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Abstract
Biological nitrification inhibitors (BNIs) are released from plant roots as exudates to repress nitrifier activity in agricultural 
soils, and this can improve nitrogen (N) recovery from fertilizer and enhance the N-use-efficiency (NUE). This review sum-
marizes the current understanding of the regulatory mechanisms of BNIs release from roots of plants, such as Brachiaria 
humidicola (pasture grasses), Sorghum bicolor (hybrid sorghum) and Oryza sativa (paddy rice). BNIs can be categorized 
as hydrophilic- and hydrophobic-BNIs. Root systems can rapidly release hydrophilic-BNIs when NH4

+ is present in rhizos-
phere in combination with low pH, which is associated with the activation of plasma membrane H+-ATPase. Since plasma 
membrane H+-ATPase is responsible for the establishment of membrane potential and generation of proton motive force 
for the secondary transport of various substances. The BNIs release may probably occur through the voltage-gated anion 
channels by the membrane potential variation or via secondary transporters, most likely MATE transporters, powered by 
the proton motive force. In addition, ATP-binding cassette (ABC) transporters may be also involved in the active efflux of 
hydrophilic-BNIs. On the contrary, the release of the hydrophobic BNIs, such as sorgoleone, from plant roots may be medi-
ated by the vesicle traffic process and/or exocytosis. In addition, the possible effects of various environmental factors on 
the BNIs release in soils have been discussed. Future research should focus on the identification of the corresponding BNIs 
transporters in plants, and this may be helpful for the application of BNI crops in the agricultural practice via breeding and 
genetic modification.
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Introduction

The ammonium form (NH4
+-N) of N fertilizers are easily 

transformed to the nitrate form (NO3
−-N) due to the nitri-

fication process in aerobic soils (Daims et al. 2015). But 
unlike NH4

+, anionic NO3
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charged soil particles and thus is very mobile in soil. There-
fore, NO3

− in soil can be leached into water system and cause 
environmental pollution like water eutrophication, whereas 
denitrification produces various gaseous N forms (e.g., N2O, 
NO, and N2), among which, N2O is one of the greenhouse 
gases responsible for the global warming (Meinshausen et al. 
2009). Both of nitrification and denitrification result in the 
reduction of NUE in agricultural systems (Gooding et al. 
2012; Fowler et al. 2013; Subbarao et al. 2012). Thus, keep-
ing soil N as NH4

+ for an extended period may improve N 
recovery and maintain the ecosystem’s sustainability.

Application of synthetic nitrification inhibitors is one 
of the ongoing practices to control soil nitrification in 
agricultural soils. Nitrapyrin, 3,4-dimethylpyrazole phos-
phate (DMPP), and dicyadiamide (DCD) are well-known 
commercial synthetic nitrification inhibitors (Slangen and 
Kerkhoff 1984; Zerulla et al. 2001). However, synthetic 
nitrification inhibitors are not widely used by farmers due 
to their relatively high cost, associated environmental 
safety issue, and additional labor costs (Lam et al. 2017). 
Various nitrification inhibitory substances have been 
detected in the rhizosphere of plants and are termed bio-
logical nitrification inhibitors (BNIs) being responsible for 
biological nitrification inhibition (Subbarao et al. 2009, 
2015, 2017). The presence and function of BNIs have been 
demonstrated in Sorghum bicolor (sorghum) (Zakir et al. 
2008), Brachiaria humidicola (pasture grasses) (Subbarao 
et al. 2009), Oryza sativa (rice) (Sun et al. 2016), Triti-
cum aestivum (wheat) (O’Sullivan et al. 2016), and Ley-
mus racemosus (a wild relative of wheat) (Subbarao et al. 
2007c). BNIs released from roots of these plant species 
can reduce the abundance of ammonium oxidation bacteria 
and archaea in soil (Nardi et al. 2013, 2020; Lu et al. 2018) 
and/or inhibit the ammonium oxidation activity of Nitroso-
monas europaea in situ (Zakir et al. 2008; Sun et al. 2016; 
Subbarao et  al. 2006a, b). Brachialactone secreted by 
roots of Brachiaria humidicola, a tropical pasture grass, 
can inhibit AMO (ammonia monooxygenase) and HAO 
(hydroxyl amino oxidoreductase) enzymes (Subbarao et al. 
2009). Methyl 3-(4-hydroxyphenyl) propionate (MHPP) 
secreted by sorghum roots inhibits AMO pathway (Zakir 
et al. 2008; Subbarao et al. 2007a, 2013). Sorgoleone and 
sakuranetin are also secreted by sorghum roots, and inhibit 
the AMO and HAO, but sakuranetin did not show effective 
BNI function in soil assay (Alsaadawi et al. 1986; Sub-
barao et al. 2013). The recent research confirmed that 1, 
9-decanediol from rice had a significant inhibitory effect 
on nitrification in alkaline tidal soil, neutral paddy soil, 
and acid red soil (Lu et al. 2018).

