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Biochar decreased rhizodeposits stabilization via opposite effects
on bacteria and fungi: diminished fungi-promoted aggregation
and enhanced bacterial mineralization
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Abstract
Ryegrass was pulse-labeled with enriched 13CO2 for 18 h, followed by dynamic photosynthetic-carbon (

13C) quantification in the plant
(shoot, root), soil aggregates (three size classes), and microbial phospholipids fatty acids (PLFA-SIP) in soil amended with or without
700 °C-pyrolyzed biochar. We observed that biochar led to no difference of 13C allocation in shoot or root but reduced 88.7% of total
13C in soil, with decreased incorporation by 92.8% (macroaggregates), 94.5% (microaggregates), and 84.1% (silt-clays), respectively,
compared to biochar-unamended soil. Meanwhile, biochar exerted negative effects on fungal relative abundance but led to positive
impacts on that of bacteria, e.g., it reduced root-associated fungi (i.e., 16:1ω5c) and fungal-assimilated 13C (from averagely
71.2 ng C g−1 soil to 26.3 ng C g−1 soil after biochar application). The enhanced bacteria/fungi could be driven by biochar-
mediated pH increase that relieved acid stress to bacteria. Co-occurrence network confirmed that biochar addition favored bacteria
to compete with fungi, leading to decreased aggregation and stability (indicated by reduced normalized mean weight diameter) due to
less fungal entangling with aggregates, thus exposing the rhizodeposits to bacterial (i.e., actinomycetes) decomposition. The correlation
analysis further evidenced that fungal abundance was associated with 13C accumulation in soil aggregates, while bacterial relative
abundance especially that of actinomycetes was negatively correlated with 13C accumulation. Random forest modeling (RF) supported
the contributions of fungi to 13C-sequestration compared to bacteria. Taken together, we concluded that less stabilization of
rhizodeposits in the biochar-amended soil was due to changes in microbial community, particularly the balance of fungi-bacteria
and their interactions with soil physicochemical properties, i.e., aggregation and pH.

Zhiyi Chen and Amit Kumar contributed equally to this work.

Highlights
• Biochar gave no difference of photosynthetic-13C allocation in plant
shoot and root but reduced 13C into aggregates
• The relative abundance of bacteria increased owing to the reduced stress
by biochar shifted soil variables, like pH.

• Biochar suppressed root-associated fungi due to reducing root biomass
and rhizodeposits.

• Less 13C accumulation into aggregates by biochar might be due to the
decreased fungi abundance that diminished aggregation thus leaving
rhizodeposits unprotected by bacterial utilization.

• Biochar exerted opposite effect on fungal-bacteria growth and their interac-
tion within aggregates could determine rhizodeposit-C stabilization.
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Introduction

Rhizodeposits represent the labile source of carbon (C) and con-
tribute to the formation of soil organicmatter (SOM) (Pausch and
Kuzyakov 2018). Photosynthetic-C input into grassland under
long-term planting ranges from 0.11 to 3.04 t C ha−1 year−1

(Soussana et al. 2004). Within 4 weeks, up to 11% of the
photosynthetic-C of willows was found in SOM, demonstrating
a close link and great aboveground photosynthesis contributions
to belowground C storage (Neergaard et al. 2002). The quality
and quantity of rhizodeposits in soil depends on plant species
(Ladygina and Hedlund 2010) and phenology (Epron et al.
2011; Meng et al. 2013), agriculture practices (Luo et al. 2018),
soil properties such as aggregate size fractions (Fahey et al.
2013), and microbial community (Kaiser et al. 2015).

Rhizodeposits are easily available C and energy for soil
microorganisms. On an average, 0.54% of 13C was found in
microbial biomass C (MBC) immediately after 13CO2 pulse
labeling of flooded rice, and up to 0.41% of 13C remained in
MBC pools at the end of the growing season in the rhizosphere
(Lu et al. 2002). Considering the microbial process mediated
root-derived C sequestration, it is also essential to identify the
principal groups associated with roots and primary recipients of
root-derived organics (Jin et al. 2013). A study showed that the
13C incorporation into the microbial community was detected
in fungal PLFA biomarkers, ranging from 14.1 to 39.6% of
total 13C-PLFAs at different rates of nitrogen (N) application
(Ge et al. 2017). Rhizodeposits can be differently utilized by
microbial communities depending upon the traits of each mi-
crobial group on C and nutrient requirements (Malik et al.
2019; Peduruhewa et al. 2020), with consequences for
rhizodeposits stabilization and decomposition (Hartmann et al.
2009). Soil abiotic properties, such as pH, SOM content, and
physical structure, can affect the composition of soil microbial
community and consequent consumption of rhizodeposits. In
this regard, (i) combination of resources (e.g., C content) and
stress (e.g., low pH) were found to be the main contributors to
soil microbial community and subsequent C decomposition
(Malik et al. 2019); (ii) aggregation of different size classes
regulates C processes via harboring unique microbial commu-
nity composition and their functions (Caravaca et al. 2005;
Kumar et al. 2017), as well as determining the accessibility of
microbe to C sources. For instance, Brookes et al. (2017) re-
vealed that the spatial arrangement of the aggregate structure
affected the bio-accessibility of C to consumers, thus largely
regulated SOC content.

