et al. 2021). Li et al. (2019) suggested 
that recalcitrant components are the main driver of the 
microbial community in biochar-amended soil, which 
was consistent with our study (Table S1, Fig. S5, and 
Fig. 3c). Taken together, a possible explanation for the 
significantly upregulated genera in the biochar-amended 
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soil could be the adaption of these oligotrophs to changes 
in soil structure, pH, and particularly the affinity to aro-
matic components, which possibly further degrade more 
recalcitrant components from SOC.

Potential SOC decomposers in the biochar‑plant‑soil 
system

Short-term biochar-induced increase of SOC mineralization 
was both abiotically and biotically mediated. Physicochemi-
cal properties such as pH have some direct effects on SOC 
mineralization. For example, Wei et al. (2021) observed that 
a colloidal mobility was depressed in acidic environments, 
where SOM was stabilized by Al3+ in the absence of Ca2+. 
However, the transitory and large increase in SOC miner-
alization caused by biochar is mainly attributed to micro-
organisms activated by abiotic properties in our study. The 
enhanced taxa activated by rhizodeposits might utilize other 
C sources, e.g., SOC. Indeed, we found larger short-term 
SOC mineralization in biochar-amended than non-amended 
soil (Fig. 1c) which may be caused by the upregulation of 
some genera (Fig. 3a). Most of these dominant upregulated 
genera are correlated with SOC mineralization (Fig. 3d), 
including genera affiliated to Micrococcaceae and other 
oligotrophs such as the genera Oryzihumus, Caulobacter, 
Qipengyuania, and Dongia (Fig. 3b, d). Most of these gen-
era that correlated with SOC decomposition belonged to the 
phylum Actinobacteria and Proteobacteria, which have been 
found in soil after wildfire (Woolet and Whitman 2020). 
Importantly, the abundance of Actinobacteria was associ-
ated with the degradation of SOC mostly from recalcitrant 
compounds (Blagodatskaya and Kuzyakov 2008). Positive 
interactions between dominant oligotrophs, e.g., Actinobac-
teria, and recalcitrant components, such as phenol-like sub-
stances, have been shown (Ling et al. 2021). The increased 
abundance of these upregulated genera might be due to their 
affinity and ability to degrade the aromatic components 
brought by biochar to soils, which in turn cause decompo-
sition of SOC via the production of extracellular enzymes 
(Goodfellow and Williams 1983; Bao et al. 2021).

Microbial communities are generally considered to affect 
soil C stabilization in two ways: (1) they incorporate external 
C into their cellular biomass production, which may subse-
quently be stabilized by mineral associations, and (2) they 
supply enzymes that catalyze the decomposition of plant-
derived and native soil C (Kögel-Knabner 2002; Malik et al. 

2020). Different microbial groups with metabolic strategies 
likely influence these two pathways of C substrates. In our 
study, the co-metabolism stimulated in the biochar-amended 
soil caused both increased efflux of CO2 originating from 
rhizodeposits (Fig. 1b) and native SOC (Fig. 1c). This indi-
cates these upregulated microbial genera mainly invested 
in enzyme production to increase the decomposition of C 
substrates, thus causing greater CO2 emissions and lower 
13C incorporation in soil.

Specifically, the genus Nocardioides enriched in biochar-
amended soil was identified as a putative degrader of recal-
citrant components, including triazine herbicides (Topp et al. 
2000) and crude oil (Schippers et al. 2005). Nocardiopsis can 
secrete cellulolytic enzymes to degrade carboxymethyl and 
microcrystalline cellulose (Saratale and Oh 2011). A vari-
ety of enzymes that can degrade starch, protein, cellulose, 
and xylan have been isolated from Nocardia pseudobacteria, 
showing their potential in the mineralization of organic mat-
ter in the soil. These extracellular enzymes including endo-
glucanases, exoglucanases, xylanase, and glucoamylase are 
highly involved in metabolisms of alkanes and phenanthrene, 
the benzene ring within straw and polycyclic aromatic hydro-
carbon, and thus possibly drive decomposition of recalcitrant 
components of SOC via co-metabolism. It was reported that 
activated microorganisms following the addition of organic 
substances can accelerate SOC mineralization via co-metab-
olism (Fontaine et al. 2003). For instance, Johnson-Rollings 
et al. (2014) detected increases in the abundance of Nocardi-
opsis and associated chitinase of glycoside hydrolase family 
18 (GH18) from soil extracts, and confirmed this enzyme is 
responsible for the degradation of chitin in the soil. Addition-
ally, members of Micrococcaceae, being well known for high 
cellulolytic activity, are the primary decomposer of organic 
material (España et al. 2011). Other genera within the phy-
lum Actinobacteria, such as Oryzihumus, were the dominant 
microorganism in the biochar-amended soil, but little informa-
tion exists about their ecological role in SOC decomposition 
(Wang et al. 2020). The α-Proteobacteria may also produce 
SOC-degrading enzymes, enabling their growth by utilizing 
nutrients from the soil. For instance, the genus Caulobacter 
(Alphaproteobacteria), considered as facultative oligotrophs, 
is presumed to be responsible for considerable mineralization 
of organic matter through the production of cellulases, includ-
ing endoglucanases and β-glucosidases (Song et al. 2013).

Taken together, amendment of swine manure biochar in soil 
stimulated the growth of oligotrophs (e.g., Actinobacteria and 
Alphaproteobacteria) by increasing pH (Fig. 3c), which accel-
erated SOC mineralization and offset C sequestration potential 
by biochar incorporation. To our knowledge, this is the first 
experimental evidence from the use of RNA-SIP to confirm 
the role of Actinobacteria in SOC mineralization in a biochar-
plant-soil system. Here, we highlight the significance of oli-
gotrophs, particularly Actinobacteria, in the biochar-amended 

Fig. 3   The volcano plot represents the filtering threshold for the t-test 
for differential expression analysis of genera utilizing rhizodeposits 
between non-amended treatment and biochar-amended treatment (a). 
The relative abundance of upregulated genera by biochar (b) and the 
Pearson correlation between these genera and environmental factors 
(c) and SOC-derived CO2 (d)

◂
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soil and their potential role in SOC mineralization. This study 
demonstrates the value of RNA-SIP in providing targeted 
insights for coupling metabolic activity (i.e., decomposition 
of rhizodeposits) to phylogeny. However, to further investigate 
the physiological characteristic of active microorganisms, a 
combination of RNA-SIP with metatranscriptomic sequenc-
ing should be provided to get information on the metabolic 
potential produced by active taxa.

Conclusion

Combination of continuous 13CO2 labelling and RNA-SIP was 
used to detect the core rhizosphere microorganisms involved in 
soil C processes following swine manure biochar amendment 
to maize-planted soil. Here, we showed that (i) rhizosphere 
bacterial communities were dominated by Actinobacteria and 
Alphaproteobacteria in the biochar-amended soil, most likely 
due to the removal of soil acidity and the increased content 
of recalcitrant organic C and (ii) majority of these upregu-
lated genera (e.g., genus affiliated to Micrococcaceae, Oryzi-
humus, Caulobacter) by biochar were found to be positively 
correlated with SOC-derived CO2, indicating the significance 
of these genera in C mineralization in biochar-amended soil. 
This study highlights the core rhizosphere-associated bacterial 
communities that function in SOC mineralization in the bio-
char-amended soil–plant system. Considering the short period 
in this study, further research should focus on the long-term 
effects of biochar on the temporal dynamics of the microbial 
communities and the expression of C-related genes during 
plant growth.
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