Interestingly, some BNIs also exhibited other func-
tions besides inhibiting nitrification in soil. MHPP from 
sorghum roots could modify root system architecture by 
inhibiting primary root elongation and improving lateral 

root growth in Arabidopsis thaliana, and this may increase 
the total roots volume for the uptake of mineral nutrients 
in soil (Liu et al. 2016). Sakuranetin was found to act as 
flavanone phytoalexin against plant pathogen in rice leaves 
(Kodama et al. 1992). In addition, sorgoleone can func-
tion as a herbicide because it can inhibit photosynthesis of 
competitor plants by binding to the D1 protein and disturb 
mitochondrial electron transport, root H+-ATPase activity, 
and water uptake (Dayan et al. 2010).

Hydrophilic and hydrophobic BNIs

As root exudates, BNIs are synthesized and secreted by 
plant roots in the rhizosphere (Bais et al. 2001; Walker 
et al. 2003), and thus, they can modify the soil microbial 
community (Nardi et al. 2013, 2020). Usually, they are low 
molecular weight compounds, such as phenolics or other 
secondary metabolites. The BNIs are in general divided 
into two different categories. One is water soluble, here-
after referred as hydrophilic-BNIs, such as MHPP (Zakir 
et al. 2008). The other category is soluble in acidified-
DCM (dichloromethane), hereafter referred as hydro-
phobic-BNIs, which could be obtained by washing roots 
with acidified-DCM (Subbarao et al. 2013). Due to their 
differential solubility in water, it is expected that hydro-
phobic BNIs may remain close to the root as they could 
be strongly adsorbed by soil particles within the rhizos-
phere (Subbarao et al. 2012). In contrast, the hydrophilic-
BNIs may move farther away from the point of release 
due to their solubility in water, and this may amplify their 
capacity to control nitrification beyond the rhizosphere. 
Sorgoleone, a benzoquinone is a major component of the 
root-DCM wash and accounts for 80% of the hydrophobic-
BNIs activity in sorghum roots (Subbarao et al. 2013). In 
contrast, sakuranetin, a flavanone, and MHPP, a phenyl-
propanoid, are hydrophilic, and both are released from sor-
ghum roots (Zakir et al. 2008). In addition, brachialactone 
and its isomers and derivatives, belonging to the cyclic 
diterpenes, released by Brachiaria humidicola (Subbarao 
et al. 2009; Egenolf et al. 2020), and 1,9-decanediol, a 
fatty alcohol, released by paddy rice (Sun et al. 2016), are 
also hydrophilic-BNIs. The BNIs identified from plant root 
exudates are listed in Table 1.

Processes of BNIs release from roots

For a long time, secretion of compounds from plant roots 
was primarily thought to be a passive process of diffusion 
across the plasma membrane, because small uncharged 
low molecular weight compounds were thought to pass 
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Table 1   Biological nitrification 
inhibitors released from plant 
roots

Crop species BNIs name Molecular weight References

Sorghum biocolor sorgoleone 358.0 g/mol Dayan et al. (2010)

Subbarao et al. (2013)

sakuranetin 286.3 g/mol Subbarao et al. (2013)

Methyl 3-(4-

hydroxyphenyl) 

propionate

180.0 g/mol Zakir et al.  (2008)

Brachiarai humidicola Brachialactone 335.0 g/mol Subbarao et al. (2009)

3-epi-

brachialactone

335.0 g/mol Egenolf et al. (2020)

3,18-epoxy-9-

hydroxy-4,7-

seco-

brachialactone

333.0 g/mol Egenolf et al. (2020)