The fate of root-derived C in various aggregate size classes
has gained increasing attention recently (Fang et al. 2016; Zhang
et al. 2015), as the dynamics of aggregates elucidate

mechanisms involved in SOM formation, decomposition and
consequent storage (Six et al. 2002). Aggregate size classes
exert effects on the processes of both mineralization (Blaud
et al. 2012) and stabilization of organic matter (Qiao et al.
2014). According to the hierarchical order of aggregation, free
primary soil particles and silt-clays (< 0.02 mm) are cemented
together intomicroaggregates (< 0.25mm) by persistent binding
agents (i.e., metal-cation complexes or oxides). These stable
microaggregates in turn are bound with transient (plant or mi-
crobial derived polysaccharides) and temporary (roots and fun-
gal hyphae) agents. Furthermore, these intra-aggregates and
agents together exert a binding capacity on macroaggregate for-
mation (> 0.25mm) (Jastrow 1996; Tisdall andOades 1982). As
the hierarchical order and binding agents, microaggregate stabil-
ity is stronger and less vulnerable to soil management in contrast
with macroaggregates (Hassink et al. 1997). Therefore, longer
turnover time of new-fixed C was estimated in microaggregates
than in macroaggregates through more stable physicochemical
protections (Bailey et al. 2013; Fang et al. 2016). For example,
after 1.5 years of 13C-labeled wheat residues application, the
microaggregates still accounted for the highest amount (about
50%) of the plant-derived C (Angers et al. 1997).
Macroaggregate plays significant role in the early period since
receiving new C input into soil (Six et al. 2002). Therefore, it is
important to understand the spatial distribution of root-derived C
that entering into different aggregate size classes.

Biochar is widely applied in agro-ecosystem to sustain SOM
stocks (Sohi 2012; Luo et al. 2017b). Biochar benefiting C
sequestration is due to recalcitrant nature per se, and it can
persist in soil up to thousand years (Glaser et al. 2009; Singh
et al. 2012). Additionally, biochar could indirectly stabilize
non-biochar C, e.g., root-derived C, by enhancing the formation
of mineral-organic associations (Weng et al. 2017). Also, bio-
char was found to enhance decomposition of plant straw,
rhizodeposits and SOM through changing microbial communi-
ty composition (Maestrini et al. 2015; Luo et al. 2016).
Although several studies reported the processes and mecha-
nisms of rhizodeposits decomposition/stabilization via
biochar-induced changes in soil abiotic and biotic properties,
photosynthetic-C distribution within plant-soil-microbe contin-
uum, particularly rhizodeposits assimilation in microbial com-
munity and aggregates in biochar-amended soil is still limited
(Keith et al. 2015; Weng et al. 2017; Whitman et al. 2014).

Here, we performed 13CO2 pulse-labeling on ryegrass-soil
system that treated with 0% and 3% (by dry-soil weight) bio-
char, to quantify the allocation of photosynthetic-C in plants
(shoots, roots) and soil (three aggregate size fractions), during
the elongation stage at four sampling times (2, 5, 9, and
16 days after labeling). The study also aimed to investigate
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the composition of main microbial groups and their roles in
utilizing rhizodeposits by using PLFA-SIP technique, thus
fully assessing abiotic and microbial mechanisms underlying
plant-C sequestration in biochar incorporated soils. We hy-
pothesized that (i) the allocation of photosynthetic-C within
plant-soil-microbe pools varied due to changes of biochar in
soil properties; (ii) biochar amendment enhanced soil aggre-
gates stability, hence increased ryegrass-derived C retention in
macroaggregate; (iii) soil microbial community and their as-
similation of rhizodeposits differ due to biochar-induced
changes in soil abiotic variables, e.g., pH.

Materials and methods

Soil and materials

Top soil (0–20 cm) was sampled from a mulberry experimental
field, Zhejiang Province, China (30° 16′ N, 120° 11′ E). The
mean annual temperature is 16.2 °C with an annual rainfall
1500 mm. Soil was passed through a 2-mm sieve to remove
visible plant residues and stones. Soil pH was determined by
suspension in a 1:2.5 soil solution (0.01 M CaCl2). Total C and
N were measured by an analyzer with a built-in dry combustion
device (LECO, St. Joseph,MI, USA). The 13C abundance (δ13C)
was determined with an isotope ratio mass spectrometry
(DELTA V plus IRMS, Bremen, Germany). The soil was clas-
sified as sandy clay loam according to the US soil classification
(Soil Survey Staff 2014); it contained: sand 63.8%, silt 20.4%,
clay 15.4%. The initial δ13C value of the soil was −24.9‰ and
pH at 5.8. The soil contained 12.5 g kg−1 total C and 0.9 g kg−1

total N. Biochar was derived from swine manure feedstock as
described by Dai et al. (2014), pyrolyzed in a muffle furnace
(Yizhong Electricity Furnace Inc., Shanghai, China) under oxy-
gen limited conditions at a heating rate of 26 °C min−1 and kept
up to 700 °C for 8 h. After being cooled under ambient condition,
the biochar was grounded <0.2 mm and collected. Biochar pH
(9.6) was measured in deionized water at a ratio of 1:5 (w/w)
biochar/water by an ISFET electrode with a tip diameter of
1.2 mm (SevenExcellence™ pH, Mettler Toledo Inc.,
Switzerland) after 1 h solution equilibrium (Zhang et al. 2016).
Biochar contained 56.7 total C (%), 0.67 total N (%), and had a
natural δ13C abundance of −29.8‰. Additionally, biochar
contained 138.7 mg kg−1 Zn, 36.5 mg kg−1 Cu, and
3.5 mg kg−1 As. The aromatic-C accounted for 53.2% of the
chemical functional groups. The basic properties are given in
SI Table 1.