Oryza sativa 1.9-decanediol 174.3 g/mol Zhang et al. (2019)
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through the lipid membranes freely (Guern et al. 1987). 
It is well-known that passive diffusion process depends 
on membrane permeability and concentration gradient of 
exudates between the cytoplasm and apoplast (Marschner 
2012). In addition, many diffusion processes have been 
indicated to be mediated by aquaporins (aquaglyceropor-
ins), which are integral membrane proteins that facilitate 
the transport of water and many other neutral molecules, 
such as glycerol, ammonia, and urea across cell membrane 
(Assmann and Haubrick 1996). However, most root exu-
dates are electrically charged molecules or polarized ions 
(Bertin et al. 2003), and thus, simple diffusion across the 
plasma membrane bilayer cannot occur due to their low 
solubility in the lipid membrane. In some cases, the release 
of root exudates does not depend on its concentration in 
the root cells (Zhang et al. 2004; Zhu et al. 2005), sug-
gesting that root exudation could be a tightly regulated 
process rather than simple diffusion (Pariasca-Tanaka et al. 
2010). Further, some BNIs, such as sorgoleone, might be 
toxic alleochemicals, which cannot freely exist in the cyto-
plasm, but need to be sequestered in subcellular vesicles 
and released by exocytosis (Czarnota et al. 2003). There-
fore, the release of BNIs from roots into the rhizosphere 
should be facilitated by membrane transport systems such 
as channels, pumps, carriers, and exocytosis. So far, the 
transporter of BNIs has not been identified by molecular 
and genetic evidence.

Involvement of plasma membrane 
H+‑ATPase in the release of hydrophilic‑BNIs 
under NH4

+ nutrition

However, the recent two decades of research on BNIs pro-
vides us many clues to find possible transporter of BNIs. 
It has been suggested that NH4

+ might act as a signal to 
trigger the release of BNIs (Subbarao et al. 2007b). Indeed 
the presence of NH4

+ but not of NO3
− in root medium could 

induce BNIs release from roots of various plants, such as 
Brachiaria humidicola (Subbarao et al. 2009), sorghum 
(Zakir et al. 2008; Subbarao et al. 2007b, c), wheat (Sub-
barao et al. 2007c), and rice (Zhang et al. 2019). NH4

+ 
uptake in plant roots is coupled with H+ release and acidi-
fication of the rhizosphere, whereas NO3

− cotransport with 
H+ across the plasma membrane results in the increase of 
rhizosphere pH (Marschner 2012). Moreover, NH4

+ nutri-
tion causes a stronger depolarization of plasma membrane 
as compared with NO3

− nutrition (Schubert and Yan 1997). 
We found that the plasma membrane H+-ATPase activity 
is induced by NH4

+ nutrition, which is associated with 
the acidification of rhizosphere (Zhu et al. 2009). Plasma 
membrane H+-ATPase is a universal electrogenic H+ pump, 

which generates H+ electrochemical gradient to provide 
driving force for the secondary influx or efflux of ions and 
metabolites across the plasma membrane (Palmgren 2001). 
In this way, it could facilitate the transport of hydrophilic-
BNIs being putative anionic substances across the plasma 
membrane. In addition, the metabolism of NH4

+ is coupled 
with H+ generation in the cytoplasm (Lewis et al. 1982; 
Marschner 2012), and thus, the enhanced activity of plasma 
membrane H+-ATPase can pump the excessive H+ out of the 
cell to maintain intracellular pH homeostasis (Schubert and 
Yan 1997; Zhang et al. 2021). At the same time, the released 
H+ could also be used as counterions for BNIs release.

It has been hypothesized that BNIs release is linked to 
the plasma membrane H+-ATPase activity by considering 
that pharmacological agents can stimulate (fusicoccin) or 
suppress (vanadate) plasma membrane H+-ATPase activities 
and this can affect the releases of BNIs from sorghum roots 
without NH4

+ (under the treatment of fusicoccin) or with 
NH4

+ (under the treatment of vanadate) (Zhu et al. 2012). 
This hypothesis was supported by the recent finding that H+ 
release and hydrophilic-BNIs release are stoichiometrically 
linked under various conditions, e.g., different rhizosphere 
pH, and a range of NH4

+ concentrations in root medium (Di 
et al. 2018). Low rhizosphere pH caused by the uptake of 
cations, such as NH4

+ or even K+, could trigger the activity 
of plasma membrane H+-ATPase. Recently, it was reported 
that 3-eip-brachialactone, one kind of BNIs from Brachi-
aria humidicola roots, is released via secondary transport 
depending on plasma membrane H+-ATPase generated pro-
ton motive force (Egenolf et al. 2021).