Experimental layout

Two treatments included biochar-unamended (BC-0%) and
biochar-amended (BC-3%) soils. Biochar was homogenously ap-
plied in sieved soils as 3% of soil weight (oven-dry basis) (Bruun

et al. 2011). The experiment conducted 32 labeled pots (two
treatments each with four replicates and four sampling points),
and the same number of pots were unlabeled. Polyvinyl chloride
(PVC) pots (height 10.5 cm, diameter 11.3 cm) were filled with
324 g dry soil. Black film covered the pots to avoid the influence
of autotrophic microorganism. The soil water content was adjust-
ed to 60% of water holding capacity, and it was controlled gravi-
metrically during the experiment.

Ryegrass (Lolium perenneL.) seeds were sterilizedwith 30%
H2O2 solution for 30 min; then, they were washed with deion-
ized water thoroughly. To hasten germination, seeds were
soaked in 25 °C deionized water in the dark for 12 h before
being sown in pots. Emergence occurred 1 week after sowing,
weak leaves were cut, and shoots were clipped 4 cm uniformly
at the tillering stage of ryegrass (4 weeks after sowing). Each pot
contained 30 seedlings with a similar growth before labeling.

Ryegrass growth conditions and 13CO2 pulse labeling

The light period lasted for 14 h and the temperature was 28 °C
during the day and 20 °C during the night and relative humid-
ity was 70% in the greenhouse (Chen et al. 2016). Ryegrass
seedlings were put in an air-tight perspex chamber (length
1.75 m, width 0.8 m, height 1 m) in the greenhouse, then an
18 h-13CO2 pulse labeling was performed during their elon-
gation stage according to Lu et al. (2002). The 13CO2 was
generated by an acid-base reaction mixing 3 M excess
H2SO4 and 1 M Na2

13CO2 (≥ 99% atom, Cambridge Isotope
Laboratories, Inc., USA) solution. A fan was fixed at the top
of the chamber to homogenize the gas, and the thermometer
was installed to detect the internal temperature. The CO2 con-
centration was monitored by a portable CO2 detector
(SMART-CO2, Shenzhen, China), and new 13CO2 was pro-
duced through regulating the acid-base reaction. Unlabeled
pots were kept 20 m away from the labeling chamber.

Plants and soils from independent pots were destructively
sampled on 2, 5, 9, and 16 days after labeling. The first sam-
pling started on January 25, 2018, shoots were cut off at the
soil surface, and visible roots were separated manually
through a 0.5-mm sieve with deionized water. Soil sticking
to roots was removed as modifications from Luo et al. (2018):
soil was suspended in 40 mL CaCl2 buffer (0.01 M, pH 6.2)
and centrifuged at 8400×g for 5 min (Yuan et al. 2016). Then
decanted the supernatant to separate the plant-derived debris
from soil, i.e., picked out floatable fine roots then washed with
deionized water. Subsequently, the remaining soil sediments
were purified by twice resuspension in deionized water, cen-
trifuged, collected, and mixed thoroughly. Finally, all shoots
and roots were individually oven-dried at 65 °C for 72 h,
weighed and ball-milled <0.25 mm. All fresh soil samples
were divided into three portions of subsamples: one portion
was immediately stored at −80 °C for PLFA extraction; one
portion was stored at 4 °C for aggregate size fractionation; the

535Biol Fertil Soils (2021) 57:533–546



remaining portion was freeze-dried for 72 h, grounded, sieved
through a 100 mesh to determine total C/N content and 13C-
values.

Aggregate size fractionation

Soil aggregates of three size classes were separated by the
optimal-moisture sieving method (Dorodnikov et al. 2009).
The soil samples were spread on a thin layer in a ventilation
hood and air-dried to 25%WHC. Then 20-g soil sub-samples
(dry mass) were transferred to a nest of sieves (2, 0.25, and
0.053 mm). The separation was achieved by an electric swing-
machine (Electricity analyzer Inc., Hangzhou, China) moving
the sieves up and down 4 cm at 30 rounds per minute for
30 min. Thereafter, macroaggregates (0.25–2 mm) were col-
lected from the surface of a 0.25-mm sieve, while
microaggregates (0.053–0.25 mm) passed through the 0.25-
mm sieve and collected on surface of 0.053-mm sieve. The
remaining material passed through the 0.053-mm sieve and
was categorized as silt-clays (< 0.053 mm). All size classes
were weighed, freeze-dried overnight for 13C and total C con-
tent analysis.

PLFAs extraction and analysis

The PLFAs were extracted and measured according to Luo
et al. (2017a). The freeze-dried soil samples (2 g) were ex-
tracted by a 22.8-mL single-phase (0.15M, pH 4.0) mixture of
chloroform-methanol-citrate buffer (1:2:0.8). Then phospho-
lipids were separated from neutral lipids and glycolipids on a
silica acid column (Supelco, Bellefonte, PA, USA). Following
methylation of the phospholipids, the methyl esters were ex-
tracted in n-hexane and N2 gas-dried. Methyl nonadecanoate
fatty acid (19:0) was added before derivatization, as an inter-
nal concentration standard to quantify the phospholipids.
Using a gas chromatograph installed with a flame ionization
detector (GC-FID, Agilent Technologies, USA) and fitted
with a MIDI Sherlock microbial identification system
(Version 4.5; MIDI, Newark, DE, USA), the PLFA bio-
markers were identified into five groups eventually: fungi,
actinomycetes, gram-negative (G−) bacteria, gram-positive
(G+) bacteria, and general FAMEs (fatty acids methyl esters).
The 16:0 and 18:0 PLFA cannot be assigned to specific func-
tional groups of microorganisms (Dungait et al. 2013), which
occur generally in the all living cells, being defined as the
general FAME (Tavi et al. 2013). Detailed nomenclature of
PLFAs was described in SI Table 2. To determine the 13C
incorporation into specific biomarker in response to biochar
application, the δ13C value of individual PLFAs (PLFA-SIP)
was measured using a Trace GC Ultra gas chromatograph
with combustion column attached via a GC Combustion III
to a Delta V Advantage isotope ratio mass spectrometer
(Thermo Finnigan, Germany) (Wang et al. 2016).

Calculations and statistics

The 13C abundance of shoots, roots, soil aggregate size clas-
ses, and PLFA biomarker were measured as δ13C (‰) values
relative to the standard Pee Dee Belemnite, and values were
calculated as artificial-labeled atom percent (%) (Zhu et al.
2017). Then, the 13C incorporation into individual C pools
(mg 13C kg−1 soil) was calculated as reported by Atere et al.
(2017), according to the following equation:

atom %ð Þ ¼ 100� 0:01118021� δ=1000þ 1ð Þ½ �=

1þ 0:01118021� δ=1000þ 1ð Þ½ �

ð1Þ

where the δ13C values of plant, soil, and PLFAs samples were
measured as δ (‰) relative to the Pee Dee Belemnite (PDB;
13C, 0.0111802) standard and further expressed as atom per-
cent (atom%).

13Cs ¼ atom%13C
� �� �

s;L− atom%13C
� �� �

s;UL � Cs=100 ð2Þ

where (atom%13C)s,L and (atom%13C)s,UL are
13C percent (%)

of labeled and unlabeled samples, respectively, Cs is the C
content of each sample (mg C kg−1 soil).

13C isotope analysis of PLFAs was used to explore which
microbial group utilized the plant-C (Ge et al. 2017; Luo et al.
2017a). The amount of 13C incorporation in each PLFA (ng
13C g−1 soil) was determined using a mass balance approach:

13CPLFA ¼ atom%13C
� �� �

PLFA;L− atom%13C
� �� �

PLFA;UL � CPLFA=100

ð3Þ
where (atom%13C)PLFA,L and (atom%13C)PLFA,UL are the

13C
percent (%) of labeled and unlabeled PLFA biomarkers, re-
spectively. CPLFA is the C content of each PLFA biomarker
(ng C g−1 soil). The relative abundance of each individual
group was expressed as the percentage of each PLFA-C in
total PLFAs-C according to the following equation:

Relative abundance of PLFA %ð Þ ¼ CPLFA−Group=∑CPLFAs � 100

ð4Þ

where CPLFA-Group is the sum of the C-PLFA of eachmicrobial
group, and ∑ CPLFAs is the total C-PLFA amount.

Partial calculation and modeling of microbial data were
based on two treatments with three replicates, including
Pearson’s correlation analysis, the redundancy analysis
(RDA) and the RF modeling. Pearson’s correlation analysis
was conducted by SPSS 20.0 (p < 0.05) (SPSS, Inc., Chicago,
IL, USA), which individually assessed the correlation be-
tween the relative abundance of each microbial group and
13C allocation into plant shoot, root, the whole soil, and three
aggregate fractions. To reveal environment factors influencing
the composition of main microbial groups and their
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assimilation of 13C, RDA was performed using the RDA
package of R (Comprehensive R Archive Network)
(Kambura et al. 2016). This canonical community ordination
method explored the relationship between 13C-PLFA amount
and soil properties (pH, total C/TC, total N/TN, water content/
WC, dissolved organic C/DOC) with great fitness (r2 > 0.5,
p < 0.05). To assess the significant predictors of integrate sys-
tems in the 13C belowground allocation quantitatively, biotic-
and abiotic-predictors were analyzed by the RF modeling via
random forest package (Chen et al. 2019); biotic-predictors
were microbial relative abundance, root biomass and bacterial
stress; abiotic-predictors were selected based on principal fac-
tors from RDA and aggregation stability (the normalized
mean weight diameter of aggregation).

To explore the biochar-induced influence on connections
within and between individual microbial groups, a co-
occurrence network analysis (Conet) was performed (based
on all extracted PLFA biomarkers) using Cytoscape version
3.5 (Shannon et al. 2003). The biochar-unamended and
biochar-amended soil were separately analyzed with twelve
samples (with 3 replicates each time, 4 sampling times during
plant growth). Firstly, the Conet pattern was constructed based
on the PLFA-C. Secondly, the dissimilarity threshold to the
maximum value of the Kullback-Leibler dissimilarities (KLD)
matrix and the Spearman’s correlation threshold to 0.9 were
calculated (p < 0.05). Thirdly, each edge was set at 1000 iter-
ations of bootstrap distribution under the permutations of ran-
domization. The specific p value was united through the
Brown’s method, and was adjusted according to Benjamini
and Hochberg (1995) to diminish the probability of false-
positive results. Finally, ran and generated networks, the
nodes of networks represented specific microbial groups, the
edges indicated paired and significant correlations between
nodes. Network visualization was conducted in Cytoscape.