Further, the effect of methyl-ammonium, a non-metaboliz-
able analogue of NH4

+, was used to investigate whether NH4
+ 

assimilation is also responsible for the stimulation of BNIs 
release under NH4

+ nutrition. There was no significant effect 
of methyl-ammonium on plasma membrane H+-ATPase 
activity and BNIs release, suggesting the stimulatory effect 
of NH4

+ on hydrophilic-BNIs release is functionally linked 
with NH4

+ assimilation (Zeng et al. 2016). Apart from NH4
+ 

uptake, NH4
+ assimilation in root cells is also a critical fac-

tor to induce hydrophilic-BNIs release by triggering plasma 
membrane H+-ATPase activity to pump out excessive H+ 
generated by ammonium assimilation and avoid cytosolic 
acidosis (Zeng et al. 2016). This is also true that transcrip-
tional and post-translational regulation of plasma membrane 
H+-ATPases was found to be involved in the stimulation of 
BNIs release under NH4

+ nutrition (Zeng et al. 2016; Afzal 
et al. 2020). At least five plasma membrane H+-ATPase 
genes responded to NH4

+ with a similar expression pattern 
(Zeng et al. 2016). Thus, the activation of plasma membrane 
H+-ATPase under NH4

+ nutrition is at least partly due to 
transcriptional regulation of H+-ATPase genes. Recently, we 
found that NH4

+ and low rhizosphere pH (pH 3.0) brought 
activation of plasma membrane H+-ATPase, based not only 
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on transcriptional regulatory level that resulted in higher 
steady-state protein concentration of this enzyme, but also 
on the strongly up-regulated phosphorylation level of plasma 
membrane H+-ATPase, which further boosted up the H+ 
pumping activity that ultimately facilitated hydrophilic-BNIs 
release (Afzal et al. 2020) (Fig. 1).

Because hydrophilic-BNIs are putative anionic sub-
stances (Subbarao et al. 2006b; 2007a), and most of the 
membrane anchored anion channels are voltage gated and 
depend on membrane potential (Tyerman 1992), the release 
of the most of hydrophilic-BNIs may be mediated by the 
cooperation between corresponding anion channels and 
plasma membrane H+-ATPases that generate the electro-
chemical gradient (Fig. 1).

Transporters potentially involved 
in hydrophilic‑BNIs release

Because two commonly used anion channel blockers, 
anthracene-9-carboxylate and niflumic acid, could not 
inhibit (on the contrary, enhanced) the release of hydro-
philic-BNIs from roots of three sorghum genotypes (Di 
et al. 2018), and these two anion channel blockers cannot 

inhibit the plasma membrane H+-ATPase activity (Zhu 
et al. 2005), we hypothesized that hydrophilic-BNIs were 
also transported through other transporters besides anion 
channels, such as ATP-binding cassette (ABC) transporters, 
and the multi-drug and toxic compound extrusion (MATE) 
transporters. It is well-known that ABC transporters medi-
ate diverse cellular transport processes, such as the excre-
tion of potentially toxic compounds, lipid translocation, 
and flavonoids secretion (Balzi and Goffeau 1994; Higgins 
1995; Maathuis et al. 2003; Buer et al. 2007). ABC trans-
porters are widely distributed in plant species (Martinoia 
et al. 2002). The model plant Arabidopsis contains 129 
ABC transporter genes, seven of which spanning four sub-
families (MRP, PDR, ATH, and PGP) have been identified 
to participate in the secretion of phytochemicals from plant 
roots (Badri et al. 2008). More than one ABC transporters 
are involved in the secretion of a given phytochemical, and 
one ABC transporter can secrete more than one kind of 
secondary metabolites (Badri et al. 2008). Because BNIs 
release is totally suppressed in sorghum roots by vana-
date, an inhibitor also of ABC transporters in plants (Rea 
2007; Coskun et al. 2017), it is possible that BNIs could 
be released through one or more ABC transporters located 
in the plasma membrane of root cells (Fig. 1).

Fig. 1   Prospective pathways for BNIs transport in plant root cells. 
The uptake of NH4

+ acidifies rhizosphere and assimilation of NH4
+ in 

the cytoplasm of root cells produces H+, which in turn induces acti-
vation of plasma membrane H+-ATPase activity. The enhanced H+ 
gradient across the plasma membrane provides the driving force for 

hydrophilic-BNIs release through anion channels. If the anion chan-
nels were blocked, BNIs could also be possibly released by ABC 
transporters, while hydrophobic BNIs, such as sorgoleone, can be 
transported by vesicles and released out of cell via exocytosis

229Biology and Fertility of Soils (2022) 58:225–233
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Transporters belonging to the multi-drug and toxic com-
pound extrusion (MATE) family have been indicated to be 
responsible for citrate exudation under aluminum toxicity 
(Furukawa et al. 2007). The transportation of anions medi-
ated by MATE depends on the gradient of counter ion, 
which is usually H+ in plant cells (Shen et al. 2005; Doshi 
et al. 2017). In addition, citrate released from proteoid roots 
of white lupin is also related to the activity of plasma mem-
brane H+-ATPase (Yan et al. 2002; Zhu et al. 2005). The 
citrate efflux proteins in white lupin are characterized by 
electronic patch clamp (Zhang et al. 2004). Although the 
exact transporters involved in citrate release from proteoid 
roots of white lupin have not been identified, they were 
considered to be similar to MATE proteins (Zhang et al. 
2004). MATE proteins can also transport benzoxazinoids, 
artemisinin, juglone, phenolics, alkaloids, and flavonoids 
(Zhao and Dixon 2009). MHPP and sakuranetin, two BNIs 
identified from sorghum, are phenolic and flavonoid, respec-
tively (Subbarao et al. 2013). The BNIs release from sor-
ghum roots depends on the plasma membrane H+-ATPase 
(Zhu et al. 2012; Zeng et al. 2016). Taken together, MATE 
transporters may be also involved in BNIs release, although 
further studies are required to verify this hypothesis (Sivag-
uru et al. 2013; Doshi et al. 2017).

Release of hydrophobic‑BNIs

Unlike hydrophilic-BNIs, hydrophobic-BNIs release does 
not depend on rhizosphere pH in several sorghum varieties 
(Di et al. 2018). In addition, the relationship between the 
plasma membrane H+-ATPase activity and hydrophobic-
BNI activity is not correlated (Di et al. 2018). Since most 
of the hydrophobic-BNI activity is attributed to sorgoleone 
(Subbarao et al. 2013), the release of this compound seems 
independent of plasma membrane H+-ATPase generated pro-
ton motive force or membrane potential. In addition, due to 
the toxic property of sorgoleone, its excretion by roots might 
involve vesicular transport (Battey and Blackbourn 1993). 
Like many phenylpropane and flavonoids, sorgoleone may 
be synthesized on the surface of the endoplasmic reticu-
lum and secreted to the extracellular space through vesicles 
(Winkel-Shirly, 2001) (Fig. 1).

Environmental factors in soils affecting 
the BNIs release from plant roots

The physical, chemical, and biological properties of 
soils are tremendously heterogeneous and dynamic, and 
they strongly affect the activities of plants and microor-
ganisms. Therefore, the release of BNIs in soils should 

be influenced by various soil environmental factors. Soil 
fertility is one of the important factors that decide mor-
phological and physiological adaptations of plant roots. 
For the BNI plants, NH4

+ availability is a major factor to 
stimulate hydrophilic-BNIs release, although it is difficult 
to measure the released BNIs in situ. Our previous experi-
ments using split roots indicated that sorghum roots incu-
bated in the solution with NH4

+ caused stronger release of 
BNIs as compared with that incubated with nitrate (Zhu 
et al. 2012). In addition, the release rate of BNIs from sor-
ghum roots depended on NH4

+ concentration (Zakir et al. 
2008; Zeng et al. 2016). Further, the hydrophobic BNIs, 
such as sorgoleone, were also found positively correlated 
to exchangeable NH4

+ content in soil (Sarr et al. 2020). 
Therefore, it may be important that the release of BNIs 
was triggered at the root zones, where NH4

+ is available 
in soil. It is thus important for plants root to exudate BNIs 
to protect NH4

+ from nitrifiers directly in situ in order to 
utilize the N source in soil with high efficiency.