All statistical analyses of all non-microbial data were con-
sidered the mean of four replicates with standard deviations
and were performed by SPSS 20.0. One-way ANOVA (anal-
ysis of variance) was used to analyze data variance. Normality
and homogeneity of variances were tested using the Shapiro-
Wilk and Levene’s test, respectively. The Tukey post hoc test
was applied to identify the significance of data in each treat-
ment during four sampling points. The Student’s t test was
used to evaluate the significant differences of means pairwise
between BC-0% and BC-3% treatment (p < 0.05).

Results

Allocation of photosynthetic-C in ryegrass-soil system

Biochar application significantly decreased shoot biomass on
day 2 and day 16 compared to the biochar-unamended soil,
respectively (p < 0.05) (SI Fig. 2a), and reduced root biomass

from 2 to 9 days. The 13C of shoot was the highest among
pools of shoot, root and soil, but it gradually decreased from
10.5 to 8.9 mg C pot−1 during growth (p > 0.05) (Fig. 1a). The
13C of root had a similar trend as that of shoot in both treat-
ments over time (Fig. 1c). Based on time-average, biochar did
not result in a significant difference in the 13C-pool of shoot
and root (Fig. 1b, d). Less 13C was incorporated in both shoot
and root from 2 to 9 days in biochar-enriched soils, whereas
the opposite trend occurred on day 16 (p > 0.05).

Biochar significantly decreased the 13C incorporation into
macroaggregate by 92.8%, into microaggregate by 94.5% and
into silt-clays by 84.1%, compared to soil without biochar
(Fig. 1f, h, j). In biochar-unamended treatments, 13C alloca-
tion in all aggregates significantly decreased from 2 to 5 days,
with reduction in macroaggregate (27.5%), microaggregates
(52.7%), and silt-clays (81.4%) (p < 0.05) (Fig. 1e, g, i). Both
biochar-amended and -unamended soils had similar trend of
13C incorporation in aggregate size fractions since day 5
(p < 0.05).

Composition of main microbial groups and network
interactions

The highest relative abundance was observed in fungal bio-
marker, accounting for 36.3% of total PLFAs on average (Fig.
2a). Biochar addition decreased the relative abundance of fun-
gal PLFAs by 21.0% on average (p < 0.05), and increased that
of G+, G− bacteria and actinomycetes by 33.9%, 28.8%, and
69.7%, respectively. Significant declines were found in envi-
ronmental stress indicators for bacteria after the biochar
amendment, i.e., both stress 1 (cy17:0/16:1ω7c) and stress 2
(cy19:0/18:1ω7c) decreased by 15.8% and 26.7% on day 2
(p < 0.05), respectively (Fig. 2b).

The co-occurrence networks showed that the application of
biochar modified the interactions among microbial communi-
ties including general FAME, fungi, actinomycetes, G+ and G
− bacteria (Fig. 3c, d). The blue and red edges represented
significantly positive and negative correlations between pairs
of groups, respectively. The network analysis of the biochar-
unamended soils showed 53.3% of negative links between
fungi and bacterial groups, i.e., G− bacteria and actinomycetes
(Fig. 3c, SI Table 5). In the presence of biochar, the number of
edges representing positive and negative connections de-
creased, the structure of network became loose (Fig. 3d),
and the mutual-exclusion only existed between fungi-
bacteria connections; meanwhile, the fungal percentage de-
creased while the bacterial percentage increased (p < 0.05).

13C incorporation into microbial groups

The 13C incorporation into microbial groups in both treat-
ments ranked as fungi > general FAME > G− bacteria > G+
bacteria > actinomycetes (Fig. 3a, b). Fungal 13C-PLFA was
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dominant in both treatments during the entire period. The 13C
incorporation into fungi peaked (141.2 ng C g−1) on day 2
without biochar and decreased with time (Fig. 3a).
Application of biochar decreased 13C within most microbial
groups especially in fungi between day 2 and day 5 (p < 0.05)
(Fig. 3b; SI Table 3). From 9 to 16 days, the 13C incorporation
into all groups was similar between biochar-amended and
biochar-unamended soils.

Correlations between soil abiotic, biotic variables, and
rhizodeposits stabilization

Redundancy analysis (RDA) revealed the correlation between
13C-PLFAs and soil properties (pH, TC, TN,WC, DOC) (Fig.
3e). The first and second canonical axis explained 63.7% and
11.1% of the variation to 13C-PLFA, respectively. The longest
arrow indicated that pHwas the main factor in the axis RDA1,
and it was positively correlated with biochar-amended

samples. The axis RDA2 separated the biochar-unamended
samples with time, and clustered by soils sampled at day 9
and day 16.

The RF model explained 76.3% of the total variance (Fig.
3e). It indicated fungal relative abundance accounted for 3.2%
of the increase of mean square error (InMSE) and represented
as the most important biotic predictor for photosynthetic-13C
allocation. Consistent with the RDA analysis, TC, TN, and pH
were the primary abiotic predictors for 13C utilization by mi-
crobial community and stabilization within aggregates (above
7.0% of InMSE).

The Pearson’s correlation coefficients revealed significant
relations between 13C allocation belowground and relative
abundance of microbial groups (Table 1). The relative abun-
dance of fungi and general FAME were positively correlated
with 13C amounts in bulk soil and aggregate size classes,
whereas the actinomycetes relative abundance was negatively
correlated with 13C amount in soils especially within macro-
aggregates (p < 0.01).

Discussion

Distribution of photosynthetic-C in plant and soil

Compared with the biochar-unamended soil, the aver-
aged 13C allocation in plant pools (shoot and root) were

�Fig. 1 Photosynthetic-13C allocation in ryegrass-soil system on 2, 5, 9,
and 16 days after labeling of shoots (a, b); roots (c, d); macroaggregates
(e, f); microaggregates (g, h); and silt-clay fractions (i, j). Treatments
include biochar-unamended (BC-0%) and biochar-amended (BC-3%)
soil. Asterisks above the bars indicate significant differences pairwise
between treatments at each time point. Different letters indicate statisti-
cally significant differences in a treatment with time. Error bars represent
the standard error of the mean (n = 4)

Microbial community Stress on bacteria

Fig. 2 Relative abundance of PLFA biomarkers represent mainmicrobial
groups in total PLFAs (a); biochar-induced bacterial stress (shown as the
ratio of cyclopropyl with its precursor PLFA-C) (b). Treatments include
biochar-unamended (BC-0%) and biochar-amended (BC-3%) soil.

Asterisks above the bars indicate significant differences pairwise between
treatments at each time point; error bars represent the standard error of the
mean (n = 3)
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not changed significantly (p > 0.05) after biochar addi-
tion, but much less of 13C was allocated in the soil
amended with biochar (Fig. 1). Biochar could not di-
rectly affect the 13CO2 flow in leaf photosynthesis, but
likely it exerted “indirect influences” on fate of photo-
synthates in soil via changes in nutrients, pH, and sub-
sequent microbial community. For instance, the altered
13C allocation into soil was likely due to reduced root
biomass and less input of root-derived organics into soil
for nutrients exchange (Foster et al. 2016), as biochar-
mediated increase in nutrient availability (SI Fig. 5). It
was reported that insufficient nutrients enhanced root

metabolic costs in the secretion of rhizodeposits as C
source to trade-off N (Kumar et al. 2016). In this re-
gard, Mellado-Vázquez et al. (2016) showed that bio-
char addition decreased the abundance of exudate-
utilizing fungi. Consistently, biochar decreased fungal
PLFA and their 13C assimilation, which also mirrored
the decreased rhizodeposits as C sources for microor-
ganisms. Moreover, the mean biomass of shoot was sig-
nificantly reduced after biochar application (SI Fig. 2),
indicating that biochar negatively influenced ryegrass
growth likely because it contained toxicants (SI
Table 1). This was reported previously (Anyanwu

Fig. 3 Photosynthetic-13C
incorporation into microbial
PLFAs in biochar-unamended (a)
and biochar-amended (b) soil, er-
ror bars represent the standard er-
ror of the mean (n = 3). Co-
occurrence network of microbial
communities based on
Spearman’s threshold (0.9) in
biochar-unamended (c) and
biochar-amended soil (d), nodes
with different color represent in-
dividual group; node size is in
proportion to microbial relative
abundance; solid blue and dotted
red lines represent positive and
negative connections, respective-
ly. Redundancy analysis of 13C-
PLFA profiles of soil samples in
two treatments (biochar with 0%
and 3% application rate) on 2, 5,
9, and 16 days after labeling (e).
Random forest analysis for im-
portant biotic and abiotic predic-
tors of 13C allocation in soil (f)
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et al. 2018; Revell et al. 2012). However, we cannot
distinguish whether the surplus of nutrients or toxic ef-
fects inhibited rhizodeposition processes because it is
required direct measurement of rhizodeposits.

Biochar effect on allocation of rhizodeposit-13C into
soil aggregates

A significant decrease of 13C allocation within three aggre-
gates occurred after biochar addition (Fig. 1f, h, j). This might
be due to (i) the reduced root exudation in nutrients sufficient
soils; and (ii) the decreased soil aggregation (indicating poten-
tial C loss), due to less root exudates which acted as gluing
agents for aggregation formation (Tripathi et al. 2014).
Components of root exudates, such as polysaccharides, can
bind microaggregates to form macroaggregates (Six et al.
2004). Indeed, the normalized mean weight diameter
(NMWD) value, an indicator of aggregate stability (Kumar
et al. 2017), decreased slightly after biochar application, indi-
cating the negative effects of biochar on aggregation (SI
Fig. 4). Contrary to our results, some previous studies sug-
gested a biochar-mediated increase in aggregates formation
and stability (Herath et al. 2013; Burrell et al. 2016). The field
biochar application promoted the formation of soil organo-
mineral microstructures after 9.5 years, thus resulting in an
increased recovery of root-13C by 20% (Weng et al. 2017).
However, the effects of biochar on aggregate formation de-
pend on times, rates, and types of biochar application and soil
types, i.e., texture. Biochar used in this study was produced at
700 °C, and it contained higher aromatic-C content than those
produced under lower temperatures (Jie et al. 2015; Novotny
et al. 2015). A negative correlation between aromatic fraction
of biochar and soil aggregates stability was observed (Sarker
et al. 2018), suggesting that the percentage of aromatic-C neg-
atively affected aggregation (Fig. 4).