The soil pH also plays an important role in the BNIs 
release by roots. In general, NH4

+ uptake by roots causes 
strong acidification of rhizosphere (Marschner 2012; Zhu 
et al. 2009). Low pH increased the release of BNIs from 
roots of Brachiaria humidicola (Subbarao et al. 2007b), sor-
ghum (Zakir et al. 2008; Zhu et al. 2012), and rice (Zhang 
et al. 2019), while pH above 7 depressed the release rate 
of BNIs by Brachiaria humidicola or sorghum (Subbarao 
et al. 2007b; Zhu et al. 2012). It was found that the nitrifi-
cation inhibitory rate of Brachiaria humidicola root exu-
dates was higher in an Andosol soil with pH 5.9 than in a 
Combisol soil with pH 6.9 (Gopalakrishnan et al. 2009). 
Further, it was found that light soils such as Alfisols of the 
semi-arid tropics India or sandy loams of West Africa are 
better suited to develop acidic rhizosphere (pH < 6.0) for 
the BNI function of sorghum, when compared to Vertisols 
soil (pH > 7.5) (Subbarao et al. 2013). In acid red soils (pH 
4.26), the nitrification inhibition potential of the BNIs from 
rice root exudates was significantly stronger than that in 
neutral paddy soils (pH 6.25) or alkaline fluvo-aquic siols 
(pH 7.92) (Lu et al. 2018). These results indicated that the 
low soil pH enhanced the BNIs release and/or their activity. 
Since the suppression of nitrification in soil by BNIs can 
further improve NH4

+ availability for plant roots, which in 
turn leads to the higher acidification of rhizosphere due to 
the uptake of NH4

+, thus acting as a feedback loop for the 
efficient utilization of soil N.

The bulk density (BD) is an important soil property, 
which is an indicator of the amount of pore space in the soil 
(Dam et al. 2005). Bulk density can thus decide the difficulty 
of root penetration into the soil, and also the content of soil 
water, which can affect root growth and microbial activity. 
It is possible that bulk density is critical for the plant roots 
to release BNIs.
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The soil moisture influences not only the plant growth 
and microbial activity but also the movement of various sol-
uble substances in soil. Xeric moisture regimes are dry and 
may limit the movement of released BNIs from roots, which 
may cause the accumulation of BNIs in the rhizosphere and 
inhibit the root growth and subsequently the release capacity 
of BNIs. It has been documented that the sorgoleone content 
in soil is negatively correlated to the soil moisture (Sarr et al. 
2020). The growth of terrestrial plants is inhibited under 
hydric regimes. Therefore, the mesic moisture regimes 
should be optimal for root growth of terrestrial plants and 
the release of BNIs in soil.

Besides the above factors, the stability and mobility 
of BNIs in soil should be considered. Since BNIs are 
mainly low molecular weight organic compounds, they 
could be absorbed by surface reactive soil particles, and 
this can reduce BNIs efficiency. BNIs could also be used 
as C sources by various soil microorganisms. It is still 
not clear whether the released BNIs could be degraded 
by some specific microorganisms. BNIs from root exuda-
tion of Brachiaria humidicola showed nitrification inhibi-
tory ability after 60 days in Cambisol and Andosol soils 
(Gopalakrishnan et al. 2009). The nitrification inhibition 
in soils could last for 2.3 months by continuous release of 
sorgoleone from sorghum roots (Sarr et al. 2020). Thus, 
it seems that the most of BNIs in the soil are relatively 
stable and efficient. The duration of the nitrification inhi-
bition of various BNIs in soils is worth further evaluation 
in the future.

Conclusions and perspectives

Controlling nitrification is critical to improve N retention 
in the soil. BNIs are active where plant root systems deliver 
powerful BNIs at nitrifier sites, and BNI is one of the best 
strategies to develop N-efficient production systems. Plants 
with high BNI-capacity root systems can be produced by 
using modern breeding tools and approaches. In addition, 
BNI-producing plants such as Brachiaria pasture grasses can 
be incorporated into soils (e.g., as green manures) (Subbarao 
et al. 2012, 2015), and BNI-producing plants can be inter-
cropped or rotated with other crops to manage soil nitrifier 
activity to improve NUE of production systems (Karwat 
et al. 2017).
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