Less input of rhizodeposits in the biochar-amended soil
decreased aggregation, leading root-derived 13C vulnerable

to microbial attack. Since plant-derived CO2 was not quanti-
fied in the present study, future work should consider the full
fate of photosynthetic-C flow through pools in the plant-soil-
atmosphere system, including rhizodeposits respiration.

Effects of biochar on the composition of main
microbial groups and bacteria fungi ratio

The relative abundance of G+, G− bacteria and actinomy-
cetes increased in biochar-amended soils during all the
sampling times (Fig. 2a). This indicated biochar interacted
positively with these bacterial microbiotas in the ryegrass-
soil system. The G+ bacteria abundance increased in
biochar-amended soils likely due to the ability of this
group to decompose the aromatic components (Santos
et al. 2012). Actinobacteria were the dominant phyla in
soil after biochar addition (Yu et al. 2018; Zhou et al.
2019). Abundance and diversity of bacteria can increase
in soils with increasing pH from 4.9 to 7.5 (Nicol et al.
2008), and bacteria can be active in a wide range of pH
from 3.6 to 8.9 (Tripathi et al. 2018). The mechanisms
underlying the increased relative abundance of bacteria
with biochar application include (i) the alleviated acid
stress by the biochar-mediated pH increase (Martinsen
et al. 2015), as the relative abundance of the bacterial
stress indicators, i.e., stress 1 (cy17:0/16:1ω7c) and stress
2 (cy19:0/18:1ω7c), both declined after biochar applica-
tion (Fig. 2b). The indicator of stress 1 is associated with
the physiological stress on bacteria, and the indicator of
stress 2 depends on bacterial activity (Macdonald et al.
2004); (ii) biochar pore spaces may have generated suit-
able habitats for bacteria, with tiny bacteria adhered to
biochar surfaces, being less susceptible to leaching
(Lehmann et al. 2011); (iii) biochar resulted in a more
suitable microbial habitat because it can offer C sources,
nutrients, space, etc., and thus, promoting microbial, i.e.,
actinobacteria, colonization (Luo et al. 2013).

Table 1 Pearson’s correlation coefficient between the relative
abundance of microbial biomarkers and 13C allocation in ryegrass-soil
systems (plant shoot, root, and soil aggregates). F1, F2, and F3 stand for
macroaggregates, microaggregates, and silt-clay fractions. Microbial

groups are represented by PLFA biomarkers as fungi, actinomycetes, G
− (Gram negative), G+ (Gram positive) bacteria, and the general FAMEs
including 16: 0 and 18: 0 biomarkers. Correlation is significant at p < 0.05
(*) and p < 0.01 (**)

Microbial
community

13C- Shoot 13C- Root 13C- Soil 13C in F1
13C in F2

13C in F3

Fungi .057 .193 .721** .879** .698** .836**

Actinomycetes −.229 −0.37 −.451* −.619** −.425* −.369
G+bacteria .154 −.171 −.234 −.313 .306 .408*

G - bacteria .034 −.045 −.297 −.404* .374 .451*

General FAME .005 .063 .610** .760** .635** .843**

13 C-Shoot: 13 C content in shoot; 13 C-Root: 13 C content in root; 13 C-Soil: 13 C content in soil without fractionation; 13 C in F : 13 C content in
macroaggregates; 13C in F2 :

13 C content in microaggregates; 13 C in F3 :
13C content in silt-caly fractions
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Therefore, biochar amendment caused opposite effects on
fungi, i.e., the relative abundance of fungi decreased with
biochar application especially in the early time compared to
bacteria (Fig. 2a). Network analysis revealed less co-existence
(positive interactions) than mutual-exclusion (negative inter-
actions) of microorganisms in biochar-amended soils, with
more negative links between fungi and bacteria (Fig. 3c, d).
Biochar application loosed the network structure, especially
exacerbated mutual-exclusion between fungi and bacteria.
The shifted composition of main microbial groups (bacteria
versus fungi) by biochar addition (Fig. 2a) was likely due to
biochar-mediated changes in soil C, nutrients, C/N ratio and
pH (Fig. 3e). The biochar enhanced pH, increased abundance
of bacteria that outcompeted fungi as the former were more
sensitive to pH changes than fungi (Herold et al. 2012; Rousk
et al. 2010). The C/N ratio of biochar per se and corresponding
changes in soil C/N ratio could have affected the fungi: bac-
teria ratio (Rousk et al. 2013). Root biomass might have been
limited either by biochar induced toxicity (Mellado-Vázquez
et al. 2016) or by over-nutrition (Hagemann et al. 2017). The
reduction of root biomass decreased colonization of root-
associated microorganisms especially fungi (Deyn et al.
2011; Kusliene et al. 2014). For example, the abundances of
mycorrhizal fungi decreased with biochar-mediated higher N
or/and P availability (Lehmann et al. 2011).

Microbial utilization of rhizodeposit-13C

Translocation of 13C into PLFA biomarkers occurred rapidly,
peaking on the first sampling time (day 2), and then decreased
(Fig. 3a, b). The RDA plot showed clear separation of the 13C-
PLFA biomarkers with time (Fig. 3e). Early incorporation of the
photosynthetic-13C into microbial PLFAs was consistent with
Chaudhary andDick (2016), who revealed the C from photosyn-
thesis was rapidly transported belowground within 2 days after
pulse labeling.Arbuscularmycorrhizal fungi (AMF), represented
by 16:1ω5c biomarkers (Olsson et al. 1997; Ladygina and
Hed lund 2010 ) , cou ld have a s s im i l a t ed g r a s s
rhizodeposited-13C after 9 h of 13CO2 labeling (Dorodnikov
et al. 2009), whereas the bacterial uptake of 13C was delayed
(Denef et al. 2007, 2009), likely because bacteria used C-
leaking of hyphae or fungal necromass-C rather than the direct
utilization of fresh root-exudates (Jin and Evans 2010).

Rhizodeposit-13C incorporation into PLFA biomarkers
showed different ability of rhizodeposits utilization between bac-
teria and fungi (Fig. 3a, b). Our results were consistent with other
observations that fungi dominated in soil-ryegrass (Kusliene
et al. 2014; Rinnan and Baath 2009), with the highest 13C-
PLFA content up to 44.4% (Fig. 3a). Fungi could have assimi-
lated labile exudates directly from roots via an extensive hyphal
network before than bacteria (Yuan et al. 2016; Berruti et al.

Fig. 4 Conceptual diagram of fate of rhizodeposit-13C, as regulated by
microbial composition and aggregation stability, determined the 13C
allocation. The biochar application reduced rhizodeposit-13C exudation
and root growth under excess nutrition: (a) biochar improved bacterial
(13C-mineralization associated groups) growth via changing soil TC,TN
contents and especially pH, thus larger proportion of bacteria

decomposed more 13C; (b) biochar application diminished aggregation
thus giving fewer fine-roots that occluded with microbe-available
rhizodeposits in macroaggregates, causing less abundant fungi (13C-se-
questration associated groups) than in biochar-unamended soil.
Consequently, less 13C was redistributed to inner size fractions, which
was mineralized by bacterial degradation
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2013). Biochar significantly decreased 13C incorporation into soil
microorganisms particularly fungal 13C-PLFAs (Fig. 3b),
confirming what reported by Mellado-Vázquez et al. (2016).
Therefore, we confirmed that fungi adapted more quickly and
used rhizodeposits earlier than bacteria (Fig. 3a), and the addition
of biochar decreased C sequestration.

Contributions to rhizodeposits sequestration via
abiotic and biotic attributes

The random forest modeling attributed the stabilization of
photosynthetic-13C in soil to abiotic factors (organic C con-
tent, nutrient content, pH and aggregates) and biotic variables
(fungal and bacterial abundance) (Fig. 3f). Biochar reduced
13C stabilization within aggregate size classes (84–94%) due
to the changes in abiotic variables or shifted bacteria to fungi
relationships with implication in the fungal hyphae entangle-
ment of aggregation and pH-mediated bacterial mineralization
of rhizodeposits, respectively.

The biochar-mediated decrease in fungal abundance de-
creased aggregate stability, as fungal hyphae are involved in
the aggregate formation by acting as binding agents (Gupta
and Germida 2015). The decrease in fungal abundance was
due to competition by bacteria, reduced root-fungal interac-
tions, diminished fungal use of rhizodeposit-C (by 68.3%),
and the aggregation processes, with the latter reducing the
physicochemical protection of rhizodeposit-13C. Noticeably,
a positive Pearson’s correlation (r2 = 0.721, p < 0.01) was
found between fungal relative abundance and 13C allocation
belowground.

In addition, biochar significantly decreased 13C incorpora-
tion into soil microorganisms except in actinomycetes (Fig.
3b). The increased relative abundance of actinomycetes by
biochar has been already reported, and attributed to the better
habitat, the decreased acid stress and the increased C and
nutrients (Khodadad et al. 2011; Luo et al. 2013). The enrich-
ment of actinomycetes by biochar likely increased
rhizodeposits mineralization (Peduruhewa et al. 2020), as sup-
ported by the negative correlation of actinomycetes relative
abundance and 13C allocation in aggregates, especially within
macroaggregates (Table 1). Overall, biochar amendment de-
creased soil aggregate formation and stability by decreasing
fungal abundance, but enhanced relative abundance of bacte-
ria and their utilization of rhizodeposit-13C, with the conse-
quent decrease of 13C in soil aggregates.

Conclusions

This study investigated influence of high temperature pyro-
lyzed (700 °C) biochar on the allocation of photosynthetic-C
within microbial groups inhabiting ryegrass-soil. Biochar
amendment decreased 13C stabilization by 84–94% in soil

aggregate size classes likely due to (i) biochar-mediated de-
crease in aggregate formation and stability due to declined
fungal abundance with the consequent less root-hyphae-
aggregate interactions; (ii) biochar increased pH with en-
hanced positive effects on relative abundance and activity of
bacteria, especially actinobacteria. This study improved the
knowledge on C sequestration by biochar by better under-
standing interactions among root, bacteria, fungi, and aggre-
gates. In particular, biochar caused less stabilization of
rhizodeposits in soil via diminished fungi-promoted aggrega-
tion and enhanced bacterial abundance.
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